Skip to main content Accessibility help
  • Print publication year: 2012
  • Online publication date: August 2012

Chapter 15 - Aphasia and stroke

from Section 1 - Clinical manifestations


Transient monocular visual loss is the most important visual symptom of arteriosclerotic vascular disease, arteritis and states of altered coagulability, and thrombocytosis. In most patients, the visual abnormality during each individual attack of visual loss is stereotypic. Visual loss occurrence is divided into four types. Type I is due to transient retinal ischemia, type II to retinal vascular insufficiency, and type III to vasospasm. Type IV occurs in association with antiphospholipid antibodies but includes cases of unknown etiology. Sudden monocular blindness is the major symptom of an ocular stroke causing permanent visual loss. The ocular strokes discussed are: central retinal artery (CRA) occlusion, ophthalmic artery (OA) occlusion, branch retinal artery (BRA) occlusion, and ischemic optic neuropathy (ION), which is the result of infarction of the optic nerve. Blindness can result from infarction of the retina or the optic nerve.


1. BrocaP.Perte de la parole. Remollisement chronique et destruction partielle due lobe anterieur gauche du cerveau. Bull Soc Anthropol 1861; 2: 235–238.
2. WernickeC.Lehrbruch der Gerhirnkrankheiten. Berlin: Theodore Fisher, 1881.
3. GeschwindN.Disconnexion syndromes in animals and man. Brain 1965; 88: 237–294, 585–644.
4. NaeserMA, HaywardRW.Lesion localization in aphasia with cranial computed tomography and Boston Diagnostic Aphasia Examination. Neurology 1978; 28: 545–551.
5. Skyhøj-OlsenT, BruhnP, ÖbergRG.Cortical hypoperfusion as a possible cause of “subcortical aphasia.”Brain 1986; 106: 393–410.
6. HillisAE, WitykRJ, BarkerPB, et al. Subcortical aphasia and neglect in acute stroke: the role of cortical hypoperfusion. Brain 2002; 125: 1094–1104.
7. Wise RJS. Language systems in normal and aphasic human subjects: functional imaging studies and inferences from animal studies. Br Med Bull 2003; 65: 95–119.
8. Pascual-LeoneA, WalshV, RothwellJ.Transcranial magnetic stimulation in cognitive neuroscience: virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 2000; 10: 232–237.
9. DeLeonJ, GottesmanRF, KleinmanJT, et al. Neural regions essential for distinct cognitive processes underlying picture naming. Brain 2007; 130: 1408–1422.
10. CaramazzaA, HillisAE.Where do semantic errors come from?Cortex 1990; 26: 95–122.
11. OchfeldE, NewhartM, MolitorisJ, et al. Ischemia in Broca area is associated with Broca aphasia more reliably in acute than in chronic stroke. Stroke 2010; 41: 325–330.
12. BreeseEL, HillisAE.Auditory comprehension: is multiple choice really good enough?Brain Lang 2004; 89: 3–8.
13. GoodglassH, KaplanE.The assessment of aphasia and related disorders. Philadelphia, PA: Lea and Febiger, 1972.
14. KerteszA.The Western Aphasia Battery. Orlando, FL: Grune and Stratton, 1982.
15. MohrJP, PessinM, FinkelsteinS, et al. Broca aphasia: pathologic and clinical aspects. Neurology 1978; 28: 311–324.
16. SinyorD, JacquesP, KaloupekDB, et al. Post stroke depression and lesion location. An attempted replication. Brain 1986; 109: 537–546.
17. RobinsonRG, KubosKL, StarrLB, et al. Mood disorders in stroke patients: importance of location of lesion. Brain 1984; 107: 81–93.
18. DavisC, KleinmanJT, NewhartM, et al. Speech and language functions that require a functioning Broca's area. Brain Lang 2008; 105: 50–58.
19. SandsonJ, AlbertML.Perseveration in behavioral neurology. Neurology 1987; 37: 1736–1741.
20. HillisAE, BarkerPB, WitykRJ, et al. Variability in subcortical aphasia is due to variable sites of cortical hypoperfusion. Brain Lang 2004; 89: 524–530.
21. PalumboCL, AlexanderMP, NaeserM.CT scan lesion sites associated with conduction aphasia. In: KohnSE, ed. Conduction Aphasia. Hillsdale, NJ: Lawrence Erlbaum, 1992; 51–75.
