Skip to main content Accessibility help
×
Home
  • Print publication year: 2017
  • Online publication date: July 2017

7 - Monotone cellular automata

[1] M., Aizenman and J.L., Lebowitz, Metastability effects in bootstrap percolation, J. Phys. A., 21 (1988), 3801–3813.
[2] R., Arratia, Site recurrence for annihilating random walks on Zd, Ann. Prob., 11 (1983), 706–713.
[3] P., Bak, C., Tang and K., Wiesenfeld, Self-organized criticality: an explanation of 1/f noise, Phys. Rev. Letters, 59 (1987), 381–384.
[4] P., Balister, B., Bollobás, M.J., Przykucki and P.J., Smith, Subcritical U-bootstrap percolation models have non-trivial phase transitions, Trans. Amer. Math. Soc., 368 (2016), 7385–7411.
[5] J., Balogh and B., Bollobás Bootstrap percolation on the hypercube, Prob. Theory Rel. Fields, 134 (2006), 624–648.
[6] J., Balogh, B., Bollobás H., Duminil-Copin and R., Morris, The sharp threshold for bootstrap percolation in all dimensions, Trans. Amer. Math. Soc., 364 (2012), 2667–2701.
[7] J., Balogh, B., Bollobás and R., Morris, Majority bootstrap percolation on the hypercube, Combin. Probab. Computing, 18 (2009), 17–51.
[8] J., Balogh, B., Bollobás and R., Morris, Bootstrap percolation in three dimensions, Ann. Prob., 37 (2009), 1329–1380.
[9] J., Balogh, B., Bollobás and R., Morris, Bootstrap percolation in high dimensions, Combin. Probab. Computing, 19 (2010), 643–692.
[10] J., Balogh, Y., Peres and G., Pete, Bootstrap percolation on infinite trees and non-amenable groups, Combin. Prob. Computing, 15 (2006), 715–730.
[11] J., Balogh and B., Pittel, Bootstrap percolation on the random regular graph, Random Structures Algorithms, 30 (2007), 257–286.
[12] J., van den Berg and H., Kesten, Inequalities with applications to percolation and reliability, J. Appl. Prob., 22 (1985), 556–569.
[13] B., Bollobás H., Duminil-Copin, R., Morris and P., Smith, Universality of two-dimensional critical cellular automata, Proc. London Math. Soc., to appear, arXiv:1406.6680.
[14] B., Bollobás H., Duminil-Copin, R., Morris and P., Smith, The sharp threshold for the Duarte model, Ann. Prob., to appear.
[15] B., Bollobás K., Gunderson, C., Holmgren, S., Janson and M., Przykucki, Bootstrap percolation on Galton-Watson trees, Electron. J. Prob., 19 (2014), 1–27.
[16] B., Bollobás S., Griffiths, R., Morris, L., Rolla and P., Smith, Nucleation and growth in two dimensions, submitted, arXiv:1508.06267.
[17] B., Bollobás P.J., Smith and A.J., Uzzell, Monotone cellular automata in a random environment, Combin. Probab. Computing, 24 (2015), 687–722.
[18] N., Cancrini, F., Martinelli, C., Roberto and C., Toninelli, Kinetically constrained spin models, Prob. Theory Rel. Fields, 140 (2008), 459– 504.
[19] R., Cerf and E.N.M., Cirillo, Finite size scaling in three-dimensional bootstrap percolation, Ann. Prob., 27 (1999), 1837–1850.
[20] R., Cerf and F., Manzo, The threshold regime of finite volume bootstrap percolation, Stochastic Proc. Appl., 101 (2002), 69–82.
[21] R., Cerf and F., Manzo, A d-dimensional nucleation and growth model, Prob. Theory Rel. Fields, 155 (2013), 427–449.
[22] R., Cerf and F., Manzo, Nucleation and growth for the Ising model in d dimensions at very low temperatures, Ann. Prob., 41 (2013), 3697–3785.
[23] J., Chalupa, P.L., Leath and G.R., Reich, Bootstrap percolation on a Bethe latice, J. Phys. C., 12 (1979), L31–L35.
[24] P., Dehghanpour and R.H., Schonmann, A nucleation-and-growth model, Prob. Theory Rel. Fields, 107 (1997), 123–135.
[25] P., Dehghanpour and R.H., Schonmann, Metropolis dynamics relaxation via nucleation and growth, Comm. Math. Phys., 188 (1997), 89–119.
[26] A.M.S., Duarte, Simulation of a cellular automaton with an oriented bootstrap rule, Phys. A, 157 (1989), 1075–1079.
[27] H., Duminil-Copin and A., Holroyd, Sharp metastability for threshold growth models, manuscript, available at http://www.unige.ch/~duminil.
