Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T23:16:56.763Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  09 February 2019

Vladimir A. Krasnopolsky
Affiliation:
Catholic University of America, Washington DC
Get access
Type
Chapter
Information
Spectroscopy and Photochemistry of Planetary Atmospheres and Ionospheres
Mars, Venus, Titan, Triton and Pluto
, pp. 497 - 535
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, W.S., Dunham, T., 1932. Absorption bands in the infrared spectrum of Venus. Publ. Astron. Soc. Pacific 44, 243247.Google Scholar
Agren, K., et al., 2009. On the ionospheric structure of Titan. Planet. Space Sci. 57, 18211827.Google Scholar
Ajello, J.M., et al., 2007. Titan airglow spectra from Cassini ultraviolet imaging spectrograph: EUV analysis. Geophys. Res. Lett. 34, L24204.Google Scholar
Ajello, J.M., et al., 2008. Titan airglow spectra from the Cassini ultraviolet imaging spectrograph: FUV disk analysis. Geophys. Res. Lett. 35, L06102.Google Scholar
Ajello, J.M., et al., 2012. Cassini UVIS observations of Titan nightglow spectra. J. Geophys. Res. 117, A12315.Google Scholar
Allen, D.A., Crawford, J.W., 1984. Cloud structure on the dark side of Venus. Nature 307, 222224.Google Scholar
Allen, M., Lollar, B.S., Runnegar, B., Oehler, D.Z., Lyons, J.R., Manning, C.E., Summers, M.E., 2006. Is Mars alive? EOS Tran. AGU 87, 433439.Google Scholar
Anderson, C.M., Samuelson, R.E., 2011. Titan’s aerosol and stratospheric ice opacities between 18 and 500 lm: Vertical and spectral characteristics from Cassini CIRS. Icarus 212, 762778.Google Scholar
Anderson, D.E., 1974. Mariner 6, 7, and 9 ultraviolet spectrometer experiment: analysis of hydrogen Lyman-alpha data. J. Geophys. Res. 79, 15131518.Google Scholar
Anderson, D.E., 1976. The Mariner 5 ultraviolet photometer experiment: Analysis of hydrogen Lyman-a data. J. Geophys. Res. 81, 12131216.Google Scholar
Anderson, D.E., Hord, C.W., 1971. Mariner 6 and 7 ultraviolet spectrometer experiment: Analysis of hydrogen Lyman alpha data. J. Geophys. Res. 76, 66666671.Google Scholar
Andreychikov, B.M., et al., 1987. X-ray radiometric analysis of the cloud aerosol of Venus by the Vega 1 and 2 probes. Cosmic Res. 25, 721728.Google Scholar
Aoki, S., et al., 2015. Seasonal variations of the HDO/H2O ratio in the atmosphere of Mars at the middle of northern spring and beginning of northern summer. Icarus 260, 722.Google Scholar
Aoki, S., et al., 2017. Sensitive search of CH4 on Mars by SOFIA/EXES. EPSC Abstracts 11, 460.Google Scholar
Aoki, S., et al., 2018. Mesospheric CO2 ice clouds on Mars observed by Planetary Fourier Spectrometer onboard Mars Express. Icarus 302, 175190.CrossRefGoogle Scholar
Arney, G., Meadows, V., Crisp, D., Schmidt, S.J., Bailey, J., Robinson, T., 2014. Spatially resolved measurements of H2O, HCl, CO, OCS, SO2, cloud opacity, and acid concentration in the Venus near-infrared spectral windows. J. Geophys. Res. 119E, 18601891.Google Scholar
Atreya, S.K., 1986. Atmospheres and Ionospheres of the Outer Planets and Their Satellites. Springer, Berlin.Google Scholar
Bahou, M., Chung, C.Y., Lee, Y.P., Cheng, B.M., Yung, Y.L., Lee, L.C., 2001. Absorption cross sections of HCl and DCl at 135–232 nanometers: Implications for photodissociation on Venus. Astrophys. J. 559, L179L182.CrossRefGoogle Scholar
Bailey, J., Meadows, V.S., Chamberlain, S., Crisp, D., 2008. The temperature of the Venus mesosphere from O2(a1Δg) airglow observations. Icarus 197, 247259.Google Scholar
Balsiger, H., et al., 2015. Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko. Sci. Adv. 1, e1500377.Google Scholar
Banaszkiewicz, M., Lara, L.M., Rodrigo, R., Lopez-Moreno, J.J., Molina-Cuberos, G.J., 2000. A coupled model of Titan’s atmosphere and ionosphere. Icarus 147, 386404.Google Scholar
Barker, E.S., 1972. Detection of molecular oxyden in the Martian atmosphere. Nature 238, 447448.Google Scholar
Barker, E.S., 1979. Detection of SO2 in the UV spectrum of Venus. Geophys. Res. Lett. 6, 117120.Google Scholar
Barstow, J.K., Tsang, C.C.C., Wilson, C.F., Irwin, P.G.J., Taylor, F.W., McGouldrick, K., Drossart, P., Piccioni, , and Tellmann, G. 2012. Models of the global cloud structure on Venus derived from Venus Express observations. Icarus 217, 542560.CrossRefGoogle Scholar
Barth, C.A. and Hord, C.W., 1971. Mariner 6 and 7 ultraviolet spectrometer experiment: topography and polar cap. Science 173, 197201.Google Scholar
Barth, C.A., Stewart, A.I., Hord, C.W., Lane, A.L., 1972. Mariner 9 ultraviolet spectrometer experiment: Mars airglow spectroscopy and variations in Lyman alpha. Icarus 17, 457468.Google Scholar
Barth, C.A., et al., 1973. Mariner 9 ultraviolet spectrometer experiment: Seasonal variation of ozone on Mars. Science 179, 795796.Google Scholar
Bell, J.M., et al., 2014. Developing a self-consistent descriptionof Titan’s upper atmosphere without hydrodynamic escape. J. Geophys. Res. 119A, 49574972.Google Scholar
Belyaev, D., Montmessin, F., Bertaux, J.L., Mahieux, A., Fedorova, A., Korablev, O., Marcq, E., Yung, Y., Zhang, X., 2012. Vertical profiling of SO2 and SO above Venus’ clouds by SPICAV/SOIR solar occultations. Icarus 217, 740751.Google Scholar
Belyaev, D.A., et al., 2017. Night side distribution of SO2 content in Venus’ upper atmosphere. Icarus 294, 5871.Google Scholar
Benna, M., et al., 2015. First measurements of composition and dynamics of the Martian ionosphere by MAVEN’s Neutral Gas and Ion Mass Spectrometer. Geophys. Res. Lett. 42, 89588965.Google Scholar
Bertaux, J.L., Blamont, J.E., Lepine, V.E., Kurt, V.G., Romanova, N.N., Smirnov, A.S., 1981. Venera 11 and Venera 12 observations of EUV emissions from the upper atmosphere of Venus. Planet. Space Sci. 29, 149166.Google Scholar
Bertaux, J.-L., et al., 1982. Altitude profile of H in the atmosphere of Venus from Lyman alpha observations of Venera 11 and Venera 12 and origin of the hot exospheric component. Icarus 52, 221244.CrossRefGoogle Scholar
Bertaux, J.L., et al., 1996. VEGA 1 and VEGA 2 entry probes: An investigation of local UV absorption (220–400 nm) in the atmosphere of Venus (SO2, aerosol, cloud structure). J. Geophys. Res. 101, 1270912745.Google Scholar
Bertaux, J.L., et al., 2005a. Nightglow in the upper atmosphere of Mars and implications for atmospheric transport. Science 307, 566569.Google Scholar
Bertaux, J.L., et al., 2005b. Discovery of an aurora on Mars. Nature 435, 790794.Google Scholar
Bertaux, J.L., et al., 2006. SPICAM on Mars Express: Observing modes and overview of UV spectrometer data and scientific results. J. Geophys. Res. 111, E10S90.Google Scholar
Bertaux, J.L., Gondet, B., Lefèvre, F., Bibring, J.P., Montmessin, F., 2012. First detection of O2 1.27 μm nightglow emission at Mars with OMEGA/MEX and comparison with general circulation model predictions. J. Geophys. Res. 117, E00J04.Google Scholar
Bertaux, J.L., et al., 2014. Possible influence of Venus topography on the zonal wind and UV albedo at cloud top level. AGU Fall Meeting, abstract #P21B-3916.Google Scholar
Bertrand, T., Forget, F., 2017. 3D modeling of organic haze in Pluto’s atmosphere. Icarus 287, 7286.Google Scholar
Bezard, B., 2014. The methane mole fraction in Titan’s stratosphere from DISR measurements during the Huygens probe’s descent. Icarus 242, 6473.Google Scholar
Bezard, B., de Bergh, C., Crisp, D., Maillard, J.P., 1990. The deep atmosphere of Venus revealed by high-resolution night-side spectra. Nature 345, 508511.Google Scholar
Bezard, B., de Bergh, C., Fegley, B., Maillard, J.P., Crisp, D., Owen, T., Pollack, J.B., Grinspoon, D., 1993. The abundance of sulfur dioxide below the clouds of Venus. Geophys. Res. Lett. 20, 15871590.Google Scholar
Bézard, B., Fedorova, A., Bertaux, J.-L., Rodin, A., Korablev, O., 2011. The 1.10- and 1.18-μm nightside windows of Venus observed by SPICAV-IR aboard Venus Express, Icarus, 216, 173183.Google Scholar
Bhattacharyya, D., Clarke, J.T., Bertaux, J.L., Chaufray, J.Y., Mayyasi, M., 2015. A strong seasonal dependence in the Martian hydrogen exosphere. Geophys. Res. Lett. 42, 86788685.Google Scholar
Biemann, K., Owen, T., Rushneck, D.R., et al., 1976. Search for organic and volatile inorganic components in two surface samples from the Chryse Planitia region of Mars. J. Geophys. Res. 82, 46414658.Google Scholar
Billebaud, F., Crovisier, J., Lellouch, E., Encrenaz, T., Maillard, J.P., 1991. High-resolution infrared spectrum of CO on Mars: Evidence for emission lines. Planet. Space Sci. 39, 213218.Google Scholar
Billebaud, F., Maillard, J.P., Lellouch, E., Encrenaz, T., 1992. The spectrum of Mars in the (1–0) vibrational band of CO, Astron. Astrophys., 261, 647652.Google Scholar
Billebaud, F., et al., 2009. Observations of CO in the atmosphere of Mars with PFS onboard Mars Express. Planet. Space Sci. 57, 14461457.Google Scholar
Billmers, R.I., Smith, A.L., 1991. Ultraviolet–visible absorption spectra of equilibrium sulfur vapor: Molar absorptivity spectra of S3 and S4. J. Phys. Chem. 95, 42424245.Google Scholar
Bird, M.K., et al., 1997. Detection of Titan’s ionosphere from Voyager 1 radio occultation observations. Icarus 130, 426436.Google Scholar
Bird, M.K., et al., 2005. The vertical profile of winds on Titan. Nature 438, 800802.Google Scholar
Bjoraker, G.L., Mumma, M.J., Larson, H.P., 1989. Isotopic abundance ratios for hydrogen and oxygen in the Martian atmosphere (abstract). Bull. Am. Astron. Soc. 21, 991.Google Scholar
Bjoraker, G.L., Larson, H.P., Mumma, M.J., Timmermann, R., Montani, J.L., 1992. Airborne observations of the gas composition of Venus above the cloud tops: Measurements of H2O, HDO, HF and the D/H and 18O/16O isotope ratios. Bull. Am. Astron. Soc. 24, 995.Google Scholar
Bodmer, R., Bochsler, P., Geiss, J., von Steiger, R., Gloeckler, G., 1995. Solar wind helium isotopic composition from SWICS/ULYSSES. Space Sci. Rev. 72, 6164.Google Scholar
Bogard, D.D., Clayton, R.N., Marti, K., Owen, T., Turner, G., 2001. Martian volatiles: Isotopic composition, origin, and evolution. Climatol. Evol. Mars 96, 425458.Google Scholar
Borucki, W.J., Chameides, W.L., 1984. Lightning: Estimates of the rate of energy dissipation and nitrogen fixation. Rev. Geophys. Space Phys. 22, 363372.Google Scholar
Borucki, W.J., Dyer, J.W., Phillips, J.R., Pham, P., 1991. Pioneer Venus orbiter search for Venusian lightning. J. Geophys. Res. 96, 1103311043.Google Scholar
Borucki, W.J., McKay, C.P., Jebens, D., Lakkaraju, H.S., Vanajakshi, C.T., 1996. Spectral irradiance measurements of simulated lightning in planetary atmospheres. Icarus 123, 336344.Google Scholar
Bougher, S.W., et al., 1990. The Venus nitric oxide night airglow: Model calculations based on the Venus thermospheric general circulation model. J. Geophys. Res. 95(A5), 62716284.Google Scholar
Bougher, S.W., Engel, S., Roble, R.G., Foster, B., 1999. Comparative terrestrial planet thermospheres. 2. Solar cycle variation of global structure and winds at equinox. J. Geophys. Res. 104, 1659116611.CrossRefGoogle Scholar
Bougher, S.W., Engel, S., Roble, R.G., Foster, B., 2000. Comparative terrestrial planet thermospheres. 3. Solar cycle variation of global structure and winds at solstices. J. Geophys. Res. 105, 1766917692.Google Scholar
Bougher, S.W., Blelly, P.L., Combi, M., Fox, J.L., Mueller-Wodarg, I., Ridley, A., Roble, R.G., 2008. Neutral upper atmosphere and ionosphere modeling. Space Sci. Rev. 139, 107141.Google Scholar
Bougher, S.W., McDunn, T.M., Zoldak, K.A., Forbes, J.M., 2009. Solar cycle variability of Mars dayside exospheric temperatures: Model evaluation of underlying thermal balance. Geophys. Res. Lett. 36, L05201.Google Scholar
Bougher, S.W., et al., 2015a. Mars Global Ionosphere-Thermosphere Model (MGITM): Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere. J. Geophys. Res. 120, 311342.Google Scholar
Bougher, S.W., Brecht, A., Schulte, R., Fischer, J., Parkinson, C., Mahieux, A.,Wilquet, V., Vandaele, A.C., 2015b. Upper atmosphere temperature structure at the Venusian terminators: A comparison of SOIR and VTGCM results. Planet. Space Sci. 113–114, 337347.Google Scholar
Bougher, S.W., et al., 2017. The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: Seasonal and solar activity trends in scale heights and temperatures. J. Geophys. Res. 122, A1, 12961313.Google Scholar
Brace, L.H., et al., 1979. Empirical models of the electron temperature and density in the nightside Venus ionosphere. Science 205, 102104.Google Scholar
Brecht, A.S., Bougher, S.W., 2012. Dayside thermal structure of Venus’ upper atmosphere characterized by a global model. J. Geophys. Res. 117, E08002.Google Scholar
Brecht, A.S., Bougher, S.W., Gérard, J.-C., Parkinson, C., Rafkin, S., Foster, B., 2011. Understanding the variability of nightside temperatures, NO UV and O2 IR nightglow emissions in the Venus upper atmosphere. J. Geophys. Res. 116, E08004.Google Scholar
Brinton, H.C., et al., 1980. Venus night-time hydrogen bulge. Geophys. Res. Lett. 7, 865868.Google Scholar
Broadfoot, A.L., et al., 1989. Ultraviolet spectrometer observations of Neptune and Triton. Science 246, 14591466.Google Scholar
Buratti, B.J., et al., 2017. Global albedos of Pluto and Charon from LORRI New Horizons observations. Icarus 287, 207217.Google Scholar
Burgdorf, M., Cruikshank, D.P., Dalle Ore, C.M., Sekiguchi, T., Nakamura, R., Orton, G., Quirico, E., Schmitt, B., 2010. A tentative identification of HCN ice on Triton. Astrophys. J. 718, L53L57.Google Scholar
Burkholder, J.B., et al., 2015. Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation Number 18. JPl Publication 15–10.Google Scholar
Butler, B.J., et al., 2001. Accurate and consistent microwave observations of Venus and their implications. Icarus 154, 226238.Google Scholar
Capalbo, F.J., Benilan, Y., Yelle, R.V., Koskinen, T.T., 2015. Titan’s upper atmosphere from Cassini/UVIS solar occultations. Astrophys. J. 814, 86100.Google Scholar
Carleton, N.P., Traub, W.A., 1972. Detection of molecular oxygen on Mars. Science 177, 988992.Google Scholar
Chaffin, M.S., et al., 2014. Unexpected variability of Martian hydrogen escape. Geophys. Res. Lettt. 41, 314320.Google Scholar
Chamberlain, J.W., Hunten, D.M., 1987. Theory of Planetary Atmospheres. Academic Press, New York.Google Scholar
Chamberlain, S., Bailey, J., Crisp, D., Meadows, V., 2013. Ground-based near-infrared observations of water vapour in the Venus troposphere. Icarus, 222(1), 364378.Google Scholar
Chase, M.W. Jr., 1998. NIST-JANAF thermodynamic tables, 4th ed. J. Phys. Chem. Ref. Data. Monogr. 9, 11951.Google Scholar
Chassefiere, E., 2009. Metastable methane clathrate particles as a source of methane to the Martian atmosphere. Icarus 204, 137144.Google Scholar
Chassefiere, E., Bertaux, J.L., Kurt, V.G., Smirnov, A.S., 1986. Venus EUV measurements of helium at 58.4 nm from Venera 11 and Venera 12 and implications for the outgassing history. Planet. Space Sci. 34, 585602.Google Scholar
Chaufray, J.Y., Bertaux, J.L., Leblanc, F., et al., 2008. Observation of the hydrogen corona with SPICAM on Mars Express. Icarus 195, 598613.Google Scholar
Chaufray, J.Y., Leblanc, F., Quémerais, E., et al., 2009. Martian oxygen density at the exobase deduced from O I 130.4-nm observations by spectroscopy for the investigation of the characteristics of the atmosphere of Mars on Mars Express. J. Geophys. Res. 114, E02006.CrossRefGoogle Scholar
Chaufray, J.Y., Bertaux, J.L., Leblanc, F., 2012a. First observation of the Venus UV dayglow at limb from SPICAV/VEX. Geophys. Res. Lett. 39, L20201.Google Scholar
Chaufray, J.-Y., et al., 2012b. Observation of the Venusian hydrogen corona with SPICAV on Venus Express. Icarus 217, 767778.Google Scholar
Chaufray, J.Y., et al., 2015a. Variability of the hydrogen in the Martian upper atmosphere as similated by a 3D atmosphere-exosphere coupling. Icarus 245, 282294.Google Scholar
Chaufray, J.Y., et al., 2015b. Observations of the nightside Venusian hydrogen corona with SPICAV/VEX. Icarus 262, 18.Google Scholar
Chen, Y., et al., 2015. Near infrared cavity ring-down spectroscopy for isotopic analyses of CH4 on future Martian surface missions. Planet. Space Sci. 105, 117122.Google Scholar
Cheng, A.F., et al., 2017. Haze in Pluto’s atmosphere. Icarus 290, 112133.Google Scholar
Christensen, P.R., 2003. Mars as seen from the 2001 Mars Odyssey Thermal Emission Imaging System experiment. AGU Fall Meeting P21A-02, abstract.Google Scholar
Christensen, P.R., et al., 1998. Results from the Mars Global Surveyor Thermal Emission Spectrometer. Science 279, 16921698.Google Scholar
Christian, H.J., et al., 2003. Global frequency and distribution of lightning as observed from space by the optical transient detector. J. Geophys. Res. 108, 4005.Google Scholar