22. SelnesOA, van ZijlP, BarkerPB, et al. MR diffusion tensor imaging documented arcuate fasciculus lesion in a patient with normal repetition performance. Aphasiology 2002; 16: 897–902.
23. FreedmanMF, AlexanderMP, NaeserMA.Anatomic basis of transcortical motor aphasia. Neurology 1984; 34: 40–94.
24. AlexanderMP, HiltbrunnerB, FischerRS.Distributed anatomy of transcortical sensory aphasia. Arch Neurol 1989; 46: 885–892.
25. KerteszA, SheppardA, MackenzieR.Localization in transcortical sensory aphasia. Arch Neurol 1982; 39: 475–478.
26. GoldsteinK.Die Transkortikalen Aphasien. Jena: G. Fischer, 1917.
27. NaeserMA, AlexanderMP, Helm-EstabrooksN, et al. Aphasia with predominantly subcortical lesion sites: description of three capsular/putaminal aphasia syndromes. Arch Neurol 1982; 39: 2–14.
28. FrommD, HollandAL, SwindellCS, et al. Various consequences of subcortical stroke. Prospective study of 16 consecutive cases. Arch Neurol 1985; 42: 943–950.
29. MohrJP, WattersWC, DuncanGW.Thalamic hemorrhage and aphasia. Brain Lang 1975; 2: 3–17.
30. Graff-RadfordNR, DamasioAR.Disturbances of speech and language associated with thalamic dysfunction. Semin Neurol 1984; 4: 162–168.
31. CarreraE, BogousslavskyJ.The thalamus and behavior. Effects of anatomically distinct strokes. Neurology 2006; 66: 1817–1823.
32. VallarG, PeraniD, CappaSF, et al. Recovery from aphasia and neglect after subcortical stroke: neuropsychological and cerebral perfusion study. J NeurolNeurosur Psychiatry 1988; 51: 1269–1276.
33. HillisAE, WitykRJ, TuffiashE.Hypoperfusion of Wernicke's area predicts severity of semantic deficit in acute stroke. Ann Neurol 2001; 50: 561–566.
34. AlexanderMP, HillisAE.Aphasia. In: GoldenbergG, MillerB, eds. Handbook of Clinical Neurology. Amsterdam: Elsevier, 2008; 287–309.
35. WarringtonEK, ShalliceT.Category specific semantic impairments. Brain 1984; 107: 829–854.
36. HartJ Jr, BerndtRS, CaramazzaA.Category-specific naming deficit following cerebral infarction. Nature 1985; 316: 439–440.
37. HillisAE, KleinmanJT, NewhartM, et al. Restoring cerebral blood flow reveals neural regions critical for naming. J Neurosci 2006; 26: 8069–8073.
38. DejerineJ. Contribution à l’étude anatomo-pathologique et clinique des différentes variétés de cécité verbale. Mem Soc Biol 1892; 4: 61–90.
39. GeschwindN, FusilloM.Color-naming defects in association with alexia. Arch Neurol 1966; 15: 137–146.
40. LarsenJ, BaynesK, SwickD.Right hemisphere reading mechanisms in a global alexic patient. Neuropsychologia 2004; 42: 1459–1476.
41. BinderJR, MohrJP.The topography of callosal reading patheways. A case-control analysis. Brain 1992; 115: 1807–1826.
42. FreundCS.Uber optische aphasia and seelenblindheit. Arch Psychiatr Nervenkr 1889; 20: 276–297.
43. MarshEB, HillisAE.Cognitive and neural mechanisms underlying reading and naming: evidence from letter-by-letter reading and optic aphasia. Neurocase 2005; 11: 325–337.
44. RoeltgenDP, HeilmanKM.Apractic agraphia in a patient with normal praxis. Brain Lang 1983; 18: 35–46.
45. HillisAE, ChangS, BreeseE.The crucial role of posterior frontal regions in modality specific components of the spelling process. Neurocase 2004; 10: 157–187.
46. MarshEB, HillisAE.Recovery from aphasia following brain injury: the role of reorganization. In: MøllerA, Bond ChapmanS, LomberSG, eds. Reprogramming the Human Brain: a volume of Progress in Brain Research. Amsterdam: Elselvier Science, 2006; 143–156.
47. HillisAE.Does the right make it right? Questions about recovery of language after stroke. Ann Neurol 2002; 51: 537–538.