[28] H., Duminil-Copin and A.C.D. van, Enter, Finite volume Bootstrap Percolation with balanced threshold rules on Z2, Ann. Prob., 41 (2013), 1218–1242.
[29] A.C.D. van, Enter, Proof of Straley's argument for bootstrap percolation, J. Stat. Phys., 48 (1987),943–945.
[30] A.C.D. van, Enter and A., Fey, Metastability threshold for anisotropic bootstrap percolation in three dimensions, J. Stat. Phys., 147 (2012), 97–112.
[31] A.C.D. van, Enter and W.J.T., Hulshof, Finite-size effects for anisotropic bootstrap percolation: logarithmic corrections, J. Stat. Phys., 128 (2007), 1383–1389.
[32] P., Erdʺos and P., Ney, Some Problems on Random Intervals and Annihilating Particles, Ann. Prob., 2 (1974), 828–839.
[33] A., Fey, R., Meester and F., Redig, Stabilizability and percolation in the infinite volume sandpile model, Ann. Prob., 37 (2009), 654–675.
[34] L.R., Fontes, R.H., Schonmann and V., Sidoravicius, Stretched Exponential Fixation in Stochastic Ising Models at Zero Temperature, Commun. Math. Phys., 228 (2002), 495–518.
[35] J., Gravner and A.E., Holroyd, Slow convergence in bootstrap percolation, Ann. Appl. Prob., 18 (2008), 909–928.
[36] J., Gravner, A.E., Holroyd and R., Morris, A sharper threshold for bootstrap percolation in two dimensions, Prob. Theory Rel. Fields, 153 (2012), 1–23.
[37] J., Gravner and D., Griffeath, Scaling laws for a class of critical cellular automaton growth rules, In: RandomWalks (Budapest, 1998), Bolyai Soc. Math. Stud., 9 (1999), 167–186.
[38] J., Gravner and E., McDonald, Bootstrap percolation in a polluted environment, J. Stat. Phys. 87 (1997), 915–927.
[39] A., Holroyd, Sharp Metastability Threshold for Two-Dimensional Bootstrap Percolation, Prob. Theory Rel. Fields, 125 (2003), 195– 224.
[40] A., Holroyd, The metastability threshold for modified bootstrap percolation in d dimensions, Electron. J. Prob., 11 (2006), 418–433.
[41] A.E., Holroyd, T.M., Liggett and D., Romik, Integrals, partitions, and cellular automata, Trans. Amer. Math. Soc., 356 (2004), 3349–3368.
[42] S., Janson, T., Łuczak, T., Turova and T., Vallier, Bootstrap percolation on the random graph G(n, p), Ann. Appl. Prob., 22 (2012), 1989– 2047.
[43] F., Martinelli, Lectures on Glauber dynamics for discrete spin models, Lectures on Probability Theory and Statistics, Springer Lecture Notes in Mathematics, 1717 (1998), 93–191.
[44] F., Martinelli and C., Toninelli, Towards a universality picture for the relaxation to equilibrium of kinetically constrained models, arXiv:1701.00107.
[45] R., Morris, Zero-temperature Glauber dynamics on Zd, Prob. Theory Rel. Fields, 149 (2011), 417–434.
[46] R., Morris, The second term for bootstrap percolation in two dimensions, manuscript, available at http://w3.impa.br/~rob/.
[47] R., Morris, Bootstrap percolation and other automata, European J. Combin., to appear.
[48] N., Morrison and J.A., Noel, Extremal Bounds for Bootstrap Percolation in the Hypercube, arXiv:1506.04686.
[49] T.S., Mountford, Critical length for semi-oriented bootstrap percolation, Stochastic Process. Appl., 56 (1995), 185–205.
[50] S., Nanda, C.M., Newman and D., Stein, Dynamics of Ising spin systems at zero temperature, In On Dobrushin's way (From Probability Theory to Statistical Mechanics), eds. R. Minlos, S. Shlosman and Y. Suhov, Am. Math. Soc. Transl., 198 (2000), 183–194.
[51] J. von, Neumann, Theory of Self-Reproducing Automata. Univ. Illinois Press, Urbana, 1966.
[52] C.M., Newman and D., Stein, Zero-temperature dynamics of Ising spin systems following a deep quench: results and open problems, Physica A, 279 (2000), 159–168.
[53] D., Reimer, Proof of the van den Berg–Kesten Conjecture, Combin. Prob. Computing, 9 (2000), 27–32.
[54] R.H., Schonmann, On the behaviour of some cellular automata related to bootstrap percolation, Ann. Prob., 20 (1992), 174–193.
[55] A., Vespagnani, R., Dickman, M., Muñoz and S., Zapperi, Absorbingstate phase transitions in fixed-energy sandpiles, Phys. Rev. E, 62 (2000), 45–64.