Chung, C.Y., et al., 2001. Temperature dependence of absorption cross sections of H2O, HDO, and D2O in the spectral region 140–193 nm. Nucl. Instr. Meth. Phys. Res. A, 467–468, 15721576.Google Scholar
Clancy, R.T., Lee, S.W., 1991. A new look at dust and clouds in the Mars atmosphere: Analysis of emissionphase function sequences from global Viking IRTM observations. Icarus 93,135158.Google Scholar
Clancy, R.T., Nair, H., 1996. Annual (aphelion-perihelion) cycles in the photochemical behavior of the global Mars atmosphère. J. Geophys. Res. 101, 1278512790.Google Scholar
Clancy, R.T., Grossman, A.W., Wolf, M.J., James, P.B., Rudy, D.J., Billawala, Y.N., Sandor, B.J., Lee, S.W., Muhleman, D.O., 1996. Water vapor saturation at low altitudes around Mars aphelion: A key to Mars climate? Icarus 122, 3662.Google Scholar
Clancy, R.T., Wolff, M.J., James, P.B., 1999. Minimal aerosol loading and global increases in atmospheric ozone during the 1996–1997 Martian northern spring season. Icarus 138, 4963.Google Scholar
Clancy, R.T., Sandor, B.J., Moriarty-Schieven, G.H., 2004. A measurement of the 362 GHz absorption line of Mars atmospheric H2O2. Icarus 168, 116121.Google Scholar
Clancy, R.T., Sandor, B.J., Moriarty-Schieven, G.H., 2012a. Thermal structure and CO distribution for the Venus mesosphere/lower thermosphere: 2001–2009 inferior conjunction sub-millimeter CO absorption line observations. Icarus 217, 779793.Google Scholar
Clancy, R.T., et al., 2012b. Extensive MRO CRISM observations of 1.27 μm O2 airglow in Mars polar night and their comparison to MRO MCS temperature profiles and LMD GCM simulations. J. Geophys. Res. 117, E00J10.Google Scholar
Clancy, R.T., et al., 2013. First detection of Mars atmospheric hydroxyl: CRISM Near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere. Icarus 226, 272281.Google Scholar
Clancy, R.T., et al., 2017. Vertical profiles of Mars 1.27 μm O2 dayglow from MRO CRISM limb spectra: Seasonal/global behaviors, comparisons to LMDGCM simulations, and a global definition for Mars water vapor profiles. Icarus 293, 132156.Google Scholar
Clarke, J.T., et al., 2014. A rapid decrease of the hydrogen corona of Mars. Geophys. Res. Lett. 41, 80138020.Google Scholar
Clarke, J.T., et al., 2017. Variability of D and H in the Martian upper atmosphere observed with the MAVEN IUVS echelle channel. J. Geophys. Res. 122(A2), 25362544.CrossRefGoogle Scholar
Coates, A.J., et al., 2009. Heavy negative ions in Titan’s ionosphere: Altitude and latitude dependence. Planet. Space Sci. 57, 18661871.Google Scholar
Combes, M, et al., 1988. The 2.5–12 micrometers spectrum of comet Halley from the IKS-VEGA experiment. Icarus 76, 404436.Google Scholar
Connes, P., Connes, J., Benedict, W.S., Kaplan, L.D., 1967. Traces of HCl and HF in the atmosphere of Venus. Astrophys. J. 147, 12301237.Google Scholar
Connes, P., Connes, J., Kaplan, L.D., Benedict, W.S., 1968. Carbon monoxide in the Venus atmosphere. Astrophys. J. 152, 731743.Google Scholar
Connes, J., Connes, P., Maillard, J.P., 1969. Atlas des spectres dans le proche infrarouge de Venus, Mars, Jupiter et Saturn. CNRS, Paris.Google Scholar
Connes, P., Noxon, J.F., Traub, W.A., Carleton, N.P., 1979. O2(1Δ) emission in the day and night airglow of Venus. Astrophys. J. 233, L29L32.Google Scholar
Conrad, P.G., et al., 2016. In situ measurements of atmospheric krypton and xenon on Mars with Mars Science Laboratory. Earth Planet. Sci. Lett. 454, 19.Google Scholar
Conrath, B.J., et al., 1989. Infrared observations of the Neptunian system. Science 246, 14541459.Google Scholar
Cooray, V., 1997. Energy dissipation in lightning flashes. J. Geophys. Res. 102, 2140121410.Google Scholar
Cordiner, M.A., et al., 2014. ALMA measurements of the HNC and HC3N distributions in Titan’s atmosphere. Astrophys. J. Lett. 795, L30.Google Scholar
Cordiner, M.A., et al., 2015. Ethyl cyanide on Titan: Spectroscopic detection and mapping using ALMA. Astrophys. J. Lett. 800, L14.Google Scholar
Corlies, P., et al., 2017. Titan’s topography and shape at the end of the Cassini mission. Geophys. Res. Let. 44, 1175411761.Google Scholar
Cottini, V., Ignatiev, N.I., Piccioni, G., Drossart, P., Grassi, D., Markiewicz, W.J., 2012. Water vapor near the cloud tops of Venus from Venus Express/VIRTIS dayside data. Icarus 217, 561569.Google Scholar
Cottini, V., Ignatiev, N.I., Piccioni, G., Drossart, P., 2015. Water vapor near Venus cloud tops from VIRTIS-H/Venus express observations 2006–2011. Planet. Space Sci. 113–114, 219225.Google Scholar
Cotton, D.V., Bailey, J., Crisp, D., Meadows, V.S., 2012. The distribution of carbon monoxide in the lower atmosphere of Venus. Icarus 217, 570584.Google Scholar
Courtin, R., Gautier, D., McKay, C.P., 2005. Titan’s thermal emission spectrum: Reanalysis of the Voyager infrared measurements. Icarus, 114, 144162.Google Scholar
Courtin, R., Sim, C.K., Kim, S.J., Gautier, D., 2012. The abundance of H2 in Titan’s troposphere from the Cassini CIRS investigation. Planet. Space Sci. 69, 8999.CrossRefGoogle Scholar
Coustenis, A., Bezard, B., 1995. Titan’s atmosphere from Voyager infrared observations. IV. Latitudinal variations of temperature and composition. Icarus 115, 126140.Google Scholar
Coustenis, A., et al., 1991. Titan’s atmosphere from Voyager infrared observations. III. Vertical distributions of hydrocarbons and nitrile near Titan’s north pole. Icarus 89, 152167.Google Scholar
Coustenis, A., et al., 1998. Evidence for water vapor in Titan’s atmosphere from ISO/SWS data. Astron. Astrophys. 336, L85L89.Google Scholar
Coustenis, A., et al., 2003. Titan’s atmosphere from ISO mid-infrared spectroscopy. Icarus 161, 383403.Google Scholar
Coustenis, A., et al., 2010. Titan trace gaseous composition from CIRS at the end of the Cassini-Huygens prime mission. Icarus 207, 461476.Google Scholar
Coustenis, A., et al., 2013. Evolution of the stratospheric temperature and chemical composition over one Titanian year. Astrophys. J. 779, 177186.Google Scholar
Coustenis, A., et al., 2018. Seasonal evolution of Titan’s stratosphere near the poles. Astrophys. J. Lett. 854, L30.Google Scholar
Cox, C., et al., 2008. Distribution of the ultraviolet nitric oxide Martian night airglow: Observations from Mars Express and comparisons with a one-dimensional model. J. Geophys. Res. 113, E08012.CrossRefGoogle Scholar
Cravens, T.E., et al., 2008. Energetic ion precipitation at Titan. Geophys. Res. Lett. 35, L03103.Google Scholar
Cravens, T.E., et al., 2009. Model-data comparison for Titan’s nightside ionosphere. Icarus 199, 174188.Google Scholar
Crisp, D., Meadows, V.S., Bezard, B., de Bergh, C., Maillard, J.P., Mills, F.P., 1996. Ground-based near-infrared observations of the Venus night side: 1.27-μm O2(a1Δg) airglow from the upper atmosphere. J. Geophys. Res. 101, 45774594.Google Scholar
Croteau, P., et al., 2011. Measurements of isotope effects in the photoionization of N2 and implications for Titan’s atmosphere. Astrophys. J. Lett. 728, L32.Google Scholar
Crovisier, J., Lellouch, E., de Bergh, C., Maillard, J.P., Lutz, B.L., Bezard, B., 2006. Carbon monoxide emissions at 4.7 lm from Venus’ atmosphere. Planet. Space Sci. 54, 13981414.Google Scholar
Cruikshank, D.P. (ed.), 1995. Neptune and Triton. University of Arizona Press, Tucson.Google Scholar
Cruikshank, D.P., Apt, J., 1984. Methane on Triton: Physical state and distribution. Icarus 58, 306.Google Scholar
Cruikshank, D.P., Brown, R.H., Clark, R.N., 1984. Nitrogen on Triton. Icarus 58, 293.Google Scholar
Cruikshank, D.P., Pilcher, C.B., Morrison, D., 1976. Pluto: Evidence for methane ice. Science 194, 835837.Google Scholar
Cruikshank, D.P., et al., 1993. Ices on the surface of Triton. Science 261, 742745.Google Scholar
Cruikshank, D.P., et al., 2015. The surface composition of Pluto and Charon. Icarus 246, 8292.Google Scholar
Cui, J., et al., 2009. Analysis of Titan’s neutral upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements. Icarus 200, 581615.Google Scholar
Cui, J., et al., 2012. The CH4 structure in Titan’s upper atmosphere revisited. J. Geophys. Res. 117, E11006.Google Scholar
Curry, S.M., et al., 2015. Comparative pick-up ion distribution at Mars and Venus: Consequences fro atmospheric deposition and escape. Planet. Space Sci. 115, 3547.Google Scholar
Dalgarno, A., Babb, J.F., Sun, Y., 1992. Radiative association in planetary atmospheres. Planet. Space Sci. 40, 243246.Google Scholar
Danielson, R.E., Moore, D.R., van der Hulst, H.C., 1969. The transfer of visible radiation through clouds. J. Atmos. Phys. 26, 10781083.Google Scholar
Davies, D.W., 1979. The vertical distribution of Mars water vapor. J. Geophys. Res. 84, 28752879.CrossRefGoogle Scholar
De Bergh, C., Bezard, B., Owen, T., Crisp, D., Maillard, J.P., Lutz, B.L., 1991. Deuterium on Venus: Observations from Earth. Science 251, 547549.Google Scholar
De Bergh, C., Bezard, B., Crisp, D., Maillard, J., Owen, T., Pollack, J., Grinspoon, D., 1995. Water in the deep atmosphere of Venus from high-resolution spectra of the night side. Adv. Space Res., 15(4), 7988.Google Scholar
De Bergh, C., et al., 2012. Application of a new set of methane line parameters to the modeling of Titan’s spectrum in the 1.58 μm window. Planet. Space Sci. 61, 8598.Google Scholar
Deighan, J., et al., 2015. MAVEN IUVS observations of the hot oxygen corona at Mars. Geophys. Res. Lett. 42, 90099014.Google Scholar
De Kok, R., et al., 2007. Oxygen compounds in Titan’s stratosphere as observed by Cassini/CIRS. Icarus 186, 354363.Google Scholar
De Kok, R., Irwin, P.G.J., Tsang, C.C., Piccioni, G., Drossart, P., 2011. Scattering particles in nightside limb observations of Venus’ upper atmosphere by Venus Express VIRTIS. Icarus 211, 5157.Google Scholar
De La Haye, V., et al., 2007. Cassini Ion and Neutral Mass Spectrometer data in Titan’s upper atmosphere and exosphere: Observation of a suprathermal corona. J. Geophys Res. 112, A07309.Google Scholar
De La Haye, V., Waite, J. Jr., Cravens, T., Robertson, I., Lebonnois, S., 2008. Coupled ion and neutral rotating model of Titan’s upper atmosphere. Icarus 197, 110136.Google Scholar
Delitsky, M.L., Baines, K.H., 2015. Storms on Venus: Lightning-induced chemistry and predicted products. Planet. Space Sci. 113–114, 184192.Google Scholar
DeMeo, F.E., et al., 2010. A search for ethane on Pluto and Triton. Icarus 208, 412424.Google Scholar
Dennerl, K., et al., 2006. First observation of Mars with XMM-Newton. Astron. Astrophys. 451, 709722.Google Scholar
Dias-Oliveira, A., Sicardy, B., Lellouch, E., et al., 2015. Pluto’s atmosphere from stellar occultations in 2012 and 2013. Astrophys. J. 811, 53.Google Scholar
Dinelli, B.M., et al., 2013. An unidentified emission in Titan’s upper atmosphere. Geophys. Res. Lett. 40, 14891493.Google Scholar
Dobrijevic, M., et al., 2016. 1D-coupled photochemical model of neutrals, cations and anions in the atmosphere of Titan. Icarus 268, 313339.Google Scholar
Donahue, T.M., 1969. Deuterium in the upper atmospheres of Venus and Earth. J. Geophys. Res. 74, 11281137.Google Scholar
Donahue, T.M., Pollack, J.B., 1983. Origin and evolution of the atmosphere of Venus. In: Hunten, D.M., Colin, L., Donahue, T.M., Moroz, V.I. (Eds.), Venus, University of Arizona Press, Tucson, pp. 10031036.Google Scholar
Donahue, T.M., Hoffman, J.H., Hodges, R.R. Jr., 1981. Krypton and xenon in the atmosphere of Venus. Geophys. Res. Lett. 8, 513516.Google Scholar
Donahue, T.M., Hoffman, J.H., Hodges, R.R., Watson, A.J., 1982. Venus was wet: A measurement of the ratio of D to H. Science 216, 630633.Google Scholar
Donahue, T.M., Grinspoon, D.H., Hartle, R.E., Hodges, R.R. Jr., 1997. Ion/neutral escape of hydrogen and deuterium: Evolution of water. In: Bougher, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II, University of Arizona Press, Tucson, pp. 385414.Google Scholar
Doose, L.R., et al., 2016. Vertical structure and optical properties of Titan’s aerosols from radiance measurements made inside and outside the atmosphere. Icarus 270, 355375.Google Scholar
Doute, S., et al., 1999. Evidence for methane segregation at the surface of Pluto. Icarus 142, 421444.Google Scholar
Dreibus, G., Waenke, H., 1987. Volatiles on Earth and Mars – A comparison. Icarus 71, 225240.Google Scholar
Durrance, S.T., 1981. The carbon monoxide fourth positive bands in the Venus dayglow. 1. Synthetic spectra. J. Geophys. Res. 86, 91159124.Google Scholar
Edberg, N.J.T., et al., 2013. Solar cycle modulation of Titan’s ionosphere. J. Geophys. Res. 118A, 52555264.Google Scholar
Ekonomov, A.P., Golovin, Yu.M., Moroz, V.I., Moshkin, B.E., 1983a. Solar scattered radiation measurements by Venus probes. In: Hunten, D.M., Colin, L., Donahue, T.M., Moroz, V.I. (Eds.), Venus. University of Arizona Press, Tucson, pp. 632649.Google Scholar
Ekonomov, A.P., Moshkin, B.E., Moroz, V.I., Golovin, Yu.M., Gnedykh, V.I., Grigoriev, A.V., 1983b. UV photometry at the Venera 13 and 14 landing probes. Cosmic Res. 21, 254260.Google Scholar
Elliot, J.L., Young, L.A., 1992. Analysis of stellar occultation data for planetary atmospheres. I – Model fitting, with application to Pluto. Astron. J. 103, 9911015.Google Scholar
Elliot, J.L., Veverka, J., Goguen, J., 1975. Lunar occultation of Saturn. I – the diameters of Tethus, Dione, Rhea, Titan, and Japetus. Icarus 26, 387407.Google Scholar
Elliot, J.L., et al., 2000a. The thermal structure of Triton’s middle atmosphere. Icarus 143, 425428.Google Scholar
Elliot, J.L., et al., 2000b. The prediction and observation of the July 18, 1997 stellar occultation by Triton: More evidence for distortion and increasing pressure in Triton’s atmosphere. Icarus 148, 347369.Google Scholar
Elrod, M.K., et al., 2017. He bulge revealed: He and CO2 diurnal and seasonal variations in the upper atmosphere of Mars as detected by MAVEN NGIMS. J. Geophys. Res. 122(A2), 25642573.Google Scholar
Encrenaz, T., Lellouch, E., Rosenqvist, J., Drossart, P., Combes, M., Billebaud, F., de Pater, I., Gulkis, S. Maillard, J.P., Paubert, G., 1991. The atmospheric composition of Mars: ISM and ground-based observational data. Ann. Geophys. 9, 797803.Google Scholar
Encrenaz, Th., Lellouch, E., Cernicharo, J., Paubert, G., Gulkis, S., Spilker, T., 1995. The thermal profile and water abundance in the Venus mesosphere from H2O and HDO millimeter observations. Icarus 117, 162172.Google Scholar
Encrenaz, T., et al., 2002. Astringent upper limit of the H2O2 abundance in the Martian atmosphere. Astron. Astrophys. 396, 10371044.Google Scholar
Encrenaz, T., Bézard, B. Greathouse, T.K., et al., 2004. Hydrogen peroxide on Mars: Evidence for spatial and seasonal variations. Icarus 170, 424429.Google Scholar
Encrenaz, Th., et al., 2006. Seasonal variations of the Martian CO over Hellas as observed by OMEGA/Mars Express. Astron. Astrophys. 459, 265270.Google Scholar
Encrenaz, T., et al., 2011. A stringent upper limit to SO2 in the Martian atmosphere. Astron. Astrophys. 530, A37.Google Scholar
Encrenaz, T., et al., 2015a. Seasonal variations of hydrogen peroxide and water vapor on Mars: Further indications of heterogeneous chemistry. Astron. Astrophys. 578, A127.Google Scholar
Encrenaz, T., Moreno, R., Moullet, A., Lellouch, E., Fouchet, T., 2015b. Submillimeter mapping of mesospheric minor species on Venus with ALMA. Planet. Space Sci. 113–114, 275291.Google Scholar
Encrenaz, T., et al., 2016. A map of D/H on Mars in the thermal infrared using EXES aboard SOFIA. Astron. Astrophys. 586, A62.Google Scholar
Engelke, C.W., Price, S.D., Kraemer, K.E., 2010. Spectral irradiance calibration in the infrared. XVII. Zero-magnitude broadband flux reference for visible-to-infrared photometry. Astron. J. 140, 19191928.Google Scholar
Erwin, J., Tucker, O.J., Johnson, R.E., 2013. Hybrid fluid/kinetic modeling of Pluto’s escaping atmosphere. Icarus 226, 375384.Google Scholar
Espenak, F., Mumma, M.J., Kostiuk, T., et al., 1991. Ground-based infrared measurements of the global distribution of ozone in the atmosphere of Mars. Icarus 92, 252262.Google Scholar
Esposito, L.W., Winick, J.R., Stewart, A.I.F., 1979. Sulfur dioxide in the Venus atmosphere: Distribution and implications. Geophys. Res. Lett. 6, 601604.Google Scholar
Esposito, L.W., Knollenberg, R.G., Marov, M.Y., Toon, O.B., Turco, R.P., 1983. The clouds and hazes of Venus. In: Hunten, D.M., et al. (Eds.), Venus. University of Arizona Press, Tucson, pp. 484564.Google Scholar
Esposito, L.W., et al., 1988. Sulfur dioxide in the Venus cloud tops 1978–1986. J. Geophys. Res. 93, 52675276.Google Scholar