48. HillisAE, BreeseEL.Aphasia recovery: stages and mechanisms. In: FreddiA, ed. Stroke Today. Rome: San Raffaele Termini, 2003; 288–297.
49. CroqueloisA, WintermarkM, ReichhartM, et al. Aphasia in hyperacute stroke: language follows brain penumbra dynamics. Ann Neurol 2003; 54: 321–329.
50. BassoA, GardelliM, GrassiMP, et al. The role of the right hemisphere in recovery from aphasia. Two case studies. Cortex 1989; 25: 555–566.
51. WillmesK, PoeckK.To what extent can aphasic syndrome be localized?Brain 1993; 116: 1527–1540.
52. HillisAE.Stages and mechanisms of recovery from aphasia. Jpn J Neuropsychol 2005; 21: 35–43.
53. NielsonJM.Agnosia, Apraxia, and Aphasia. New York, NY: Hoeber, 1946.
54. LevineDM, MohrJP.Language after bilateral cerebral infarctions: role of the minor hemisphere. Neurology 1979; 29: 927–938.
55. KinsbourneM.The minor cerebral hemisphere as a source of aphasic speech. Arch Neurol 1971; 25: 302–306.
56. CzopfJ.Role of the non-dominant hemisphere in the restitution of speech in aphasia. Arch Psychiatr Nervenkr 1972; 216: 162–171.
57. MartinPI, NaeserMA, TheoretH, et al. Transcranial magnetic stimulation as complementary treatment for aphasia. Semin Speech Lang 2004; 25: 181–191.
58. ThielA, HabedankB, WinhuisenL, et al. Essential language function of the right hemisphere in brain tumor patients. Ann Neurol 2005; 57: 128–131.
59. KarbeH, ThielA, Weber-LuxenburgerG, et al. Brain plasticity in poststroke aphasia: what is the contribution of the right hemisphere?Brain Lang 1998; 64: 215–230.
60. HeissWD, KesslerJ, ThielA, et al. Differential capacity of left and right hemisphere areas for compensation of poststroke aphasia. Ann Neurol 1999; 45: 430–438.
61. WarburtonE, SwinburnK, PriceCJ, et al. Mechanisms of recovery from aphasia: evidence from positron emission tomographic studies. J NeurolNeurosurg Psychiatry 1999; 66: 155–161.
62. PeraniD, CappaSF, TettamantiM, et al. An fMRI study of word retrieval in aphasia. Brain Language 2003; 85: 357–368.
63. DuffyRJ, CoelhoCA.Schuell's stimulation approach to rehabilitation. In: ChapeyR, ed. Language Intervention Strategies in Aphasia and Related Neurogenic Communication Disorders. 4th edn. Baltimore, MD: Williams and Wilkins, 2001.
64. KolkHHJ, HeeschenC.Adaptation symptoms and impairment symptoms in Broca's aphasia. Aphasiology 1990; 4: 221–231.
65. PulvermullerF, BerthierML.Aphasia therapy on a neuroscience basis. Aphasiology 2008; 22: 563–599.
66. BhogalSK, TeasellR, SpeechleyM.Intensity of aphasia therapy, impact on recovery. Stroke 2003; 34: 987–993.
67. CramerSC, RileyJD.Neuroplasticity and brain repair after stroke. Curr Opin Neurol 2008; 21: 76–82.
68. KamataK, SaguerM, MollerM, et al. Functional and metabolic analysis of cerebral ischemia using magnetoencephalography and proton magnetic resonance spectroscopy. Ann Neurol 1997; 42: 554–563.
69. KirkwoodA, RozasC, KirkwoodJ, et al. Modulation of long-term synaptic depression in visual cortex by acetylcholine and norepinephrine. J Neurosci 1999; 19: 1599–1609.
70. ChenY, LiYS, WangZY, et al. The efficacy of donepezil for post-stroke aphasia: a pilot case control study. Zhonghua Nei Ke Za Zhi 2010; 49: 115–118.
71. FerrisS, IhlR, RobertP, et al. Treatment effects of memantine on language in moderate to severe Alzheimer's disease patients. Alzheimers Dement 2009; 5: 375–379.
72. McGaughJL, RoozendaalB.Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol 2002; 12: 205–210.
73. Walker-BatsonD, DevousMD, CurtisS, et al. Amphetamine paired with physical therapy accelerates motor recovery after stroke. Further evidence. Stroke 1991; 26: 2254–2259.
