Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2001
  • Online publication date: December 2009

10 - Molecular machines

    • Send chapter to Kindle

      To send this chapter to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Available formats
      ×

      Send chapter to Dropbox

      To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

      Available formats
      ×

      Send chapter to Google Drive

      To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

      Available formats
      ×

Summary

Introduction

Transistors [ref. 1] are solid state electronic devices capable of amplification and switching operations. By varying an input signal (current or voltage), they are switched reversibly between a State 0 and a State 1. The two states differ in the magnitude of an output signal (current or voltage) that is amplified on going from State 0 to State 1. By interconnecting appropriately several transistors, electronic circuits able to solve logic functions [ref. 2] can be fabricated. The complexity of a logic function and the speed at which it is carried out by an electronic circuit are related to the number of transistors integrated within the circuit. Thus, one of the major goals of the electronic industry is to build ultradensely integrated electronic circuits containing the largest possible number of transistors. This objective can only be achieved by reducing as much as possible the sizes of these switching devices. Indeed, over the past decades the dimensions of transistors have shrunk at an exponential rate and the smallest commercially available transistors have reached micrometer sizes. Stimulated by this tremendous pace toward miniaturization, a number of researchers have envisaged [ref. 3] the possibility of designing and fabricating molecular-sized electronic devices.