Esposito, L.W., et al., 1997. Chemistry of lower atmosphere and clouds. In: Bougher, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II. University of Arizona Press, Tucson, pp. 415458.Google Scholar
Evans, K.F., 2007. SHDOMPPDA: A radiative transfer model for cloudy sky data assimilation. J. Atmos. Sci. 64, 38583868.Google Scholar
Farmer, C.B., Norton, R.H., 1989. Atlas of the infrared spectrum of the Sun and the Earth atmosphere from space. The Sun, vol. I. NASA Ref. Publication 1224.Google Scholar
Fast, K., Kostiuk, T., Espenak, F., et al., 2006. Ozone abundance on Mars from infrared heterodyne spectra. I. Acquisition, retrieval, and anticorrelation with water vapor. Icarus 181, 419431.Google Scholar
Fast, K., Kostiuk, T., Lefèvre, F., et al., 2009. Comparison of HIPWAC and Mars Express SPICAM observations of ozone on Mars 2006–2008 and variation from 1993 IRHS observations. Icarus 203, 2027.Google Scholar
Fedorov, A., et al., 2011. Measurements of the ion escape rates from Venus for solar minimum. J. Geophys. Res. 116, A07220.Google Scholar
Fedorova, A., Korablev, O., Perrier, S., Bertaux, J.L., Lefèvre, F., Rodin, A., 2006. Observation of O2 1.27 μm dayglow by SPICAM IR: Seasonal distribution for the first Martian year of Mars Express. J. Geophys. Res. 111, E09S07.Google Scholar
Fedorova, A., et al., 2008. HDO and H2O vertical distributions and isotopic ratio in the Venus mesosphere by Solar Occultation at Infrared spectrometer on board Venus Express. J. Geophys. Res. 113, E00B22.Google Scholar
Fedorova, A., et al., 2010. Viking observations of water vapor on Mars: Revision from up-to-date spectroscopy and atmospheric models. Icarus 208, 156164.Google Scholar
Fedorova, A.A., et al., 2012. The O2 nightglow in the Martian atmosphere by SPICAM onboard of Mars Express. Icarus 219, 596608.Google Scholar
Fedorova, A.A, et al., 2014. Evidence for a bimodal size distribution for the suspended aerosol particles on Mars. Icarus 231, 239260.Google Scholar
Fedorova, A., et al., 2016. Variations of water vapor and cloud top altitude in the Venus’ mesosphere from SPICAV/VEX observations. Icarus 275, 143162.Google Scholar
Fedorova, A.A., et al., 2018. Water vapor in the middle atmosphere of Mars during the 2007 global dust storm. Icarus 300, 440457.Google Scholar
Fegley, B., Zolotov, M.Yu., Lodders, K., 1997. The oxidation state of the lower atmosphere and surface of Venus. Icarus 125, 416439.Google Scholar
Feldman, P.D., Moos, H.W., Clarke, J.T., Lane, A.L., 1979. Identification of the UV nightglow from Venus. Nature 279, 221223.Google Scholar
Feldman, P.D., Burgh, E.B., Durrance, S.T., Davidsen, A.F., 2000. Far-ultraviolet spectroscopy of Venus and Mars at 4 Å resolution with the Hopkins Ultraviolet Telescope on ASTRO-2. Astrophys. J. 538, 395400.Google Scholar
Feldman, W.C., et al., 2004. Global distribution of near-surface hydrogen on Mars. J. Geophys. Res. 109, E09006.Google Scholar
Feofilov, A.G., Kutepov, A.A., Rezac, L., Smith, M.D., 2012. Extending MGS-TES temperature retrievals in the Martian atmosphere up to 90 km: Retrieval approach and results. Icarus 221, 949959.Google Scholar
Feuchtgruber, H., Lellouch, E., de Graauw, T., Bezard, B., Encrenaz, T., Griffin, M., 1997. External supply of oxygen to the atmospheres of giant planets. Nature 389, 159162.Google Scholar
Fink, U., Larson, H.P., Kuiper, G.P., Poppe, R.F., 1972. Water vapor in the atmosphere of Venus. Icarus 17, 617631.Google Scholar
Flynn, G.J., 1996. The delivery of organic matter from asteroids and comets to the early surface of Mars. Earth Moon Planets 72, 469474.Google Scholar
Folkner, W.M., et al., 2006. Winds on Titan from ground-based tracking of the Huygens probe. J. Geophys. Res. 111, E07S02.Google Scholar
Fonti, S., Marzo, G.A., 2010. Mapping the methane on Mars. Astron. Astrophys. 512, A51.Google Scholar
Forget, F., et al., 2009. Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM. J. Geophys. Res. 114, E01004,Google Scholar
Formisano, V., Atreya, S.K., Encrenaz, T., et al., 2004. Detection of methane in the atmosphere of Mars. Science 306, 1758–61.Google Scholar
Formisano, V., et al., 2005. The Planetary Fourier Spectrometer (PFS) onboard the European Mars Express mission. Planet. Space Sci. 53, 963974.Google Scholar
Fox, J.L., 1982. Atomic carbon in the atmosphere of Venus. J. Geophys. Res. 87, 92119216.Google Scholar
Fox, J.L., 1993. The production and escape of nitrogen atoms on Mars, J. Geophys. Res. 98, 32973310.Google Scholar
Fox, J.L., 2008. Morphology of the dayside ionosphere of Venus: Implication for ion outflows. J. Geophys. Res. 113, E1101Google Scholar
Fox, J.L., 2011. The post-terminator ionosphere of Venus. Icarus 216, 625639.Google Scholar
Fox, J.L., 2012. The ionospheric source of the red and green lines of atomic oxygen in the Venus nightglow. Icarus 221, 787799.Google Scholar
Fox, J.L., Black, J.H., 1989. Photodissociation of CO in the thermosphere of Venus. Geophys. Res. Lett. 16, 291293.Google Scholar
Fox, J.L., Dalgarno, A., 1979a. Electron energy deposition in carbon dioxide. Planet. Space Sci. 27, 491499.Google Scholar
Fox, J.L., Dalgarno, A., 1979b. Ionization, luminosity, and heating of the upperatmosphere of Mars. J. Geophys. Res. 84, 73157333.Google Scholar
Fox, J.L., Hac, A., 1997. Spectrum of hot O at the exobases of the terrestrial planets. J. Geophys. Res. 102, 2400524011.Google Scholar
Fox, J.L., Hac, A., 2009. Photochemical escape of oxygen from Mars: A comparison of the exobase approximation to a Monte Carlo method. Icarus 204, 527544.Google Scholar
Fox, J.L., Hac, A., 2010. Isotope fractionation in the photochemical escape of O from Mars. Icarus 208, 176191.Google Scholar
Fox, J.L., Hac, A., 2018. Escape of O(3P), O(1D), and O(1S) from the Martian atmosphere. Icarus 300, 411439.Google Scholar
Fox, J.L., Paxton, L.J., 2005. C and C+ in the Venusian thermosphere/ionosphere. J. Geophys. Res. 110, A01311.Google Scholar
Fox, J.L., Sung, K.Y., 2001. Solar activity variations of the Venus thermosphere/ionosphere. J. Geophys. Res. 106, 21,30521,335.Google Scholar
Fox, J.L., Victor, G.A., 1988. Electron energy deposition in N2 gas. Planet. Space Sci. 36, 329352.Google Scholar
Fox, J.L., Zhou, P., Bougher, S.W., 1996. The Martian thermosphere/ionosphere at high and low solar activities, Adv. Space. Res. 17(11), 203218.Google Scholar
Fox, J.L., Benna, M., Mahaffy, P.R., Jakosky, B.M., 2015. Water and water ions in the Martian thermosphere/ionosphere. Geophys. Res. Lett. 42, 89778985.Google Scholar
Frandsen, B.N., Wennberg, P.O., Kjaergaard, H.G., 2016. Identification of OSSO as a near-UV absorber in the Venus atmosphere. Geophys. Res. Lett. 43, 1114611155.Google Scholar
Franz, H.B., et al., 2017. Initial SAM calibration gas experiments on Mars: Quadrupole mass spectrometer results and implications. Planet. Space Sci. 138, 4454.Google Scholar
Fray, N., Schmitt, B., 2009. Sublimation of ices of astrophysical interest: A bibliographic review. Planet Space Sci. 57, 20532080.Google Scholar
Fulchignoni, M., et al., 2005. In situ measurements of the physical characteristics of Titan’s environment. Nature 438, 785791.Google Scholar
Gacesa, M., Zhang, P., Kharchenko, V., 2012. Non-thermal escape of molecular hydrogen from Mars. Geophys. Res. Lett. 39, L10203.Google Scholar
Gagne, M.E., et al., 2012. Modeled O2 nightglow distributions in the Venus atmosphere. J. Geophys. Res. 117, E12002.Google Scholar
Gagne, M.E., et al., 2013. New nitric oxide (NO) nightglow measurements with SPICAM/MEx as a tracer of Mars upper atmosphere circulation and comparison with LMD-MGCM model prediction: Evidence for asymmetric hemispheres. J. Geophys. Res. 118, 21722179.Google Scholar
Gao, P., et al., 2014. Bimodal distribution of sulfuric acid aerosol in the upper haze of Venus. Icarus 231, 8398.Google Scholar
Gao, P., et al., 2017. Constraints on the microphysics of Pluto’s photochemical haze from New Horizons observations. Icarus 287, 116123.Google Scholar
García Muñoz, A., McConnell, J.C., McDade, I.C., Melo, S.M.L., 2005. Airglow on Mars: Some model expectations for the OH Meinel bands and the O2 IR atmospheric band. Icarus 176, 7595.Google Scholar
García Muñoz, A., Mills, F.P., Slanger, T.G., Piccioni, G., Drossart, P., 2009a. Visible and near-infrared nightglow of molecular oxygen in the atmosphere of Venus. J. Geophys. Res. 114, E12002.Google Scholar
García Muñoz, A., Mills, F.P., Piccioni, G., Drossart, P., 2009b. The near-infrared nitric oxide nightglow in the upper atmosphere of Venus. Proc. Natl. Acad. Sci. 106, 985988.Google Scholar
Gelman, B.G., et al., 1979. Analysis of the chemical composition of the Venus atmosphere using the Venera 12 gas chromatograph. Cosmic Res. 17, 708715.Google Scholar
Geminale, A., Formisano, V., Sindoni, G., 2011. Mapping methane in Martian atmosphere with PFS-MEX data. Planet. Space Sci. 59, 137148.Google Scholar
Gerard, J.C., Cox, C., Saglam, A., Bertaux, J.L., Villard, E., Nehme, C., 2008. Limb observations of the ultraviolet nitric oxide nightglow with SPICAV on board Venus Express. J. Geophys. Res. 113, E00B03.Google Scholar
Gerard, J.C., et al., 2011. Measurements of the helium 584 Å airglow during the Cassini flyby of Venus. Planet. Space Sci. 59, 15241528.Google Scholar
Gerard, J.C., et al., 2011. EUV spectroscopy of Venus dayglow with UVIS on Cassini. Icarus 211, 7080.Google Scholar
Gerard, J.C., Soret, L., Piccioni, G., Drossart, P., 2012. Spatial correlation of OH Meinel and O2 infrared atmospheric nightglow emissions observed with VIRTIS-M on board Venus Express. Icarus 217, 813817.Google Scholar
Giauque, W.F., Hornung, E.W., Kunzler, J.E., Rubin, T.R., 1960. The thermodynamic properties of aqueous sulfuric acid solutions and hydrates from 15 to 300 K. J. Am. Chem. Soc. 82, 6267.Google Scholar
Gillett, F.C., 1975. Further observations of the 8–13 μm spectrum of Titan. Astrophys. J. 201, L41L43.Google Scholar
Gilli, G., et al., 2015. Carbon monoxide and temperature in the upper atmosphere of Venus from VIRTIS/Venus Express non-LTE limb measurements. Icarus 248, 478498.Google Scholar
Girazian, Z., et al., 2017. Ion densities in the nightside ionosphere of Mars: Effects of electron impact ionization. Geophys. Res. Lett. 44, 11,24811,256.Google Scholar
Gladstone, G.R., et al., 2016. The atmosphere of Pluto as observed by New Horizons. Science 351(6279), aad8866.Google Scholar
Gnedykh, V.I., et al., 1987. Vertical structure of the cloud layer of Venus at the Vega 1 and 2 landing sites. Cosmic Res. 25, 707712.Google Scholar
Gonzalez-Galindo, F., Forget, F., Lopez-Valverde, M.A., Angelats i Coll, M., Millour, E., 2009. A ground-to-exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. J. Geophys. Res. 114, E04001.Google Scholar
Gonzalez-Galindo, F., et al., 2013. Three-dimensional Martian ionosphere model: 1. The photochemical ionosphere below 180 km. J. Geophys. Res. 118, 21052123.Google Scholar
Gordon, I.E., et al., 2017. The HITRAN 2016 molecular spectroscopic database. J. Quant. Spec. Rad. Transfer 203–69.Google Scholar
Gray, C.I., et al., 2014. The effects of solar flares, coronal mass ejections, and sloar wind streams on Venus’ 5577 A oxygen green line. Icarus 233, 342347.Google Scholar
Grebowsky, J.M., Strangeway, R.J., Hunten, D.M., 1997. Evidence for Venus lightning. In: Bougher, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II. University of Arizona Press, Tucson, pp. 125157.Google Scholar
Greene, T.P., et al., 1993. CSHELL: A high spectral resolution echelle spectrograph for the IRTF. Proc. SPIE 1946, 313323.Google Scholar
Griffith, C.A., Hall, J.L., Geballe, T.R., 2000. Detection of daily clouds on Titan. Science 290, 509513.Google Scholar
Gringauz, K.I., Verigin, M.I., Breus, T.K., Gombosi, T., 1979. The interaction of electrons in the optical umbra of Venus with the planetary atmosphere: The origin of the nighttime ionosphere. J. Geophys. Res. 84, 21232127.Google Scholar
Grinspoon, D.H., Lewis, J.S., 1988. Cometary water on Venus: Implication of stochastic impacts. Icarus 74, 2135.Google Scholar
Groeller, H., et al., 2010. Venus’ atomic hot oxygen environment. J. Geophys. Res. 115, E12017.Google Scholar
Groeller, H., et al., 2015. Probing the Martian atmosphere with MAVEN/IUVS stellar occultations. Geophys. Res. Lett. 42, 90649070.Google Scholar
Gronoff, G., et al., 2008. Modeling the Venusian airglow. Astron. Astrophys. 482, 10151029.Google Scholar
Grundy, W.M., Young, L.A., Stansberry, J.A., Buie, M.W., Olkin, C.B., Young, E.F., 2010. Near-infrared spectral monitoring of Triton with IRTF/SpeX II: Spatial distribution and evolution of ices. Icarus 205, 594604.Google Scholar
Gurrola, E.M. 1995. Interpretation of radar data from the Icy Galilean Satellites and Triton. PhD thesis, Stanford University.Google Scholar
Gurwell, M.A., 2004. Submillimeter observations of Titan: Global measures of stratospheric temperature, CO, HCN, HC3N, and the isotopic ratios 12C/13C and 14N/15N. Astrophys. J. Lett. 616, L7L10.Google Scholar
Gurwell, M.A., Muhleman, D.O., Shah, K.P., Berge, G.L., Rudy, D.J., Grossman, A.W., 1995. Observations of the CO bulge on Venus and implications for mesospheric winds. Icarus 115, 141158.Google Scholar
Gurwell, M.A., Melnick, G.J., Tolls, V., Bergin, E.A., Patten, B.M., 2007. SWAS observations of water vapor in the Venus mesosphere. Icarus 188, 288304.Google Scholar
Guslyakova, S., et al., 2014. O2(a1Δg) dayglow limb observations on Mars by SPICAM IR on Mars-Express and connection to water vapor distribution. Icarus 239, 131140.Google Scholar
Guslyakova, S., et al., 2016. Long-term nadir observations of the O2 dayglow by SPICAM IR. Planet. Space Sci. 122, 112.Google Scholar
Gustaffson, T., Plummer, E.W., Eastman, D.E., Gudat, W., 1978. Partial photoionization cross sections of CO2 between 20 and 40 eV studied with synchrotron radiation. Phys. Rev. A17, 175180.Google Scholar
Gutcheck, R.A., Zipf, E.C., 1973. Excitation of the CO fourth positive system by the dissociative recombination of CO2+ ions. J. Geophys. Res. 78, 54295436.Google Scholar
Hanel, R., et al., 1972. Investigation of the Martian environment by infrared spectroscopy on Mariner 9. Icarus 17, 423442.Google Scholar
Hansell, S.A., Wells, W.K., Hunten, D.M., 1995. Optical detection of lightning on Venus. Icarus 117, 345351.Google Scholar
Hansen, C.J., Paige, D.A., 1992. A thermal model for the seasonal nitrogen cycle on Triton. Icarus 99, 273288.Google Scholar
Hansen, C.J., Paige, D.A., Young, L.A., 2015. Pluto’s climate modeled with new observational constraints. Icarus 246, 183191.Google Scholar
Hansen, J.E., Hovenier, J.W., 1974. Interpretation of the polarization of Venus. J. Atmos. Sci. 31, 11371160.Google Scholar
Hansen, J.E, Travis, L.D., 1974. Light scattering in the planetary atmospheres. Space Sci. Rev. 16, 527610.Google Scholar
Hanson, W.B., Santanini, S., and Zuccaro, D.R., 1977. The Martian ionosphere asobserved by Viking retarding potential analyzers, J. Geophys. Res., 82, 43514363.Google Scholar
Hapke, B., 1993. Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press, Cambridge, UK.Google Scholar
Hartle, R.E., Taylor, H.A., 1983. Identification of deuterium ions in the ionosphere of Venus. Geophys. Res. Lett. 10, 965968.Google Scholar
Hartle, R.E., et al., 1996. Hydrogen and deuterium in the thermosphere of Venus: Solar cycle variations and escape. J. Geophys. Res. 101, 45254538.Google Scholar
Hartle, R.E., et al., 2006. Preliminary interpretation of Titan plasma interaction as observed by the Cassini Plasma Spectrometer: Comparisons with Voyager 1. Geophys. Res. Lett. 33, 8201, doi:10.10129/2005GL024817.Google Scholar
Hartogh, P., et al., 2010. Herschel/HIFI observations of HCl, H2O2, and O2 in the Martian atmosphere: Initial results. Astron. Astrophys. 521, doi:10.1051/0004-6361/201015160.Google Scholar
Hase, F., Wallace, L., McLeod, S.D., Harrison, J.J., Bernath, P.F., 2010. The ACE-FTS atlas of the infrared solar spectrum. J. Quant. Spectrosc. Radiat. Trans. 111, 521528.Google Scholar
Haus, R., Arnold, G., 2010. Radiative transfer in the atmosphere of Venus and application to surface emissivity retrieval from VIRTIS/VEX measurements. Planet. Space Sci. 58(12), 15781598.Google Scholar
Hebrard, E., Dobrijevic, M., Benilan, Y., Raulin, F., 2007. Photochemical kinetics uncertainties in modeling Titan’s atmosphere: First consequences. Planet. Space Sci. 55, 14701489.Google Scholar
Hedin, A.E., Niemann, H.B., Kasprzak, W.T., Seiff, A., 1983. Global empirical model of the Venus thermosphere. J. Geophys. Res. 88, 7383.Google Scholar
Herbert, F., Sandel, B.R., 1991. CH4 and haze in Triton’s lower atmosphere. J. Geophys. Res. 96, 19,24119,252.Google Scholar
Hess, S.L., et al., 1980. The annual cycle of pressure on Mars measured by Viking Landers 1 and 2. Geophys. Res. Lett. 7, 197200.Google Scholar