74. Walker-BatsonD.Use of pharmacotherapy in the treatment of aphasia. Brain Lang 2000; 71: 252–254.
75. Walker-BatsonD, CurtisS, NatarajanR, et al. A double-blind placebo-controlled use of amphetamine in the treatment of aphasia. Stroke 2001; 32: 2093–2098.
76. MacLennanDL, NicholasLE, MorleyGK, et al. The effects of bromocriptine on speech and language function in a man with transcortical motor aphasia. In: PrescottT, ed. Clinical Aphasiology. Vol 21. Austin, TX: Pro-ed, 1991.
77. GuptaSR, MilcochAG.Bromocriptine treatment of nonfluent aphasia. Arch Phys Med Rehabil 1992; 73: 373–376.
78. AlbertML, BachmanD, MorganA, et al. Pharmacotherapy for aphasia. Neurology 1988; 38: 877–879.
79. BerthierML.Post stroke aphasia: epidemiology, pathophysiology and treatment. Drugs Aging 2005; 22: 163–182.
80. SeniowJ, LitwinM, LesniakM, et al. New approach to the rehabilitation of post-stroke focal cognitive syndrome: effect of levodopa combined with speech and language therapy on functional recovery from aphasia. J Neurol Sci 2009; 283: 214–218.
81. BarrettAM, EslingerPJ.Amantadine for adynamic speech: possible benefit for aphasia?Am J Phys Med Rehabil 2007; 86: 606–612.
82. GillenR, TennenH, MckeeTE, et al. Depressive symptoms and history of depression predict rehabilitation efficiency in stroke patients. Arch Phys Med Rehabil 2001; 82: 1645–1649.
83. HillisAE.For a theory of rehabilitation: progress in the decade of the brain. In: HalliganP, WadeD, eds. Effectiveness of Rehabilitation of Cognitive Deficits. Oxford: Oxford University Press, 2005; 271–280.
84. EnderbyP, BroeckxJ, HospersW, et al. Effect of piracetam on recovery and rehabilitation after stroke: a double-blind, placebo-controlled study. Clin Neuropharmacol 1994; 17: 320–331.
85. De DeynPP, ReuckJD, DeberdtW, et al. Treatment of acute ischemic stroke with piracetam. Stroke 1997; 28: 2347–2352.
86. CoqJ, XerriC.Acute reorganization of forepaw representation in the rat SI cortex after focal injury: neuroprotective effects of piracetam treatment. Eur J Neurosci 1999; 11: 2597–2608.
87. OrgogozoJM.Piracetam in the treatment of acute stroke. Pharmacopsychiatry 1999; 32: 25–32.
88. KesslerJ, ThielA, KarbeH, et al. Piracetam improves activated blood flow and facilitates rehabilitation of poststroke aphasic patients. Stroke 2000; 31: 2112–2116.
89. GoldsteinLB, the Syngen in Acute Stroke Study Investigators. Common drugs may influence motor recovery after stroke. Neurology 1995; 45: 865–871.
90. GoldsteinLB.Potential effects of common drugs on stroke recovery. Arch Neurol 1998; 55: 454–456.
91. GoldsteinLB.Should antihypertensive therapies be given to patients with acute ischemic stroke?Drug Safety 2000; 22: 13–18.
92. SmallSL.Biological approaches to the treatment of aphasia. In: HillisAE, ed. Handbook of Adult Language Disorders: Integration of Cognitive Neuropsychology, Neurology, and Rehabilitation. New York, NY: Psychology Press, 2002.
93. LefaucheurJP.Stroke recovery can be enhanced by using repetitive transcranial magnetic stimulation. Neurophysiol Clin 2006; 36: 105–115.
94. WaldowskiK, SeniowJ, BilikM, et al. Transcranial magnetic stimulation in the therapy of selected post-stroke cognitive deficits: aphasia and visuospatial hemineglect. Neurol Neurochir Pol 2009; 43: 460–469.
95. NaeserMA, MartinPI, NicholasM, et al. Improved picture naming in chronic aphasia after TMS to part of right Broca's area: an open-protocol study. Brain Lang 2005; 93: 95–105.
96. BakerJM, RordenC, FridrikssonJ.Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke 2010; 41: 1229–1236.
97. MontiA, CogiamanianF, MarcegliaS, et al. Improved naming after transcranial direct current stimulation in aphasia. J NeurolNeurosurg Psychiatry 2008; 79: 451–453.