Hill, R.D., 1979. A survey of lightning energy estimates. Rev. Geophys. Space Phys. 17, 155164.Google Scholar
Hillier, J., Veverka, J., Helfenstein, P., Lee, P., 1994. Photometric diversity of terrains on Triton. Icarus 109, 296312.Google Scholar
Hinson, D.P., et al., 2017. Radio occultation measurements of Pluto’s neutral atmosphere with New Horizons. Icarus 290, 96111.Google Scholar
Hinson, D.P., et al., 2018. An upper limit on Pluto’s ionosphere from radio occultation measurements with New Horizons. Icarus 307, 1724.Google Scholar
Hodges, R.R., 1999. An exospheric perspective of isotopic fractionation of hydrogen on Venus. J. Geophys. Res. 104, 84638471.Google Scholar
Hodyss, R., et al., 2013. The solubility of 40Ar and 84Kr in liquid hydrocarbons: Implications for Titan’s geological evolution. Geophys. Res. Lett. 40, 29352940.Google Scholar
Hoey, W.A., et al., 2017. Rarefied gas dynamic simulation of transfer and escape in the Pluto-Charon system. Icarus 287, 87102.Google Scholar
Hoffman, J.H., Hodges, R.R. Jr., Donahue, T.M., McElroy, M.B., 1980. Composition of the Venus lower atmospherefrom the Pioneer Venus mass spectrometer, J. Geophys. Res. 85, 78827890.Google Scholar
Holler, B.J., Young, L.A., Grundy, W.M., Olkin, C.B., 2016. On the surface composition of Triton’s southern latitudes. Icarus 267, 255266.Google Scholar
Horanyi, M., Poppe, A., Sternovsky, Z., 2016. Dust Ablation in Pluto’s Atmosphere. EGU General Assembly, Vienna, Austria.Google Scholar
Hord, C.W., et al., 1991. Galileo ultraviolet spectrometer experiment: Initial Venus and interplanetary cruise results. Science 253, 15481550.Google Scholar
Hörst, S.M., Vuitton, V., Yelle, R.V., 2008. The origin of oxygen species in Titan’s atmosphere. J. Geophys. Res. 113, E10006.Google Scholar
Hubert, B., Gérard, J.-C., Gustin, J., Shematovich, V.I., Bisikalo, D.V., Stewart, A.I., Gladstone, G.R., 2010. UVIS observations of the FUV OI and CO 4P Venus dayglow during the Cassini flyby. Icarus 207, 549557.Google Scholar
Hubert, B., et al., 2012. Cassini-UVIS observation of dayglow FUV emissions of carbon in the thermosphere of Venus. Icarus 220, 635646.Google Scholar
Hueso, R., Peralta, J., Garate-Lopez, I., Bandos, T.V., Sanchez-Lavega, A., 2015. Six years of Venus winds at the upper cloud level from UV, visible and near infrared observations from VIRTIS on Venus Express. Planet. Space Sci. 113, 7899.Google Scholar
Hunten, D.M., 1978. A Titan atmosphere with a surface temperature of 200 K. In: JPL (Ed.), The Saturn System, University of Arizona Press, Tucson, pp. 127140.Google Scholar
Hunten, D.M., Watson, A.J., 1982. Stability of Pluto’s atmosphere. Icarus 51, 665667.Google Scholar
Ignatiev, N.I., Moroz, V.I., Moshkin, B.E., Ekonomov, A.P., Gnedykh, V.I., Grigoriev, A.V., Khatuntsev, I.V., 1997. Water vapour in the lower atmosphere of Venus: A new analysis of optical spectra measured by entry probes. Planet. Space Sci. 45, 427438.Google Scholar
Ignatiev, N.I., Moroz, V.I., Zasova, L.V., Khatuntsev, I.V., 1999. Water vapor in the middle atmosphere of Venus: An improved treatment of the Venera 15 IR spectra. Planet. Space Sci. 47, 10611075.Google Scholar
Imanaka, H., Cruikshank, D.P., Khare, B.N., McKay, C.P., 2012. Optical constants of Titan tholins at mid-infrared wavelengths (2.5–25 lm) and the possible chemical nature of Titan’s haze particles. Icarus 218, 247261.Google Scholar
Iozenas, V.A., Krasnopolsky, V.A., 1970. Some ozonosphere characteristics from observational data of satellites. Space Research X, 215222.Google Scholar
Irvine, W.M., 1968. Monochromatic phase curves and albedos for Venus. J. Atmos. Sci. 25, 610616.Google Scholar
Irwin, P.G.J., de Kok, R., Negrao, A., Tsang, C.C.C., Wilson, C.F., Drossart, P., Piccioni, G., Grassi, D., Taylor, F.W., 2008. Spatial variability of carbon monoxide in Venus’ mesosphere from Venus Express/visible and infrared thermal imaging spectrometer measurements. J. Geophys. Res. 113, E00B01.Google Scholar
Israel, G., et al., 2005. Complex organic matter in Titan’s atmospheric aerosol from in situ pyrolysis and analysis. Nature 438, 796799.Google Scholar
Istomin, V.G., Grechnev, K.V., Kochnev, V.A., 1983. Venera 13 and Venera 14: Mass spectrometry of the atmosphere. Cosmic Res. 21, 410415.Google Scholar
Ivanov-Kholodny, G.S., et al., 1979. Daytime ionosphere of Venus as studied with Venera 9 and 10 dual-frequency radio occultation experiments. Icarus 39, 209213.Google Scholar
Iwagami, N., et al., 2008. Hemispheric distributions of HCl above and below the Venus’ clouds by ground-based 1.7 μm spectroscopy. Planet. Space Sci. 56, 14241434.Google Scholar
Jaffe, W., Caldwell, J., Owen, T., 1980. Radius and brightness temperature observations of Titan at centimeter wavelengths by the Very Large Array. Astrophys. J. 242, 806811.Google Scholar
Jain, S.K., et al., 2015. The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations. Geophys. Res. Lett. 42, 90239030.Google Scholar
Jakosky, B.M., Farmer, C.B., 1982. The seasonal and global behavior of water vapor in Mars atmosphere: Complete global results of the Viking atmospheric water detector experiment. J. Geophys. Res. 87, 29993019.Google Scholar
Jakosky, B.M., Pepin, R.O., Johnson, R.E., Fox, J.L., 1994. Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus 111, 271288.Google Scholar
Jaquin, F., Gierasch, P., Kahn, R., 1986. The vertical structure of limb hazes in the Martian atmosphere. Icarus 68, 442461.Google Scholar
Jenkins, J.M., et al., 2002. Microwave remote sensing of the temperature and distribution of sulfur compounds in the lower atmosphere of Venus. Icarus 158, 312328.Google Scholar
Jennings, D.E., et al., 2008. Isotopic ratios in Titan’s atmosphere from Cassini CIRS limb sounding: HC3N in the North. Astrophys. J. Lett. 681, L109.Google Scholar
Jensen, S.J.K., et al., 2014. A sink for methane on Mars? The answer is blowing in the wind. Icarus 236, 2427.Google Scholar
Johnson, R.E., 2010. Thermally driven atmospheric escape. Astrophys. J. 716, 15731578.Google Scholar
Johnson, R.E., Tucker, O.J., Michael, M., Sittler, E.C., Smith, H.T., Young, D.T., Waite, J.H., 2009. Mass loss processes in Titan’s atmosphere. In Brown, R.H., Lebreton, J.P., Waite, J.H. (Eds.), Titan from Cassini–Huygens, Springer, Dordrecht, pp. 373392.Google Scholar
Jolly, A., et al., 2010. The ν8 bending mode of diacetylene: From laboratory spectroscopy to the detection of 13C isotopologues in Titan’s atmosphere. Astrophys. J. 714, 852859.Google Scholar
Jolly, A., et al., 2015. Gas phase dicyanoacetylene (C4N2) on Titan: New experimental and theoretical spectroscopy results applied to Cassini CIRS data. Icarus 248, 340346.Google Scholar
Kammer, J.A., Shemansky, D.E., Zhang, X., Yung, Y.L., 2013. Composition of Titan’s upper atmosphere from Cassini UVIS EUV stellar occultations. Planet. Space Sci. 88, 8692.Google Scholar
Kaplan, L.D., Munch, G., Spinrad, H., 1964. An analysis of the spectrum of Mars. Astrophys. J. 139, 237242.Google Scholar
Kaplan, L.D., Connes, J., Connes, P., 1969. Carbon monoxide in the Martian atmosphere. Astrophys. J. 1457, L187L192.Google Scholar
Kasting, J.F., Pollack, J.B., 1983. Loss of water from Venus. I. Hydrodynamic escape of hydrogen. Icarus 53, 479508.Google Scholar
Käufl, H.U., et al., 2004. CRIRES: A high resolution infrared spectrograph for ESO’s VLT. SPIE 5492, 1218.Google Scholar
Kawabata, K., et al., 1980. Cloud and haze properties from Pioneer Venus polarimetry. J. Geophys. Res. 85, 81298140.Google Scholar
Kaye, J.A., 1988. On the possible role of the reaction O + HO2 → OH + O2 in OH airglow. J. Geophys. Res. 93, 285288.Google Scholar
Keating, G.M., Nicholson, J.Y., Lake, L.R., 1980. Venus upper atmosphere structure. J. Geophys. Res. 85, 79417956.Google Scholar
Keating, G.M., et al., 1985. Models of Venus neutralupper atmosphere: Structure and composition. Adv. Space Res. 5(11), 117172.Google Scholar
Kenner, R.D., Ogryzlo, E.A., Turley, S., 1979. On the excitation of the night airglow on Earth, Venus, and Mars. J. Photochem. 10, 199203.Google Scholar
Kerzhanovich, V.V., Limaye, S.S., 1985. VIRA: Circulation of the atmosphere from the surface to 100 km. Adv. Space Res. 5(11), 5984.Google Scholar
Khare, B.N., Sagan, C., 1973. Red clouds in reducing atmospheres. Icarus 20, 311.Google Scholar
Khare, B.N., et al., 1984. Optical constants of organic tholins produced in a simulated Titanian atmosphere: From X-rays to microwave frequencies. Icarus 60, 127137.Google Scholar
Khatuntsev, I.V., Patsaeva, M.V., Titov, D.V., et al., 2013. Cloud level winds from the Venus Express monitoring camera imaging. Icarus 226, 140158.Google Scholar
Khatuntsev, I.V., Patsaeva, M.V., Titov, D.V., Ignatiev, N.I., Turin, A.V., Fedorova, A.A., Markiewicz, W.J., 2017. Winds in the middle cloud deck from the near-IR imaging by the Venus Monitoring Camera onboard Venus Express. J. Geophys. Res. 122E, 23122327.Google Scholar
Kleinboehl, A., et al., 2015. No widespread dust in the middle atmosphere of Mars from Mars Climate Sounder observations. Icarus 261, 118121.Google Scholar
Kliore, A.J., Luhmann, J.G., 1991. Solar cycle effects on the structure of the electron density profiles in the dayside ionosphere of Venus. J. Geophys. Res. 96, 2128121289.Google Scholar
Kliore, A.J., Fjeldbo, G., Seidel, B.L., et al., 1973. S band radio occultation measurements of the atmosphere and topography of Mars with Mariner 9: Extended mission coverage of polar and intermediate latitudes, J. Geophys. Res. 78, 43314351.Google Scholar
Kliore, A.J., et al., 2008. First results from the Cassini radio occultations of the Titan ionosphere. J. Geophys. Res. 113, A09317.Google Scholar
Kliore, A.J., Nagy, A.F., Cravens, T.E., Richard, M.S., Rymer, A.M., 2011. Unusual electron density profiles observed by Cassini radio occultations in Titan’s ionosphere: Effects of enhanced magnetospheric electron precipitation? J. Geophys. Res. 116, A11318.Google Scholar
Knollenberg, R.G., Hunten, D.M., 1980. Microphysics of the clouds of Venus: Results of the Pioneer Venus particle size spectrometer experiment. J. Geophys. Res. 85, 80398058.Google Scholar
Knudsen, W.C., Spenner, K., Michelson, P.F., Whitten, R.C., Miller, K.L., Novak, V., 1980. Suprathermal electron energy distribution within the dayside ionosphere of Venus. J. Geophys. Res. 85, 77547758.Google Scholar
Kolodner, M.A., Steffes, P.G., 1998. The microwave absorption and abundance of sulfuric acid vapor in the Venus atmosphere based on new laboratory measurements. Icarus 132, 151169.Google Scholar
Kong, T.Y., McElroy, M.B., 1977a. Photochemistry of the Martian atmosphere. Icarus 32, 168189.Google Scholar
Kong, T.Y., McElroy, M.B., 1977b. The global distribution of O3 on Mars. Planet. Space Sci. 25, 839857.Google Scholar
Korablev, O.I., Krasnopolsky, V.A., Rodin, A.V., Chassefiere, E., 1993. Vertical structure of Martian dust measured by solar infrared occultations from the Phobos spacecraft. Icarus 102, 7687.Google Scholar
Korablev, O.I., et al., 2006. SPICAM IR acousto-optic spectrometer experiment on Mars Express. J. Geophys. Res. 111, E09S03.Google Scholar
Koskinen, T.T., Yelle, R.V., Snowden, D.S., Lavvas, P., Sandel, B.R., Capalbo, F.J., Benilan, Y., West, R.A., 2011. The mesosphere and thermosphere of Titan revealed by Cassini/UVIS stellar occultations. Icarus 216, 507534.Google Scholar
Kostiuk, T., et al., 2001. Direct measurements of winds of Titan. Geophys. Res. Lett. 28, 23612364.Google Scholar
Krasnopolsky, V.A., 1966. Ultraviolet spectrum of the radiation reflected by the Earth’s atmosphere and its use in determining the total abundance and vertical distribution of the atmospheric ozone. Geomagn. Aeronomy 6, 236242.Google Scholar
Krasnopolsky, V.A., 1970. Nitric oxide at 110–220 km measured from the Cosmos 224 orbiter. Geomagn. Aeronomy 10, 660663.Google Scholar
Krasnopolsky, V.A., 1974. Analysis of airglow observations at a planetary limb. Geomagn. Aeronomy 14, 567571.Google Scholar
Krasnopolsky, V.A., 1975. On the structure of Mars’ atmosphere at 120–220 km. Icarus 24, 2832.Google Scholar
Krasnopolsky, V.A., 1979. Nightside ionosphere of Venus. Planet. Space Sci. 27, 14031408.Google Scholar
Krasnopolsky, V.A., 1980. Venera 9, 10: Spectroscopy of scattered radiation in the overcloud atmosphere. Cosmic Res. 18, 899906.Google Scholar
Krasnopolsky, V.A., 1981. Spectroscopic evaluation of CO in the Martian upper atmosphere. Cosmic Res. 19, 902906.Google Scholar
Krasnopolsky, V.A., 1982. Atomic carbon in the atmospheres of Mars and Venus. Cosmic Res. 20, 595603.Google Scholar
Krasnopolsky, V.A., 1983a. Venus spectroscopy in the 3000–8000 Å region by Veneras 9 and 10. In: Hunten, D.M., Colin, L., Donahue, T.M., Moroz, V.I. (Eds.), Venus. University of Arizona Press, Tucson, pp. 459483.Google Scholar
Krasnopolsky, V.A., 1983b. Lightning and nitric oxide on Venus. Planet. Space Sci. 31, 13631369.Google Scholar
Krasnopolsky, V.A., 1985. Total injection of water vapor into the Venus atmosphere. Icarus 62, 221229.Google Scholar
Krasnopolsky, V.A., 1986. Photochemistry of the Atmospheres of Mars and Venus. Springer, Berlin.Google Scholar
Krasnopolsky, V.A., 1987. S3 and S4 absorption cross sections in the range of 340–600 nm and evaluation of the S3 abundance in the lower atmosphere of Venus. Adv. Space Res. 7(12), 2527.Google Scholar
Krasnopolsky, V.A., 1989. Vega mission results and chemical composition of Venusian clouds. Icarus 80, 202210.Google Scholar
Krasnopolsky, V.A., 1993a. On the haze model for Triton. J . Geophys. Res. 98, 1712317124.Google Scholar
Krasnopolsky, V.A., 1993b. Photochemistry of the Martian atmosphere (mean conditions). Icarus 101, 313332.CrossRefGoogle Scholar
Krasnopolsky, V.A., 1995. Uniqueness of a solution of a steady-state photochemical problem: Applications to Mars. J. Geophys. Res. 100, 32633276.Google Scholar
Krasnopolsky, V.A., 1997. Photochemical mapping of Mars. J. Geophys. Res. 102, 1331313320.Google Scholar
Krasnopolsky, V.A., 1999. Hydrodynamic flow of N2 from Pluto. J. Geophys. Res. 104, 59555962.Google Scholar
Krasnopolsky, V.A., 2000. On the deuterium abundance on Mars and some related problems. Icarus 148, 597602.CrossRefGoogle Scholar
Krasnopolsky, V.A., 2001. Middle ultraviolet spectroscopy of Pluto and Charon. Icarus 153, 277284.Google Scholar
Krasnopolsky, V.A., 2002. Mars’ upper atmosphere and ionosphere at low, medium, and high solar activities: implications for evolution of water. J. Geophys. Res. 107(E12), 5128.Google Scholar
Krasnopolsky, V.A., 2003. Spectroscopic mapping of Mars CO mixing ratio: Detection of north-south asymmetry. J. Geophys. Res. 108(E2), 5010, doi:10.1029/2002JE001926.Google Scholar
Krasnopolsky, V.A., 2005. A sensitive search for SO2 in the Martian atmosphere: Implications for seepage and origin of methane. Icarus 178, 487492.CrossRefGoogle Scholar
Krasnopolsky, V.A., 2006a. A sensitive search for nitric oxide in the lower atmospheres of Venus and Mars: Detection on Venus and upper limit for Mars. Icarus 182, 8091.Google Scholar
Krasnopolsky, V.A., 2006b. Photochemistry of the Martian atmosphere: Seasonal, latitudinal, and diurnal variations. Icarus 185, 153170.Google Scholar
Krasnopolsky, V.A., 2006c. Some problems related to the origin of methane on Mars. Icarus 180, 359367.Google Scholar
Krasnopolsky, V.A., 2007a. Long-term spectroscopic observations of Mars using IRTF/CSHELL: Mapping of O2 dayglow, CO, and search for CH4. Icarus 190, 93102.Google Scholar
Krasnopolsky, V.A., 2007b. Chemical kinetic model for the lower atmosphere of Venus. Icarus 191, 2537.Google Scholar
Krasnopolsky, V.A., 2008. High-resolution spectroscopy of Venus: Detection of OCS, upper limit to H2S, and latitudinal variations of CO and HF in the upper cloud layer. Icarus 197, 377385.Google Scholar
Krasnopolsky, V.A., 2009a. A photochemical model of Titan’s atmosphere and ionosphere. Icarus 201, 226256.Google Scholar
Krasnopolsky, V.A., 2009b. Seasonal variations of photochemical tracers at low and middle latitudes on Mars: Observations and models. Icarus 201, 564569.Google Scholar
Krasnopolsky, V.A., 2010a. Venus night airglow: Ground-based detection of OH, observations of O2 emissions, and photochemical model. Icarus 207, 1727.Google Scholar
Krasnopolsky, V.A., 2010b. Solar activity variations of thermospheric temperature on Mars and a problem of CO in the lower atmosphere. Icarus 207, 638647.Google Scholar
Krasnopolsky, V.A., 2010c. Spatially-resolved high-resolution spectroscopy of Venus. 1. Variations of CO2, CO, HF, and HCl at the cloud tops. Icarus 208, 539547.Google Scholar
Krasnopolsky, V.A., 2010d. Spatially-resolved high-resolution spectroscopy of Venus. 2. Variations of HDO, OCS, and SO2 at the cloud tops. Icarus 209, 314322.Google Scholar
Krasnopolsky, V.A., 2010e. The photochemical model of Titan’s atmosphere and ionosphere: A version without hydrodynamic escape. Planet. Space Sci. 58, 15071515.CrossRefGoogle Scholar
Krasnopolsky, V.A., 2011a. Excitation of the oxygen nightglow on the terrestrial planets. Planet. Space Sci. 59, 754766.Google Scholar
Krasnopolsky, V.A., 2011b. A sensitive search for methane and ethane on Mars. EPSC Abstracts 6, 49.Google Scholar
Krasnopolsky, V.A., 2011c. Vertical profile of H2SO4 vapor at 70–110 km on Venus and some related problems. Icarus 215, 197203.Google Scholar
Krasnopolsky, V.A., 2012a. Search for methane and upper limits to ethane and SO2 on Mars. Icarus 217, 144152.Google Scholar
Krasnopolsky, V.A., 2012b. A photochemical model for the Venus atmosphere at 47–112 km. Icarus 218, 230246.Google Scholar
Krasnopolsky, V.A., 2012c. Observation of DCl and upper limit to NH3 on Venus. Icarus 219, 244249.Google Scholar
Krasnopolsky, V.A., 2012d. Titan’s photochemical model: Further update, oxygen species, and comparison with Triton and Pluto. Planet. Space Sci. 73, 318326.Google Scholar
Krasnopolsky, V.A., 2013a. Nighttime photochemical model and night airglow on Venus. Planet. Space Sci. 85, 7888.Google Scholar
Krasnopolsky, V.A., 2013b. S3 and S4 abundances and improved chemical kinetic model for the lower atmosphere of Venus. Icarus 225, 570580.Google Scholar
Krasnopolsky, V.A., 2013c. Night and day airglow of oxygen at 1.27 μm on Mars. Planet. Space Sci. 85, 243249.Google Scholar
Krasnopolsky, V.A., 2014a. Observations of the CO dayglow at 4.7 μm on Mars: Variations of temperature and the CO mixing ratio at 50 km. Icarus 228, 189196.Google Scholar
Krasnopolsky, V.A., 2014b. Chemical composition of Titan’s atmosphere and ionosphere: Observations and the photochemical model. Icarus 236, 8391.Google Scholar
Krasnopolsky, V.A., 2014c. Observations of CO dayglow at 4.7 μm, CO mixing ratios, and temperatures at 74 and 104–111 km on Venus. Icarus 237, 340349.Google Scholar
Krasnopolsky, V.A., 2015a. CXO X-ray spectroscopy of comets and abundances of heavy ions in the solar wind. Icarus 247, 95102.Google Scholar
Krasnopolsky, V.A., 2015b. Vertical profiles of H2O, H2SO4, and sulfuric acid concentration at 45–75 km on Venus. Icarus 252, 327333.Google Scholar
Krasnopolsky, V.A., 2015c. Variations of carbon monoxide in the Martian lower atmosphere. Icarus 253, 149155.Google Scholar
Krasnopolsky, V.A., 2015d. Variations of the HDO/H2O ratio in the Martian atmosphere and loss of water from Mars. Icarus 257, 377386.Google Scholar
Krasnopolsky, V.A., 2016a. Sulfur aerosol in the clouds of Venus. Icarus 274, 3336.CrossRefGoogle Scholar
Krasnopolsky, V.A., 2016b. Isotopic ratio of nitrogen on Titan: Photochemical interpretation. Planet. Space Sci. 134, 6163.Google Scholar
Krasnopolsky, V.A., 2017a. On the iron chloride aerosol in the clouds of Venus. Icarus 286, 134137.Google Scholar
Krasnopolsky, V.A., 2017b. Annual mean mixing ratios of N2, Ar, O2, and CO in the Martian atmosphere. Planet. Space Sci. 144, 7173.Google Scholar
Krasnopolsky, V.A., 2018a. Disulfur dioxide and its near-UV absorption in the photochemical model of Venus atmosphere. Icarus 299, 294299.Google Scholar
Krasnopolsky, V.A., 2018b. Some problems in interpretation of the New Horizons observations of Pluto’s atmosphere. Icarus 301, 152154.Google Scholar
Krasnopolsky, V.A., 2018c. On the carbon isotope ratio in Titan’s atmosphere and interior. 42nd COSPAR Assembly, Pasadena, abstract id. B5.3-24-18.Google Scholar
Krasnopolsky, V.A., Forthcoming. Photochemistry of water in the Martian thermosphere and its effect on hydrogen escape. Icarus.Google Scholar
Krasnopolsky, V.A., Forthcoming. Venus nighttime photochemical model: Nightglow of O2, NO, OH and abundances of O3 and ClO. Icarus.Google Scholar
Krasnopolsky, V.A., Belyaev, D.A., 2017. Search for HBr and bromine photochemistry on Venus. Icarus 293, 111118.Google Scholar
Krasnopolsky, V.A., Cruikshank, D.P., 1995. Photochemistry of Triton’s atmosphere and ionosphere. J. Geophys. Res. 100, 2127121286.Google Scholar
Krasnopolsky, V.A., Cruikshank, D.P., 1999. Photochemistry of Pluto’s atmosphere and ionosphere near perihelion. J. Geophys. Res. 104, 2197921996.Google Scholar
Krasnopolsky, V.A., Feldman, P.D., 2001. Detection of molecular hydrogen in the atmosphere of Mars. Science 294, 19141917.Google Scholar
Krasnopolsky, V.A., Feldman, P.D., 2002. Far ultraviolet spectrum of Mars. Icarus 160, 8694.CrossRefGoogle Scholar
Krasnopolsky, V.A., Gladstone, G.R., 1996. Helium on Mars: EUVE and Phobos data and implications for Mars’ evolution. J. Geophys. Res. 101A, 1576515772.Google Scholar
Krasnopolsky, V.A., Gladstone, G.R., 2005. Helium on Mars and Venus: EUVE observations and modeling. Icarus 176, 395407.Google Scholar
Krasnopolsky, V.A., Krys’ko, A.A., 1976. On the night airglow of the Martian atmosphere. Space Res. 16, 10051008.Google Scholar
Krasnopolsky, V.A., Lefèvre, F., 2013. Chemistry of the atmospheres of Mars, Venus, and Titan. In: Comparative Climatology of Terrestrial Planets, Mackwell, S.J., et al. (Eds.), University of Arizona Press, Tucson, pp. 231276.Google Scholar
Krasnopolsky, V.A., Mumma, M.J., 2001. Spectroscopy of comet Hyakutake at 80–700 Å: First detection of solar wind charge transfer emissions. Astrophys. J. 549, 629634.Google Scholar
Krasnopolsky, V.A., Parshev, V.A., 1977. Altitude profile of water vapor on Mars. Cosmic Res. 15, 673676.Google Scholar
Krasnopolsky, V.A., Parshev, V.A., 1979. Chemical composition of Venus’ troposphere and cloud layer based on Venera 11, Venera 12, and Pioneer Venus measurements. Cosmic Res. 17, 630637.Google Scholar
Krasnopolsky, V.A., Parshev, V.A., 1981. Chemical composition of the atmosphere of Venus. Nature 292, 610613.Google Scholar
Krasnopolsky, V.A., Pollack, J.B., 1994. H2O–H2SO4 system in Venus’ clouds and OCS, CO, and H2SO4 profiles in Venus’ troposphere. Icarus 109, 5878.Google Scholar
Krasnopolsky, V.A., Kuznetsov, A.P., Lebedinsky, A.I., 1966. Ultraviolet spectrum of the Earth measured from Cosmos 65. Geomagn. Aeronomy 6, 145148.Google Scholar
Krasnopolsky, V.A., Krysko, A.A., Rogachev, V.N., Parshev, V.A., 1976. Spectroscopy of the Venus night airglow from the Venera 9 and 10 orbiters. Cosmic Res. 14, 789795Google Scholar
Krasnopolsky, V.A., Sandel, B.R., Herbert, F., 1992. Properties of haze in the atmosphere of Triton. J. Geophys. Res. 97, 1169511700.Google Scholar
Krasnopolsky, V.A., Sandel, B.R., Herbert, F., Vervack, R.J., 1993. Temperature, N2, and N density profiles of Triton’s atmosphere: observations and model. J. Geophys. Res. 98, 30653078.Google Scholar
Krasnopolsky, V.A., Bjoraker, G.L., Mumma, M.J., Jennings, D.E., 1997. High-resolution spectroscopy of Mars at 3.7 and 8 μm: A sensitive search for H2O2, H2CO, HCl, and CH4, and detection of HDO. J. Geophys. Res. 102, 65256534.Google Scholar
Krasnopolsky, V.A., Mumma, M.J., Gladstone, G.R., 1998. Detection of atomic deuterium in the upper atmosphere of Mars. Science 280, 15761580.Google Scholar
Krasnopolsky, V.A., et al., 2002. X-ray emission from comet McNaught-Hartley (C/1999 T1). Icarus 160, 437447.Google Scholar
Krasnopolsky, V.A., Maillard, J.P., Owen, T.C., 2004a. Detection of methane in the Martian atmosphere: Evidence for life. Geophys. Res. Abstracts 6, 06169.Google Scholar
Krasnopolsky, V.A., Maillard, J.P., Owen, T.C., 2004b. Detection of methane in the Martian atmosphere: Evidence for life? Icarus 172, 537547.Google Scholar
Krasnopolsky, V.A., Maillard, J.P., Owen, T.C., Toth, R.A., Smith, M.D., 2007. Oxygen and carbon isotope ratios in the Martian atmosphere. Icarus 192, 396403.Google Scholar
Krasnopolsky, V.A., Belyaev, D.A., Gordon, I.E., Li, G., Rothman, L.S., 2013. Observations of D/H ratios in H2O, HCl, and HF on Venus and new DCl and DF line strengths. Icarus 224, 5765.Google Scholar
Kuiper, G.P., 1944. Titan: A satellite with an atmosphere. Astrophys. J. 100, 378383.Google Scholar
Kuiper, G.P., 1949. Survey of planetary atmospheres. In: The Atmospheres of the Earth and Planets, Kuiper, G.P. (Ed.), University of Chicago Press, Chicago, pp. 304345.Google Scholar
Kumar, S., Broadfoot, A.L., 1975. He 584 Å airglow emission from Venus: Mariner 10 observations. Geophys. Res. Lett. 2, 357360.Google Scholar
Kumar, S., Hunten, D.M., Broadfoot, A.L., 1978. Non-thermal hydrogen in the Venus exosphere: The ionospheric source and the hydrogen budget. Planet. Space Sci. 26, 10631075.Google Scholar
Kumar, S., Hunten, D.M., Pollack, J.B., 1983. Non-thermal escape of hydrogen and deuterium from Venus and implications for loss of water. Icarus 55, 369375.Google Scholar
Kurokawa, H., et al., 2014. Evolution of water reservoirs on Mars: Constraints from hydrogen isotopes in Martian meteorites. Earth Planet. Sci. Lett. 394, 179185.Google Scholar
Lacy, J.H., Richter, M.J., Greathouse, T.K., Jaffe, D.T., Zhu, Q., 2002. TEXES: A sensitive high-resolution grating spectrograph for the mid-infrared. Pub. Astron. Soc. Pacific 114, 153168.Google Scholar
Lane, W.A., Opstbaum, R., 1983. High altitude Venus hazefrom Pioneer Venus limb scans. Icarus 54, 4858.Google Scholar
Lara, L.M., Lellouch, E., Lopez-Moreno, J.J., Rodrigo, R., 1996. Vertical distributions of Titan’s atmospheric neutral constituents. J. Geophys. Res. 101, 2326223283.Google Scholar
Lara, L.M., Ip, W.-H., Rodrigo, R., 1997. Photochemical models of Pluto’s atmosphere. Icarus 130, 1635 .Google Scholar
Lavvas, P.P., Coustenis, A., Vardavas, I.M., 2008a. Coupling photochemistry with haze formation in Titan’s atmosphere, Part I: Model description. Planet. Space Sci. 56, 2766.Google Scholar
Lavvas, P.P., Coustenis, A., Vardavas, I.M., 2008b. Coupling photochemistry with haze formation in Titan’s atmosphere, Part II: Results and validation with Cassini/Huygens data. Planet. Space Sci. 56, 6799.Google Scholar
Lawrence, G.M., 1973. Production of O(1S) from photodissociation of O2. J. Geophys. Res. 78, 83148318.Google Scholar
Lawrence, G.M., Barth, C.A., Argabright, V., 1977. Excitation of the Venus night airglow. Science 195, 573574.Google Scholar
Leblanc, F., Johnson, R.E., 2002. Role of molecular species in pickup ion sputtering of the Martian atmosphere. J. Geophys. Res. 107, E25010.Google Scholar
Leblanc, F., et al., 2006. Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express. J. Geophys. Res. 111, E05S11.Google Scholar
Leblanc, F., Chaufray, J.Y., Bertaux, J.L., 2007. On Martian nitrogen dayglow emission observed by SPICAM UV spectrograph/Mars Express. Geophys. Res. Lett. 34, L02206.Google Scholar
Lebonnois, S., 2005. Benzene and aerosol production in Titan and Jupiter’s atmospheres: A sensitivity study. Planet. Space Sci. 53, 486497.Google Scholar
Lebonnois, S., Quemerais, E., Montmessin, F., et al., 2006. Vertical distribution of ozone on Mars as measured by SPICAM/Mars Express using stellar occultations. J. Geophys. Res., 111, E09S05.Google Scholar
Lebonnois, S., Burgalat, J., Rannou, P., Charnay, B., 2012. Titan global climate model: A new 3-dimensional version of the IPSL Titan GCM. Icarus 218, 707722.Google Scholar
Lebonnois, S., Schubert, G., 2017. The deep atmosphere of Venus and the possible role of density-driven separation of CO2 and N2. Nature Geoscience 10, 473477.Google Scholar
Lecuyer, C., et al., 2017. D/H fractionation during the sublimation of water ice. Icarus 285, 17.Google Scholar
Lee, L.C., Judge, D.L., 1972. Cross sections for the production of CO2+(A2Πu, B2Σu+ → X2Πg) fluorescence by vacuum ultraviolet radiation. J. Chem. Phys. 57, 44434447.Google Scholar
Lefèvre, F., Forget, F., 2009. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460, 720723.Google Scholar
Lefèvre, F., et al., 2004. Three-dimensional modeling of ozone on Mars. J. Geophys. Res 109, E07004.Google Scholar
Lefèvre, F., Bertaux, J.L., Clancy, R.T., et al., 2008. Heterogeneous chemistry in the atmosphere of Mars. Nature 454, 971975.Google Scholar
Lellouch, E., Paubert, G., Encrenaz, T., 1991. Mapping of CO millimeter-wave lines in Mars’ atmosphere: The spatial variability of carbon monoxide on Mars. Planet. Space Sci. 39, 219224.Google Scholar
Lellouch, E., Goldstein, J.J., Rosenqvist, J., Bougher, S.W., Paubert, G., 1994. Global circulation, thermal structure, and carbon monoxide distribution in Venus’ mesosphere in 1991. Icarus 110, 315339.Google Scholar
Lellouch, E., et al., 2009. Pluto’s lower atmosphere structure and methane abundance from high-resolution spectroscopy and stellar occultations. Astron. Astrophys. 495, L17L21.Google Scholar
Lellouch, E., de Bergh, C., Sicardy, B., Ferron, S., Kaufl, H.U., 2010. Detection of CO in Triton’s atmosphere and the nature of surface-atmosphere interactions. Astron. Astrophys. 512, L8.Google Scholar
Lellouch, E., de Bergh, C., Sicardy, B., Kaufl, H.U., Smette, A., 2011a. High resolution spectroscopy of Pluto’s atmosphere: Detection of the 2.3-lm CH4 bands and evidence for carbon monoxide. Astron. Astrophys. 530, L4.Google Scholar
Lellouch, E., Stansberry, J., Emery, J., Grundy, W., Cruikshank, D.P., 2011b. Thermal properties of Pluot’s and Charon’s surfaces from Spitzer observations. Icarus 214, 701716.Google Scholar
Lellouch, E., et al., 2017. Detection of CO and HCN in Pluto’s atmosphere with ALMA. Icarus 286, 289307.Google Scholar
Leshin, L.A., 2000. Insights into Martian water reservoirs from analyses of Martian meteorite QUE94201. Geophys. Res. Lett. 27, 20172020.Google Scholar
Levine, J.S., Gregory, G.L., Harvey, G.A., Howell, W.E., Borucki, W.J., Orville, R.E., 1982. Production of nitric oxide by lightning on Venus. Geophys. Res. Lett. 9, 893896.Google Scholar
Liang, M.C., et al., 2007. Source of nitrogen isotope anomaly in HCN in the atmosphere of Titan. Astrophys. J. Lett. 664, L115L118.Google Scholar
Liaw, Y.P., Sisterson, D.L., Miller, N.L., 1990. Comparison of field, laboratory, and theoretical estimates of global nitrogen fixation by lightning. J. Geophys. Res. 95, 2248922494.Google Scholar
Lillis, R., et al., 2017. Photochemical escape of oxygen from Mars: First results from MAVEN in situ data. J. Geophys. Res. 122(A3), 38153836.Google Scholar
Lindal, G.F., et al., 1983. The atmosphere of Titan: An analysis of the Voyager 1 radio-occultation measurements. Icarus 53, 348363.Google Scholar
Liu, S.C., Donahue, T.M., 1976. The regulation of hydrogen and oxygen escape from Mars. Icarus 28, 231246.Google Scholar
Loison, J.C., Dobrijevic, M., Hickson, K.M., Heays, A.N., 2017. The photochemical fractionation of oxygen isotopologues in Titan’s atmosphere. Icarus 291, 1730.Google Scholar
Lopez-Moreno, J.J., et al., 2008. Structure of Titan’s low altitude ionized layer from the relaxation probe onboard Huygens. Geophys. Res. Lett. 35, L22104.Google Scholar
Lopez-Puertas, M., et al., 2013. Large abundances of polycyclic aromatic hydrocarbons in Titan’s upper atmosphere. Astrophys. J. 770, 132140.Google Scholar
Luginin, M., et al., 2016. Aerosol properties in the upper haze of Venus from SPICAV IR data. Icarus 277, 154170Google Scholar
Luna, H., Michael, M., Shah, M.B., Johnson, R.E., Latimer, C.J., McConkey, J.W., 2003. Dissociation of N2 in capture and ionization collisions with fast H+ and N+ ions and modeling of positive ions formation in the Titan atmosphere. J. Geophys. Res. 108(E4), 5033. doi:10.1029/2002JE001950.Google Scholar
Luspay-Kuti, A., et al., 2017. Photochemistry on Pluto – I. Hydrocarbons and aerosols. MNRAS 472, 104117.Google Scholar
Lutz, B.L., de Bergh, C., Owen, T., 1983. Titan: Discovery of carbon monoxide in its atmosphere. Science 220, 13741375.Google Scholar
Lyons, J.R., Yung, Y.L., Allen, M., 1992. Solar control of the upper atmosphere of Triton. Science 246, 14831485.Google Scholar
Lyons, J.R., Manning, C.E., Nimmo, F., 2005. Formation of methane on Mars by fluid-rock interaction in the crust. Geophys. Res. Lett. 32, L13201. doi:10.1029/2004GL022161.Google Scholar
Maguire, W.C., 1977. Martian isotopic ratios and upper limits for possible minor constituents as derived from Mariner 9 infrared spectrometer data. Icarus 32, 8597.Google Scholar
Mahaffy, P.R., et al., 2013. Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity rover. Science 341, 263266.Google Scholar
Mahaffy, P.R., et al., 2015. Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophys. Res. Lett. 42, 89518957.Google Scholar
Mahieux, A., et al., 2015a. Venus mesospheric sulfur dioxide measurement retrieved from SOIR on board Venus Express. Planet. Space Sci. 113–114, 193204.Google Scholar
Mahieux, A., et al., 2015b. Hydrogen halides measurements in the Venus mesosphere retrieved from SOIR on board Venus Express. Planet. Space Sci. 113–114, 264274.Google Scholar
Mahieux, A., et al., 2015c. Update of the Venus density and temperature profiles at high altitude measured by SOIR on board Venus Express. Planet. Space Sci. 113–114, 309320.Google Scholar
Mahieux, A., et al., 2015d. Rotational temperatures of Venus upper atmosphere as measured by SOIR on board Venus Express. Planet. Space Sci. 113–114, 347358.Google Scholar
Maiorov, B.S., et al., 2005. A new analysis of the spectra obtained by the Venera missions in the Venussian atmosphere. I. The analysis of the data received from the Venera 11 probe at altitudes below 37 km in the 0.44–0.66 lm wavelength range. Solar Syst. Res. 39, 267282.Google Scholar
Majeed, T., McConnell, J.C., Strobel, D.F., Summers, M.E., 1990. The ionosphere of Triton. Geophys. Res. Lett. 17, 17211724.Google Scholar
Maltagliati, L., Montmessin, F., Korablev, O., Fedorova, A., Forget, F., Määttänen, A., Lefèvre, F., Bertaux, J.-L., 2013. Annual survey of water vapor vertical distribution and water-aerosol coupling in the Martian atmosphere observed by SPICAM/MEx solar occultations. Icarus 223, 942962.Google Scholar
Maltagliati, L., et al., 2015. Titan’s atmosphere as observed by VIMS/Cassini solar occultations: Gaseous components. Icarus 248, 124.Google Scholar
Manat, S.L., Lane, A., 1993. A compilation of the absorption cross sections of SO2 from 106 to 403 nm. J. Quant. Spectr. Rad. Transfer 50, 267276.Google Scholar
Mandt, K., et al., 2012a. The 12C/13C ratio on Titan from Cassini/INMS measurements and implications for the evolution of methane. Astrophys. J. 749, 160174.Google Scholar
Mandt, K.E., et al., 2012b. Ion densities and composition of Titan’s upper atmosphere derived from the Cassini Ion Neutral Mass Spectrometer: Analysis methods and comparison of measured ion densities to photochemical model simulations. J. Geophys. Res. 117, E10006.CrossRefGoogle Scholar
Mandt, K.E., Mousis, O., Lunine, J., Gautier, D., 2014. Protosolar ammonia as the unique source of Titan’s nitrogen. Astrophys. J. Lett. 788, L24.Google Scholar
Mandt, K., et al., 2017. Photochemistry on Pluto: Part II. HCN and nitrogen isotope fractionation. MNRAS 472, 118128.Google Scholar
Marcq, E., Encrenaz, T., Bezard, B., Birlan, M., 2006. Remote sensing of Venus’ lower atmosphere from ground-based spectroscopy: Latitudinal and vertical distribution of minor species. Planet. Space Sci. 54, 13601370.Google Scholar
Marcq, E., Bezard, B., Drossart, P., Piccioni, G., Reess, J.M., Henry, F., 2008. S3 and S4 absorption cross sections in the range of 340–600 nm and evaluation of the S3 abundance in the lower atmosphere of Venus. Geophys. Res. 113, E00B07.Google Scholar
Marcq, E., Belyaev, D., Montmessin, F., Fedorova, A., Bertaux, J.L., Vandaele, A.C., Neefs, E., 2011. An investigation of the SO2 content of the Venusian mesosphere using SPICAV-UV in nadir mode. Icarus 211, 5869.Google Scholar
Marcq, E., Bertaux, J.L., Montmessin, F., Belyaev, D., 2013. Variations of sulphur dioxide at the cloud top of Venus’s dynamic atmosphere. Nat. Geosci. 6, 2528.Google Scholar
Marcq, E., Lellouch, E., Encrenaz, Th., Widemann, Th., Birlan, M., Bertaux, J.L., 2015. Search for horizontal and vertical variations of CO in the day and night side lower mesosphere of Venus from CSHELL/IRTF 4.53 μm observations. Planet. Space Sci. 113–114, 256263.Google Scholar
Marrero, T.R., Mason, E.A., 1972. Gaseous diffusion coefficients. J. Phys. Chem. Ref. Data 1, 3118.Google Scholar
Marten, A., Hidayat, T., Biraud, Y., Moreno, R., 2002. New millimeter heterodyne observations of Titan: Vertical distribution of nitriles HCN, HC3N, CH3CN, and the isotopic ratio 15N/14N in its atmosphere. Icarus 158, 532544.Google Scholar
Marty, B., et al., 2010. Nitrogen isotopes in the recent solar wind from the analysis of Genesis targets: Evidence for large scale isotope heterogeneityin the early Solar System. Geochim. Cosmochim. Acta 74, 340355.Google Scholar
Masunaga, K., et al., 2013. Dependence of O+ escape rate from the Venusian upper atmosphere on IMF directions. Geophys. Res. Lett. 40, 16821685.Google Scholar
McCleese, D.J., et al., 2010. Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: Seasonal variations in zonal mean temperature, dust, and water ice aerosols. J. Geophys. Res. 115, E12016.Google Scholar
McElroy, M.B., 1972. Mars: An evolving atmosphere. Science 175, 443445.Google Scholar
McElroy, M.B., Donahue, T.M., 1972. Stability of the Martian atmosphere. Science 177, 986988.Google Scholar
McElroy, M.B., Yung, Y.L., Nier, A.O., 1976. Isotopic composition of nitrogen: Implications for the past history of Mars’ atmosphere. Science 194, 7072.Google Scholar
McElroy, M.B., Prather, M.J., Rodriguez, J.M., 1982. Escape of hydrogen from Venus. Science 215, 16141615.Google Scholar
McEwan, M.J., Anicich, V.G., 2007. Titan’s ion chemistry: A laboratory perspective. Mass Spectrom. Rev. 26, 281319.Google Scholar
McGrath, M.A., et al., 1998. The ultraviolet albedo of Titan. Icarus 131, 382392.Google Scholar
McKinnon, W.B., 2010. Radiogenic argon release from Titan: Sources, efficiency, and role of the ocean. AGU Fall Meeting, abstract P22A-01.Google Scholar
McKinnon, W.B., Zahnle, K.J., Ivanov, B.A., Melosh, H.J., 1997. Cratering on Venus: Models and observations. In: Venus II, Bougher, S.W., Hunten, D.M., Phillips, R.J. (Eds.), University of Arizona Press, Tucson, pp. 9691014.Google Scholar
McKinnon, W.B., et al., 2017. Origin of the Pluto–Charon system: Constraints from the New Horizons flyby. Icarus 287, 211.Google Scholar
McLean, I.S., et al., 1998. The design and development of NIRSPEC: A near-infrared echelle spectrograph for the Keck II telescope. SPIE 3354, 566578.Google Scholar
McNutt, R.L., 1989. Models of Pluto’s upper atmosphere. Geophys. Res. Lett. 16, 12251228.Google Scholar
Mehr, F.J., Biondi, M.A., 1969. Electron temperature dependence of recombination of O2+ and N2+ ions with electrons. Phys. Rev. 181, 264270.Google Scholar
Meier, R.R., 1991. Ultraviolet spectroscopy and remote sensing of the upper atmosphere. Space Sci. Rev. 58, 1185.Google Scholar
Meier, R.R., Anderson, D.E., Stewart, A.I.F., 1983. Atomic oxygen emissions observed from Pioneer Venus. Geophys. Res. Lett. 10, 214217.Google Scholar
Melosh, H.J., Vickery, A.M., 1989. Impact erosion of the primordial atmosphere of Mars. Nature 338, 487489.Google Scholar
Merlin, F., et al., 2010. Chemical and physical properties of the variegated Pluto and Charon surfaces. Icarus 210, 930940.Google Scholar
Merlivat, L., Nief, G., 1967. Fractionnement isotopique lors des changements d’e´tats solide-vapeur et liquide-vapeur de l’eau à des températures inférieures à 0°C, Tellus 19(1), 122127.Google Scholar
Migliorini, A., Grassi, D., Montabone, L., Lebonnois, S., Drossart, P., Piccioni, G., 2012. Investigation of air temperature on the nightside of Venus derived from VIRTIS-H on board Venus Express. Icarus 217, 640647.Google Scholar
Migliorini, A., et al., 2013. The characteristics of the O2 Herzberg II and Chamberlain bands observed with VIRTIS/Venus Express. Icarus 223, 609614.Google Scholar
Miller, C.E., Yung, Y.L., 2000. Photo-induced isotope fractionation. J. Geophys. Res. D105, 29,03929,051.Google Scholar
Millis, R.L., Wasserman, L.H., Franz, O.G., Nye, R.A., Elliot, J.L., Dunham, E.W., Bosh, A.S., Young, L.A., Slivan, S.M., Gilmore, A.C., 1993. Pluto’s radius and atmosphere: Results from the entire 9 June 1988 occultation data set. Icarus 105, 282297.Google Scholar
Mills, F.P., 1998. I. Observations and photochemical modeling of the Venus middle atmosphere. II. Thermal infrared spectroscopy of Europa and Callisto. PhD thesis, California Institute of Technology.Google Scholar
Mills, F.P., Allen, M., 2007. A review of selected issues concerning the chemistry in Venus’ middle atmosphere. Planet. Space Sci. 55, 17291740.Google Scholar
Mischna, M.A., Allen, M., Richardson, M.I., et al., 2011. Atmospheric modeling of Mars methane surface release. Planet. Space Sci. 59, 227237.Google Scholar
Mishchenko, M.I., 2000. Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 10261031.Google Scholar
Mishchenko, M.I., 2014. Electromagnetic Scattering by Particles and Particle Groups: An Introduction. Cambridge University Press, Cambridge, UK.Google Scholar
Mishra, A., et al., 2014. Revisited modeling of Titan’s middle atmosphere electrical conductivity. Icarus 238, 230234.Google Scholar
Mitrofanov, I.G., et al., 2007. Water ice permafrost on Mars: Layering structure and subsurface distribution according to HEND/Odyssey and MOLA/MGS data. Geophys. Res. Lett. 34, L18102.Google Scholar
Moinelo, A.C., et al., 2016. No statistical evidence of lightning in Venus night-side atmosphere from VIRTIS-Venus Express visible observations. Icarus 277, 395400.Google Scholar
Molina-Cuberos, G.J., et al., 1999. Ionization by cosmic rays of the atmosphere of Titan. Planet. Space Sci. 47, 13471354.Google Scholar
Molina-Cuberos, G.J., et al., 2001. Ionospheric layer induced by meteoric ionization in Titan’s atmosphere. Planet. Space Sci. 49, 143153.Google Scholar
Molter, E.M., et al., 2016. ALMA observations of HCN and its isotopologues on Titan. Astron. J. 152, 4249.Google Scholar
Montmessin, F., Fouchet, T., Forget, F., 2005. Modeling the annual cycle of HDO in the Martian atmosphere. J. Geophys. Res. 110, E03006.Google Scholar
Montmessin, F., et al., 2011. A layer of ozone detected in the nightside upper atmosphere of Venus. Icarus 216, 8285.Google Scholar
Moreau, D., Esposito, L.W., Brasseur, G., 1991. The chemical composition of the dust-free Martian atmosphere: Preliminary results of a two-dimensional model. J. Geophys. Res. 96, 79337945.Google Scholar
Moreno, R., et al., 2012. The abundance, vertical distribution and origin of H2O in Titan’s atmosphere: Hershel observations and photochemical modeling. Icarus 221, 753767.Google Scholar
Moroz, V.I., 1964. New observations of Venus infrared spectrum (1.2–3.8 μm). Astron. Zh. 41, 711715.Google Scholar
Moroz, V.I., Golovin, Yu.M., Moshkin, B.E., Ekonomov, A.P., 1981. Spectrophotometric experiment on the Venera 11 and 12 descent probes. 3. Results of the spectrophotometric measurements. Cosmic Res. 19, 599612.Google Scholar
Moroz, V.I., et al., 1990. Water vapor and sulfur dioxide abundances at the Venus cloud tops from the Venera 15 infrared spectrometry data. Adv. Space Res. 10(5), 7781.Google Scholar
Moudden, Y., 2007. Simulated seasonal variations of hydrogen peroxide in the atmosphere of Mars. Planet. Space Sci. 55, 21372143.Google Scholar
Moudden, Y., McConnell, J.C., 2007. Three-dimensional on-line modeling in a Mars general circulation model. Icarus 188, 1834.Google Scholar
Mumma, M.J., Morgan, H.D., Mentall, J.E., 1975. Reduced absorption of the nonthermal CO (A1Π – X1Σ) fourth positive group by thermal CO and implications for the Mars upper atmosphere. J. Geophys. Res. 80, 168172.Google Scholar
Mumma, M.J., Novak, R.E., DiSanti, M.A., Bonev, B.P., 2003. A sensitive search for methane on Mars. Bull. Am. Astron. Soc. 35, 937.Google Scholar
Mumma, M J., Villanueva, G.L., Novak, R.E., et al., 2009. Strong release of methane on Mars in northern summer 2003, Science 323, 10411045.Google Scholar
Munro, J.J., Harrison, S., Fujimoto, M.M., Tennyson, J., 2012. A dissociative electron attachment cross-section estimator. J. Phys. Conf. Ser. 388, 012013.Google Scholar
Murphy, D.M., Koop, T., 2005. Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q. J. R. Meteorol. Soc. 131, 15391565.Google Scholar
Na, C.Y., Esposito, L.W., McClintock, W.E., Barth, C.A., 1994. Sulfur dioxide in the atmosphere of Venus: Modeling results. Icarus 112, 389395.Google Scholar
Nagy, A.F., Cravens, T.E., 1988. Hot oxygen atoms in the upper atmospheres of Venus and Mars. Geophys. Res. Lett. 15, 433435.Google Scholar
Nair, H., Allen, M., Anbar, A.D., Yung, Y.L., 1994. A photochemical model of the Martian atmosphere. Icarus 111, 124150.Google Scholar
Nair, H., Summers, M.E., Miller, C.E., Yung, Y.L., 2005. Isotopic fractionation of methane in the Martian atmosphere. Icarus 175, 3235.Google Scholar
Niemann, H.B., Kasprzak, W.T., Hedin, A.E., Hunten, D.M., Spencer, N.W., 1980. Mass spectrometric measurements of the neutral gas composition of the thermosphere and exosphere of Venus. J. Geophys. Res. 85, 78177827.Google Scholar
Niemann, H.B., et al., 2010. Composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. J. Geophys. Res. 115E, E12006.Google Scholar
Nier, A.O., McElroy, M.B., 1977. Composition and structure of Mars’ upper atmosphère: Results from the neutral mass spectrometers on Viking 1 and 2. J. Geophys. Res. 82, 43414348.Google Scholar
Niles, P.B., Boynton, W.V., Hoffman, J.H., Ming, D.W., Hamara, D., 2010. Stable isotope measurements of Martian atmospheric CO2 at the Phoenix landing site. Science 329, 13341337.Google Scholar
Nixon, C.A., et al., 2008a. The 12C/13C isotopic ratio in Titan hydrocarbons from Cassini/CIRS infrared spectra. Icarus 195, 778791.Google Scholar
Nixon, C.A., et al., 2008b. Isotopic ratios in Titan’s atmosphere from Cassini CIRS limb sounding: CO2 at low and midlatitudes. Astrophys. J. Lett. 681, L109.Google Scholar
Nixon, C.A., et al., 2009. Infrared limb sounding of Titan with the Cassini composite infrared spectrometer: Effects of the mid-IR detector spatial responses. Appl. Opt. 48, 1912.Google Scholar
Nixon, C.A., et al., 2012. Isotopic ratios in Titan’s methane: Measurements and modeling. Astrophys. J. 759, 159174.Google Scholar
Nixon, C.A., et al., 2013. Detection of propylene in Titan’s stratosphere. Astrophys. J. 776, L14.CrossRefGoogle Scholar
Noland, M., et al., 1974. Six-color photometry of Iapetus, Titan, Rhea, Dione, and Tethys. Icarus 23, 334354.Google Scholar
Norton, R.H., Beer, R., 1976. New apodizing functions for Fourier spectrometry. J. Opt. Soc. Am. 66, 259264.Google Scholar
Noxon, J.F., Traub, W.A., Carleton, N.P., et al., 1976. Detection of O2 dayglow emission from Mars and the Martian ozone abundance. Astrophys. J. 207, 10251030.Google Scholar
Ohtsuki, S., Iwagami, N., Sagawa, H., Ueno, M., Kasaba, Y., Imamura, T., Yanagisawa, K., Nishihara, E., 2008. Distribution of the Venus 1.27-μm O2 airglow and rotational temperature. Planet. Space Sci. 56, 13911398.Google Scholar
Olkin, C.B., et al., 1997. The thermal structure of Triton’s atmosphere: Results from the 1993 and 1995 occultations. Icarus 129, 178201.Google Scholar
Olkin, C.B., et al., 2014. Pluto’s atmospheric structure from the July 2007 stellar occultation. Icarus 239, 1522.Google Scholar
Oschlisniok, J., et al., 2012. Microwave absorptivity by sulfuric acid in the Venus atmosphere: First results from the Venus Express radio science experiment VeRa. Icarus 221, 940948.Google Scholar
Owen, T., 1964. A determination of the Martian CO2 abundance. Comm. Lunar Planet. Lab. 2, 133.Google Scholar
Owen, T., Biemann, K., Rushneck, D.R., Biller, J.E., Homarth, D.W., Lafleur, A.L., 1977. The composition of the atmosphere at the surface of Mars. J. Geophys. Res. 82, 46354639.Google Scholar
Owen, T., Maillard, J.P., de Bergh, C., Lutz, B.L., 1988. Deuterium on Mars: The abundance of HDO and the value of D/H. Science 240, 17671771.Google Scholar
Owen, T.C., Roush, T.L., Cruikshank, D.P., et al., 1993. Surface ices and atmospheric composition of Pluto. Science 261, 745748.Google Scholar
Oyama, V.I., et al., 1980. Pioneer Venus gas chromatography in the lower atmosphere of Venus. J. Geophys. Res. 85, 78917902.Google Scholar
Oze, C., Sharma, M., 2005. Have olivine, will gas: Serpentinization and the abiogenic production of methane on Mars. Geophys. Res. Lett. 32, L10203. doi:10.1029/2005GL022691.Google Scholar
Palmer, K.F., Williams, D., 1975. Optical constants of sulfuric acid: Applications to the cloud of Venus? Appl. Opt. 14, 208219.Google Scholar
Pankine, A.A., et al., 2013. Retrievals of Martian atmospheric opacities from MGS TES nighttime data. Icarus 226, 708722.Google Scholar
Parish, H.F., Schubert, G., Covey, C., Walterscheid, R.L., Grossman, A., Lebonnois, S., 2011. Decadal variations in a Venus general circulation model. Icarus 212, 4265.Google Scholar
Parkinson, C.D., et al., 2015. Distribution of sulphuric acid aerosols in the clouds and upper haze of Venus using Venus Express VAST and VeRa temperature profiles. Planet. Space Sci. 113–114, 205218.Google Scholar
Parkinson, T.D., Hunten, D.M. 1972. Spectroscopy and aeronomy of O2 on Mars. J. Atmos. Sci. 29, 13801390.Google Scholar
Parkinson, W.H., Rufus, J., Yoshino, K., 2003. Absolute absorption cross section measurements of CO2 in the wavelength region 163–200 nm and the temperature dependence. Chem. Phys. 290, 251256.Google Scholar
Patsaeva, M.V., Khatuntsev, I.V., Patsaev, D.V., Titov, D.V., Ignatiev, N.I., Markiewicz, W.J., Rodin, A.V., 2015. The relationship between mesoscale circulation and cloud morphology at the upper cloud level of Venus. Planet. Space Sci. 113, 100108.Google Scholar
Pätzold, M., Tellemann, S., Häusler, B., Bird, M.K., Tyler, G.L., Cristou, A.A., Withers, P., 2009. A sporadic layer in the Venus lower ionosphere of meteoric origin. Geophys. Res. Lett. 36, L05203.Google Scholar
Paxton, L.J., 1985. Pioneer Venus Orbiter Ultraviolet Spectrometer limb observations: Analysis and interpretation of the 166- and 156-nm data. J. Geophys. Res. 90, 50895096.Google Scholar
Paxton, L.J., Meier, R.R., 1986. Reanalysis of Pioneer orbiter ultraviolet spectrometer data OI 1304 intensities and atomic oxygen densities. Geophys. Res. Lett. 13, 229232.Google Scholar
Paxton, L.J., Anderson, D.E., Stewart, A.I.F., 1985. The Pioneer Venus Orbiter ultraviolet spectrometer experiment: Analysis of hydrogen Lyman alpha data. Adv. Space Res. 5, 129132.Google Scholar
Paxton, L.J., Anderson, D.E., Stewart, A.I.F., 1988. Pioneer Venus Orbiter ultraviolet spectrometer Lyman alpha data from near the subsolar region, 1988. J. Geophys. Res. 93, 17661772.Google Scholar
Penteado, P.F., et al., 2005. Measurements of CH3D and CH4 in Titan from infrared spectroscopy. Astrophys. J. 629, L53L56.Google Scholar
Penz, T., Lammer, H., Kulikov, Yu.N., Biernat, H.K., 2005. The influence of the solar particle and radiation environment on Titan’s atmosphere evolution. Adv. Space Res. 36, 241250.Google Scholar
Pereira, R.A., Baulch, D.L., Pilling, M.J., Robertson, S.H., Zeng, G., 1997. Temperature and pressure dependence of the multichannel rate coefficients for the CH3þOH system. Journal of Physical Chemistry A 101, 96819693.Google Scholar
Perrier, S., Bertaux, J.L., Lefèvre, F., et al., 2006. Global distribution of total ozone on Mars from SPICAM/MEX UV measurements, J. Geophys. Res. 111, E09S06.Google Scholar
Person, M.J., et al., 2008. Waves in Pluto’s upper atmosphere. Astron. J. 136, 15101518.Google Scholar
Pertignani, A., van der Zande, W., Cosby, P.C., Hellberg, F., Thomas, R.D., Larsson, M., 2005. Vibrationally resolved rate coefficients and branching fractions in the dissociative recombination of O2+. J. Chem. Phys. 122, 014302.Google Scholar
Petrova, E.V., 2018. Glory of Venus and selection among the unknown UV absorber. Icarus 306, 163170.Google Scholar
Petryanov, I.V., et al., 1981. Iron in the Venus clouds. Dokl. Akad. Nauk SSSR 260, 834840.Google Scholar
Piccialli, A., Montmessin, F., Belyaev, D., Mahieux, A., Fedorova, A., Marcq, E., Bertaux, J.L., Vandaele, A.C., Korablev, O., 2015. Thermal structure of Venus upper aymosphere measured by stellar occultations with SPICAV/Venus Express. Planet. Space Sci. 113–114, 322336.Google Scholar
Piccioni, G., et al., 2008. First detection of hydroxyl in the atmosphere of Venus. Astron. Astrophys. 483, L29L33.Google Scholar
Piccioni, G., et al., 2009. Near-IR oxygen nightglow observed by VIRTIS in the Venus upper atmosphere. J. Geophys. Res. 114, E00B38.Google Scholar
Pieters, C.M., et al., 1986. The color of the surface of Venus. Science 234, 13791380.Google Scholar
Plaut, J.J., et al., 2007. Subsurface radar sounding of the south polar layered deposits of Mars. Science 316, 9295.Google Scholar
Pollack, J.B., et al., 1977. Properties of aerosols in the Martian atmosphere, as inferred from Viking lander imaging data. J. Geophys. Res. 82, 44794496.Google Scholar
Pollack, J.B., et al., 1978. Properties of the clouds of Venus as inferred from airborne observations of its near infrared reflectivity spectrum. Icarus 34, 2845.Google Scholar
Pollack, J.B., et al., 1979. Properties and effects of dust particles suspended in the Martian atmosphere. J. Geophys. Res. 84, 29292945.Google Scholar
Pollack, J.B., Schwartz, J.M., Rages, K., 1990. Scatterers in Triton’s atmosphere: implications for the seasonal volatile cycle. Science 250, 440443.Google Scholar
Pollack, J.B., et al., 1993. Near-infrared light from Venus’ nightside: A spectroscopic analysis. Icarus 103, 142.Google Scholar
Poppe, A.R., 2015. Interplanetary dust influx to the Pluto–Charon system. Icarus 246, 352359.Google Scholar
Porshnev, N.V., et al., 1987. Gas chromatographic analysis of products of thermal reactions of the cloud aerosol of Venus by the Vega 1 and 2 probes. Cosmic Res. 25, 715720.Google Scholar
Price, C., Penner, J., Prather, M., 1997. NOx from lightning. 1. Global distribution based on lightning physics. J. Geophys. Res. 102, 59295941.Google Scholar
Prinn, R.G., 1971. Photochemistry of HCl and other minor constituents in the atmosphere of Venus. J. Atmos. Sci. 28, 10581068.Google Scholar
Quirico, E., Doute, S., Schmitt, B., de Bergh, C., Cruikshank, D.P., Owen, T.C., Geballe, T.R., Roush, T.L., 1999. Composition, physical state, and distribution of ices at the surface of Triton. Icarus 139, 159178.Google Scholar
Ragent, B., Esposito, L.W., Tomasko, M.G., Marov, M.Ya., Shari, V.P., Lebedev, V.N., 1985. Particulate matter in the Venus atmosphere. Adv. Space Res. 5(11), 85115.Google Scholar
Rages, K., Pollack, J.B., 1980. Titan aerosol: Optical properties and vertical distribution. Icarus 41, 119130.Google Scholar
Rages, K., Pollack, J.B., 1983. Vertical distribution of scattering hazes in Titan’s upper atmosphere. Icarus 55, 5060.Google Scholar
Rages, K., Pollack, J.B., 1992. Voyager imaging of Triton’s clouds and hazes. Icarus 99, 289295.Google Scholar
Rannou, P., McKay, C.P., Botet, R., Cabane, M., 1999. Semi-empirical modelof absorption and scattering by isotropic fractal aggregates of spheres. Planet. Space Sci. 47, 385396.Google Scholar
Rannou, P., Cours, T., Le Mouélic, S., Rodriguez, S., Sotin, C., Drossart, P., Brown, R., 2010. Titan haze distribution and optical properties retrieved from recent observations. Icarus 208, 850867.Google Scholar
Rayner, J.T., Cushing, M.C., Vacca, W.D., 2009. The Infrared Telescope Facility (IRTF) spectral library: Cool stars. Astrophys. J. Suppl. Series 185, 289432.Google Scholar
Rengel, M., et al., 2014. Hershel/PACS spectroscopy of trace gases of the stratosphere of Titan. Astron. Astrophys. 561, A4.Google Scholar
Richards, P.G., Fennelly, J.A., Torr, D.G., 1994. EUVAC: A solar EUV flux model for aeronomic calculations. J. Geophys. Res. 99, 89818992.Google Scholar
Robertson, I.P., et al., 2009. Structure of Titan’s ionosphere: Model comparison with Cassini data. Planet. Space Sci. 57, 18341846.Google Scholar
Rodin, A., et al., 2014. High resolution heterodyne spectroscopy of the atmospheric methane NIR absorption. Opt. Express 22, 1382513834.Google Scholar
Rothman, L.S., et al., 2013. The HITRAN 2012 molecular spectroscopic database. J. Quant. Spec. Rad. Trans. 130, 450.Google Scholar
Rousselot, P., et al., 2014. Toward a unique nitrogen isotopic ratio in cometary ices. Astrophys. J. Lett. 780, L17.Google Scholar
Royer, E.M., et al., 2016. Cassini UVIS observations of Titan ultraviolet airglow intensity dependence with solar zenith angle: Titan ultraviolet airglow variations. Geophys. Res. Lett. 44, 8896.Google Scholar
Russell, C.T., Strangeway, R.J., Daniels, J.T.M., Zhang, T.L., Wei, H.Y., 2011. Venus lightning: Comparison with terrestrial lightning. Planet. Space Sci. 59, 965973.Google Scholar
Rustad, D.S., Gregory, N.W., 1983. Vapor pressure of iron (III) chloride. J. Chem. Eng. Data 28, 151155.Google Scholar
Safronov, V.S., 1969. Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets [in Russian]. NASA TT-F-677, Nauka, Moscow.Google Scholar
Sagdeev, R.Z., et al., 1986. Overview of Vega Venus balloon in situ meteorological measurements. Science 231, 14111414.Google Scholar
Samuelson, R.E., Hanel, R.A., Kunde, V.G., Maguire, W.C., 1981. Mean molecular weight and hydrogen abundance of Titan’s atmosphere. Nature 292, 688693.Google Scholar
Sandel, B.R., et al., 2015. Altitude profiles of O2 on Mars from SPICAM stellar occultations. Icarus 252, 154160.Google Scholar
Sander, S.P., et al., 2011. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies. Evaluation 17, JPL Publication 10-6.Google Scholar
Sandor, B.J., Clancy, R.T., 2005. Water vapor variations in the Venus mesosphere from microwave spectra. Icarus 177, 129143.Google Scholar
Sandor, B.J., Clancy, R.T., 2012. Observations of HCl altitude dependence and temporal variation in the 70–100 km mesosphere of Venus. Icarus 220, 618626.Google Scholar
Sandor, B.J., Clancy, R.T., 2018. First measurements of ClO in the Venus atmosphere – Altitude dependence and temporal variation. Icarus 313, 1524.Google Scholar
Sandor, B.J., Clancy, R.T., Moriarty-Schieven, G., Mills, F.P., 2010. Sulfur chemistry in the Venus mesosphere from SO2 and SO microwave spectra. Icarus 208, 4960.Google Scholar
Sandor, B.J., Clancy, R.T., Moriarty-Schieven, G., 2012. Upper limits for H2SO4 in the measosphere of Venus. Icarus 217, 839844.Google Scholar
Sanko, N.F., 1980. Gaseous sulfur in the atmosphere of Venus. Cosmic Res. 18, 600605.Google Scholar
Schindhelm, E., Stern, S.A., Gladstone, R., Zangari, A., 2015. Pluto and Charon’s UV spectra from IUE to New Horizons. Icarus 246, 206212.Google Scholar
Schinke, R., 1995. Photodissociation Dynamics. Cambridge University Press, Cambridge, UK.Google Scholar
Schmitt, B., et al., 2017. Physical state and distribution of materials at the surface of Pluto from New Horizons LEISA imaging spectrometer. Icarus 287, 229260.Google Scholar
Schneider, N.M., et al., 2015. Discovery of diffuse aurora on Mars. Science 350, 0313.Google Scholar
Sebree, J.A., et al., 2016. 13C and 15N fractionation of CH4/N2 mixtures during photochemical aerosol formation: Relevance to Titan. Icarus 270, 421428.Google Scholar
Seiersen, K, et al., 2003. Dissociative recombination of the cation and dication of CO2. Phys. Rev. A 68(2), 022708.Google Scholar
Seiff, A., Schofield, J.T., Kliore, A., Taylor, F.W., Limaye, S.S., Revercomb, H.E., Sromovsky, L.A., Kerzhanovich, V.V., Moroz, V.I., Marov, M.Ya., 1985. Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude. Adv. Space Res. 5(11), 358.Google Scholar
Serigano, J., et al., 2016. Isotopic ratios of carbon and oxygen in Titan’s CO using ALMA. Astrophys. J. Lett. 821, L8.Google Scholar
Shaw, B.M., Lovell, R.J., 1969. Foreign-gas broadening of HF by CO2. J. Opt. Soc. Am. 59, 15981601.Google Scholar
Shebanits, O., et al., 2013. Negative ion densities in the ionosphere of Titan: Cassini RPWS/LP results. Planet. Space Sci. 84, 153162.Google Scholar
Shinnaka, Y., et al., 2014. 14NH2/15NH2 ratio in comet C/2012 S1 (ISON) observed during its outburst in 2013 Novermber. Astrophys. J. Lett. 782, L16.Google Scholar
Sicardy, B., Widemann, T., Lellouch, E., et al., 2003. Large changes in Pluto’s atmosphere as revealed by recent stellar occultations. Nature 424, 168170.Google Scholar
Sicardy, B., Talbot, J., Meza, E., et al., 2016. Pluto’s atmosphere from the 2015 June 29 ground-based stellar occultation at the time of the new horizons flyby. Astrophys. J. 819, L38 .Google Scholar
Sill, G.T., 1972. Sulfuric acid in the Venus clouds. Comm. Lunar Planet. Lab. 9, 191198.Google Scholar
Sindoni, G., Formisano, V., Geminale, A., 2011. Observations of water vapour and carbon monoxide in the Martian atmosphere with the SWC of PFS/MEX. Planet. Space Sci. 59, 149162.Google Scholar
Skrzypkowski, M.P., Gougousi, T., Johnsen, R., Golde, M.F., 1998. Measurement of the absolute yield of CO(a3Π) + O products in the dissociative recombination of CO2+ ions with electrons. J. Chem. Phys. 108, 84008407.Google Scholar
Slanger, T.G., Black, G., 1978. The O2(C3Δu → a1Δg) bands in the nightglow spectrum of Venus. Geophys. Res. Lett. 5, 947948.Google Scholar
Slanger, T.G., Huestis, D.L., Cosby, P.C., Chanover, N.J., Bida, T.A., 2006. The Venus nightglow ground-based observations and chemical mechanisms. Icarus 182, 19.Google Scholar
Smith, G.P., Robertson, R., 2008. Temperature dependence of oxygen atom recombination in nitrogen after ozone photolysis. Chem. Phys. Lett. 458, 610.Google Scholar
Smith, G.R., Strobel, D.F., Broadfoot, A.L., Sandel, B.R., Shemansky, D.F., Holberg, J.B., 1982. Titan’s upper atmosphere: Composition and temperature from the EUV solar occultation results. J. Geophys. Res. 87, 13511359.Google Scholar
Smith, I.W.M., 1984. The role of electronically excited states in recombination reactions. Int. J. Chem. Kinet. 16, 423443.Google Scholar
Smith, M.D., 2004. Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167, 148165.Google Scholar
Smith, M.D., 2009. THEMIS observations of Mars aerosol optical depth from 2002–2008. Icarus 202, 444452.Google Scholar
Smith, M.D., Pearl, J.C., Conrath, B.J., Christensen, P.R., 2000. Mars Global Surveyor Thermal Emission Spectrometer (TES) observations of dust opacity during aerobraking and science phasing. J. Geophys. Res. 105, 95399552.Google Scholar
Smith, M.D., et al., 2006. One Martian year of atmospheric observations using MER Mini-TES. J. Geophys. Res. 111, E12S13.Google Scholar
Smith, M.D., et al., 2009. Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide. J. Geophys. Res. 114, E00D03.Google Scholar
Smith, M.D., et al., 2018. The climatology of carbon monoxide and water vapor on Mars as observed by CRISM and modeled by the GEM-Mars general circulation model. Icarus 301, 117131.Google Scholar
Sonnabend, G., Sornig, M., Kroetz, P., Stupar, D., Schieder, R., 2008. Ultra high spectral resolution observations of planetary atmospheres using the Cologne tunable heterodyne infrared spectrometer. J. Quant. Spec. Rad. Transfer 109, 10161029.Google Scholar
Soret, L., Gerard, J.C., 2015. Is the O2(a1Δg) Venus nightglow emission controlled by solar activity? Icarus 262, 170172.Google Scholar
Soret, L., et al., 2012a. Atomic oxygen on the Venus nightside: Global distribution deduced from airglow mapping. Icarus 217, 849855.Google Scholar
Soret, L., Gerard, J.C., Piccioni, G., Drossart, P., 2012b. The OH Venus nightglow spectrum: Intensity and vibrational composition from VIRTIS Venus Express observations. Planet. Space Sci. 73, 387396.Google Scholar
Soret, L., et al., 2016. SPICAM observations and modeling of Mars aurorae. Icarus 264, 398406.Google Scholar
Spencer, J.R., Moore, J.M., 1992. The influence of thermal inertia on temperatures and frost stability on Triton. Icarus 99, 261272.Google Scholar
Spenner, K., Knudsen, W.C., Lotze, W., 1996. Suprathermal electron fluxes in the Venus nightside ionosphere at moderate and high solar activity. J. Geophys. Res. 101, 45574563.Google Scholar
Spinrad, H., Münch, G., Kaplan, L.D., 1963. The detection of water vapor on Mars, Astrophys. J. 137, 13191321.Google Scholar
Sprague, A.L., et al., 2012. Interannual similarity and variation in seasonal circulation of Mars’ atmospheric Ar as seen by the Gamma Ray Spectrometer on Mars Odyssey. J. Geophys. Res. 117, E04005.Google Scholar
Stenberg, G., et al., 2011. Observational evidence of alpha-particle capture at Mars. Geophys. Res. Lett. 38, L09101.Google Scholar
Stenberg, G., et al., 2015. Proton and alpha particle precipitation onto the upper atmosphere of Venus. Planet. Space Sci. 113–114, 369377.Google Scholar
Stern, S.A., Cunningham, N.J., Hain, M.J., Spencer, J.R., Shinn, A., 2012. First ultraviolet reflectance spectra of Pluto and Charon by the Hubble Space Telescope Cosmic Origins Spectrograph: Absorption features and evidence for temporal change. Astron. J. 143(1), article 22.Google Scholar
Stern, S.A., et al., 2017a. Past epochs of significantly higher pressure atmospheres on Pluto. Icarus 287, 4753.Google Scholar
Stern, S.A., et al., 2017b. New Horizons constraints on Charon’s present day atmosphere. Icarus 287, 124130.Google Scholar
Stevens, M.H., Strobel, D.F., Summers, M.E., 1992. On the thermal structure of Triton’s thermosphere. Geophys. Res. Lett. 19, 669672.Google Scholar
Stevens, M.H., et al., 2015. Molecular nitrogen and methane density retrievals from Cassini UVIS dayglow observations of Titan’s upper atmosphere. Icarus 247, 301312.Google Scholar
Stewart, A.I.F., 1972. Mariner 6 and 7 ultraviolet spectrometer experiment: Implications of CO2+, CO and O airglow. J. Geophys. Res. 77, 5460.Google Scholar
Stewart, A.I.F., Barth, C.A., 1979. Ultraviolet night airglow of Venus. Science 205, 5962.Google Scholar
Stewart, A.I.F., et al., 1980. Morphology of the Venus ultraviolet night airglow. J. Geophys. Res. 85(A13), 78617870.Google Scholar
Stewart, A.I.F., et al., 1992. Atomic oxygen in the Martian thermosphere. J. Geophys. Res. 97, 91102.Google Scholar
Stiepen, A., et al., 2013. Venus nitric oxide nightglow mapping from SPICAV nadir observations. Icarus 226(1), 428436.Google Scholar
Stiepen, A., et al., 2015. Ten years of Martian nitric oxide nightglow observations. Geophys. Res. Lett. 42, 720725.Google Scholar
Stiepen, A., et al., 2017. Nitric oxide nightglow and Martian mesospheric circulation from MAVEN/IUVS observations and LMD-MGCM predictions. J. Geophys. Res. 122(A5), 57825797.Google Scholar
Strobel, D.F., 2008. N2 escape rates from Pluto’s atmosphere. Icarus 193, 612619.Google Scholar
Strobel, D.F., Summers, M.E., 1995. Triton’s upper atmosphere and ionosphere. In: Cruikshank, D.P. (Ed.), Neptune and Triton, University of Arizona Press, Tucson, pp. 11071150.Google Scholar
Strobel, D.F., Zhu, X., 2017. Comparative planetary nitrogen atmospheres: Density and thermal structures of Pluto and Triton. Icarus 291, 5564.Google Scholar
Strobel, D.F., Cheng, A.F., Summers, M.E., Strickland, D.J., 1990. Magnetospheric interaction with Triton’s ionosphere. Geophys. Res. Lett. 17, 16611664.Google Scholar
Strobel, D.F., Summers, M.E., Zhu, X., 1992. Titan’s upper atmosphere: Structure and ultraviolet emissions. Icarus 100, 512526.Google Scholar
Strobel, D.F., Zhu, X., Summers, M.E., Stevens, M.H., 1996. On the vertical structure of Pluto’s atmosphere. Icarus 120, 266289.Google Scholar
Summers, M.E., Strobel, D.F., 1991. Triton’s atmosphere: A source of N and H for Neptune’s magnetosphere. Geophys. Res. Lett. 18, 23092312.Google Scholar
Summers, M.E., Strobel, D.F., Gladstone, G.R., 1997. Chemical models of Pluto’s atmosphere. In: Stern, S., Tholen, D. (Eds.), Pluto and Charon, University of Arizona Press, Tucson, pp. 391434.Google Scholar
Sung, K., Varanasi, P., 2005. CO2-broadened half-widths and CO2-induced line shifts of 12C16O relevant to the atmospheric spectra of Venus and Mars. J. Quant. Spec. Rad. Transfer 91, 319332.Google Scholar
Surkov, Yu.A., et al., 1983. Elemental composition of Venus’ rocks. Cosmic Res. 21, 308315.Google Scholar
Surkov, Yu.A., et al., 1987. Chemical composition of the cloud aerosol of Venus measured by the Vega 1 mass spectrometer. Cosmic Res. 25, 744750.Google Scholar
Sylvestre, M., et al., 2018. Seasonal evolution of C2N2, C3H4, and C4H2 abundances in Titan’s lower stratosphere. Astron. Astrophys. 609, A64.Google Scholar
Sze, N.D., McElroy, M.B., 1975. Some problems in Venus aeronomy. Planet. Space Sci. 23, 763780.Google Scholar
Takacs, P.Z. et al., 1980. Mariner 10 observations of hydrogen Lyman alpha emission from the Venus exosphere: Evidence of complex structure. Planet. Space Sci. 28, 687701.Google Scholar
Tan, S.P., Kargel, J.S., 2018. Solid-phase equilibria on Pluto’s surface. MNRAS 474, 42544263.Google Scholar
Tanguy, L., Bézard, B., Marten, A., Gautier, D., Gérard, E., Paubert, G., Lecacheux, A., 1990. The stratospheric profile of HCN on Titan from millimeter observations. Icarus 85, 4357.Google Scholar
Taylor, F.W., Crisp, D., Bezard, B., 1997. Near-infrared sounding of the lower atmosphere of Venus. In: Bougher, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II. University of Arizona Press, Tucson, pp. 325352.Google Scholar
Taylor, H.A., Brinton, H.C., Bauer, S.J., Hartle, R.E., Cloutier, P.A., Daniell, R.E., 1980. Global observations of the composition and dynamics of the ionosphere of Venus: Implications for the solar wind interaction. J. Geophys. Res. 85, 77657777.Google Scholar
Teanby, N.A., et al., 2009. Titan’s stratospheric C2N2, C3H4, and C4H2 abundances from Cassini/CIRS far-infrared spectra. Icarus 202, 620631.Google Scholar
Teanby, N.A., et al., 2013. Constraints on Titan’s middle atmosphere ammonia from Hershel/SPIRE submillimeter spectra. Planet. Space Sci. 75, 136147.Google Scholar
Tellmann, S., Pätzold, M., Häusler, B., Bird, M.K., Tyler, G.L., 2009. Structure of the Venus neutral atmosphere as observed by the Radio Science experiment VeRa on Venus Express. J. Geophys. Res. 114, E00B36.Google Scholar
Teolis, B.D., et al., 2015. A revised sensitivity model for Cassini INMS: Results at Titan. Space Sci. Rev. 190, 4784.Google Scholar
Theis, R.F., Brace, L.H., Mayr, H.G., 1980. Empirical models of the electron temperature and density in the Venus ionosphere. J. Geophys. Res. 85, 77877794.Google Scholar
Toigo, A.D., et al., 2013. High spatial and temporal resolution sampling of Martian gas abundances from CRISM spectra. J. Geophys. Res. 118E, 89104.Google Scholar
Tokunaga, A.T., et al., 2008. Silicon immersion grating spectrograph design for the NASA Infrared Telescope Facility. Proc. SPIE 7014, 70146A.Google Scholar
Tomasko, M.G., et al., 2005. Rain, winds and haze during the Huygens probe’s descent to Titan’s surface. Nature 438, 765778.Google Scholar
Tomasko, M.G., et al., 2008a. A model of Titan’s aerosols based on measurements made inside the atmosphere. Planet. Space Sci. 56, 669707.Google Scholar
Tomasko, M.G., et al., 2008b. Heat balance in Titan’s atmosphere. Planet. Space Sci. 56, 648659.Google Scholar
Toth, R.A., et al., 2008. Spectroscopic database of CO2 line parameters: 4300–7000 cm−1. J. Quan. Spec. Rad. Transfer 109, 906921.Google Scholar
Toublanc, D., Parisot, J.P., Brillet, J., Gautier, D., Raulin, F., McKay, C.P., 1995. Photochemical modeling of Titan’s atmosphere. Icarus 113, 226.Google Scholar
Trafton, L.M., Stern, S.A., 1996. Rotationally resolved spectral studies of Pluto from 2500 to 4800 °A obtained with HST. Astron. J. 112, 12121224.Google Scholar
Trafton, L.M., Hunten, D.M., Zahnle, K.J., McNutt, R.L. Jr., 1997. Escape processes at Pluto and Charon. In: Pluto and Charon, Stern, S.A., Tholen, D.J. (Eds.), University of Arizona Press, Tucson, pp. 475522 .Google Scholar
Trainer, M.G., Tolbert, M.A., McKay, C.P., et al., 2011. Limits on the trapping of atmospheric CH4 in Martian polar ice analogs. Icarus 208, 192197.Google Scholar
Traub, W.A., Carleton, N.P., Connes, P., et al., 1979. The latitude variation of O2 dayglow and O3 abundance on Mars. Astrophys. J. 229, 846850.Google Scholar
Trauger, J.T., Lunine, J.I., 1983. Spectroscopy of molecular oxygen in the atmospheres of Venus and Mars. Icarus 55, 272281.Google Scholar
Trokhimovsky, A., Fedorova, A., Korablev, O., Montmessin, F., Bertaux, J.L., Rodin, A., Smith, M.D., 2015. Mars’ water vapor mapping by the SPICAM IR spectrometer: Five Martian years of observations. Icarus 251, 5064.Google Scholar
Tryka, K.A., Brown, R.H., Anicich, V., Cruikshank, D.P., Owen, T.C., 1993. Spectroscopic determination of the phase composition and temperature of nitrogen ice on Triton. Science 261, 751754.Google Scholar
Tryka, K.A., Brown, R.H., Cruikshank, D.P., et al., 1994. Temperature of nitrogen ice on Pluto and its implications for flux measurements. Icarus 112, 513527.Google Scholar
Tsang, C.C.C., Wilson, C.F., Barstow, J.K., Irwin, P.G.J., Taylor, F.W., McGouldrick, K., Piccioni, G., Drossart, P., Svedhem, H., 2010. Correlations between cloud thickness and sub-cloud water abundance on Venus, Geophys. Res. Lett., 37, L02202.Google Scholar
Tyler, G.L., et al., 1989. Voyager radio science observations of Neptune and Triton. Science 246, 14661473.Google Scholar
Upadhyay, H.O., Singh, R.P., Singh, R.N., 1994. Cosmic ray ionization of lower Venus atmosphere. Earth Moon Planets 65, 8994.Google Scholar
Ustinov, E.A., 1977. Inverse problem of multiple scattering theory and interpretation of measurements of radiation scattered in the Venus cloud layer. Cosmic Res. 15, 768775.Google Scholar
Vandaele, A.C., et al., 2008. Composition of the Venus mesosphere measured by solar occultation at infrared on board Venus Express. J. Geophys. Res. 113, E00B23.Google Scholar
Vandaele, A.C., Mahieux, A., Robert, S., Drummond, R., Wilquet, V., Bertaux, J.L., 2015. Carbon monoxide short term variability observed on Venus with SOIR/VEX. Planet. Space Sci. 113–114, 237255.Google Scholar
Vandaele, A.C., et al., 2017. Sulfur dioxide in the Venus atmosphere. II. Spatial and temporal variability. Icarus 295, 115.Google Scholar
Van der Hulst, H.C., 1980. Multiple Light Scattering: Tables, Formulas, and Applications. Academic Press, New York.Google Scholar
Van der Hulst, H.C., 1981. Light Scattering by Small Particles. Dover, New York.Google Scholar
Vervack, R.J. Jr., 1997. Titan’s upper atmospheric structure derived from Voyager ultraviolet spectrometer observations. PhD dissertation, University of Arizona.Google Scholar
Vervack, R.J., Sandel, B.R., Strobel, D.F., 2004. New perspectives on Titan’s upper atmosphere from a reanalysis of the Voyager 1 UVS solar occultations. Icarus 170, 91112.Google Scholar
Villanueva, G.L., et al., 2009. A sensitive search for deuterated water in comet 8P/Tuttle. Astrophys. J. Lett. 690, L5L9.Google Scholar
Villanueva, G.I., et al., 2013. A sensitive search for organics (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), nitrogen compounds (N2O, NH3, HCN) and chlorine species (HCl, CH3Cl) on Mars using ground-based high-resolution infrared spectroscopy. Icarus 223, 1127.Google Scholar
Villanueva, G.L., et al., 2015. Strong water isotopic anomalies in the Martian atmosphere: Probing current and ancient reservoirs. Science 348, 218221.Google Scholar
Vinatier, S., Bezard, B., Nixon, C.A., 2007. The Titan 14N/15N and 12C/13C isotopic ratios in HCN from Cassini/CIRS. Icarus 191, 712721.Google Scholar
Vinatier, S., et al., 2010. Analysis of Cassini/CIRS limb spectra of Titan acquired during the nominal mission. I. Hydrocarbons, nitriles and CO2 vertical mixing ratio profiles. Icarus 205, 559570.Google Scholar
Vinatier, S., et al., 2012. Optical constants of Titan’s stratospheric aerosols in the 70–1500 cm−1 spectral range constrained by Cassini/CIRS observations. Icarus 219, 512.Google Scholar
Vinatier, S., et al., 2015. Seasonal variations in Titan’s middle atmosphere during the northern spring derived from Cassini/CIRS observations. Icarus 250, 95115.Google Scholar
Vuitton, V., Yelle, R.V., McEwan, M.J., 2007. Ion chemistry and N-containing molecules in Titan’s upper atmosphere. Icarus 191, 722742.Google Scholar
Vuitton, V., Yelle, R.V., Cui, J., 2008. Formation and distribution of benzene on Titan. J. Geophys. Res. 113, E05007.Google Scholar
Vuitton, V., et al., 2009. Negative ion chemistry in Titan’s upper atmosphere. Planet. Space Sci. 57, 15581572.Google Scholar
Von Zahn, U., Fricke, K.H., Hunten, D.M., Krankovsky, D., Mauersberger, K, Nier, A.O., 1980. The upper atmosphere of Venus during morning conditions. J. Geophys. Res. 85, 78297840.Google Scholar
von Zahn, U., Kumar, S., Niemann, H., Prinn, R., 1983. Composition of the Venus atmosphere. In: Venus, Hunten, D.M., Colin, L., Donahue, T.M., Moroz, V.I. (Eds.), University of Arizona Press, Tucson, pp. 299430.Google Scholar
Waenke, H., Dreibus, G., 1988. Chemical composition and accretion history of terrestrial planets. Philos. Trans. R. Soc. Lonon Ser. A 325, 545557.Google Scholar
Wahlund, J.E., et al., 2009. On the amount of heavy molecular ions in Titan’s ionosphere. Planet. Space Sci., 57, 18571865.Google Scholar
Watson, A.J., Donahue, T.M., Walker, J.C.G., 1981. The dynamics of a rapidly escaping atmosphere: Applications to the evolution of Earth and Venus. Icarus 48, 150166.Google Scholar
Weaver, H.A., Feldman, P.D., Combi, M.R., Krasnopolsky, V.A., Lisse, C.M., Shemansky, D.E., 2002. A search for argon and O VI in three comets using the far Ultraviolet Spectroscopic Explorer. Astrophys. J. Lett. 576, L95L98.Google Scholar
Webster, C.R., et al., 2013. Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere. Science 341, 260263.Google Scholar
Webster, C.R., et al., 2015. Mars methane detection and variability at Gale crater. Science 347, 415417.Google Scholar
Webster, C.R., et al., 2018. Background levels of methane in Mars’ atmosphere show strong seasonal variations. Science 360, 10931096.Google Scholar
Westlake, J.H., et al., 2012. Titan’s ionospheric composition and structure: Photochemical modeling of Cassini INMS data. J. Geophys. Res. 117, E01003.Google Scholar
Westlake, J.H., et al., 2014a. The role of ion-molecule reactions in the growth of heavy ions in Titan’s ionosphere. J. Geophys. Res. 119A, 59515963.Google Scholar
Westlake, J.H., et al., 2014b. Observed decline in Titan’s thermospheric methane due to solar cycle drivers. J. Geophys. Res. 119A, 85868599.Google Scholar
Wiens, R.C., Bochshler, P., Burnett, D.S., Wimmer-Schweingruber, R.F., 2004. Solar and solar-wind isotopic compositions. Earth Planet. Sci. Lett. 222, 697712.Google Scholar
Willacy, K., Allen, M., Yung, Y.L., 2016. A new astrobiological model of the atmosphere of Titan. Astrophys. J. 829, 7990.Google Scholar
Wilquet, V., Fedorova, A., Montmessin, F., Drummond, R., Mahieux, A., Vandaele, A.C., Villard, E., Korablev, O., Bertaux, J.L., 2009. Preliminary characterization of the upper haze by SPICAV/SOIR solar occultation in UV to mid-IR onboard Venus Express. J. Geophys. Res. 114, E00B42.Google Scholar
Wilson, E.H., Atreya, S.K., 2004. Current state of modeling the photochemistry of Titan’s mutually dependent atmosphere and ionosphere. J. Geophys. Res. 109, E06002.Google Scholar
Wilson, W.I., Klein, M.J., Kakar, R.K., Gulkis, S., Olsen, E.T., Ho, P.T.P., 1981. Venus. I. Carbon monoxide distribution and molecular line searches. Icarus 45, 624637.Google Scholar
Wong, A.S., Morgan, C.G., Yung, Y.L., Owen, T.C., 2002. Evolution of CO on Titan. Icarus 155, 382392.Google Scholar
Wong, M.H., et al., 2013. Isotopes of nitrogen on Mars: Atmospheric measurements by Curiosity’s mass spectrometer. Geophys. Res. Lett. 40, 60336037.Google Scholar
Wong, M.L., et al., 2017. The photochemistry of Pluto’s atmosphere as illuminated by New Horizons. Icarus 287, 110115.Google Scholar
Woods, T.N., et al., 1996. Validation of the UARS solar ultraviolet irradiances: Comparison with the ATLAS 1 and 2 measurements. J. Geophys. Res. 101, 95419569.Google Scholar
Wraight, P.C., 1982. Association of atomic oxygen and airglow excitation mechanisms. Planet. Space Sci. 30, 251259.Google Scholar
Wu, C.Y., Phillips, E., Lee, L.C., Judge, D.L., 1978. Atomic carbon emissions from photodissociation of CO2. J. Geophys. Res. 83, 48694874.Google Scholar
Yelle, R.V., Lunine, J.I., 1989. Evidence for a molecule heavier than methane in the atmosphere of Pluto. Nature 339, 288290 .Google Scholar
Yelle, R.V., Lunine, J.L., Hunten, D.M., 1991. Energy balance and plume dynamics in Triton’s lower atmosphere. Icarus 89, 347357.Google Scholar
Yelle, R.V., Lunine, J.L., Pollack, J.B., Brown, R.H., 1995. Lower atmospheric structure and surface-atmosphere interaction on Triton. In: Neptune and Triton, Cruikshank, D.P. (Ed.), University of Arizona Press, Tucson, pp. 10311106.Google Scholar
Yelle, R.V., Borggren, N., de la Haye, V., Kasprzak, W.T., Niemann, H.B., Mueller-Wodarg, I., Waite, J.H. Jr., 2006. The vertical structure of Titan’s upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements. Icarus 182, 567576.Google Scholar
Young, A.T., 1973. Are the clouds of Venus sulfuric acid? Icarus 18, 564582.Google Scholar
Young, E.F., et al., 2008. Vertical structure in Pluto’s atmosphere from the 2006 June 12 stellar occultation. Astron. J. 136, 17571769.Google Scholar
Young, L.A., 2013. Pluto’s seasons: New predictions for New Horizons. Astrophys. J. Lett. 766, L22.Google Scholar
Young, L.A., Elliot, J.L., Tokunaga, A., de Bergh, C., Owen, T., 1997. Detection of gaseous methane on Pluto. Icarus 127, 258262.Google Scholar
Young, L.A., et al., 2017. Structure and composition of Pluto’s atmosphere from the New Horizons solar ultraviolet occultation. Icarus 300, 174199.Google Scholar
Young, L.D.G., 1972. High-resolution spectra of Venus. Icarus 17, 632658.Google Scholar
Yung, Y.L., 1987. An update of nitrile photochemistry on Titan. Icarus 72, 468472.Google Scholar
Yung, Y.L., DeMore, W.B., 1982. Photochemistry of the stratosphere of Venus: Implications for atmospheric evolution. Icarus 51, 199247.Google Scholar
Yung, Y.L., DeMore, W.B., 1999. Photochemistry of Planetary Atmospheres. Oxford University Press, Oxford, UK.Google Scholar
Yung, Y.L., Lyons, J.R., 1990. Triton: Topside ionosphere and nitrogen escape. Geophys. Res. Lett. 17, 17171720.Google Scholar
Yung, Y.L., Allen, M., Pinto, J.P., 1984. Photochemistry of the atmosphere of Titan: Comparison between model and observations. Astrophys. J. Suppl. 55, 465506.Google Scholar
Yung, Y.L., et al., 2009. Evidence for carbonyl sulfide (OCS) conversion to CO in the lower atmosphere of Venus. J. Geophys. Res. 114, E00B34.Google Scholar
Zahnle, K., Kasting, J.F., Pollack, J.B., 1990. Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape. Icarus 84, 502527.Google Scholar
Zahnle, K., Haberle, R.M., Catling, D.C., Kasting, J.F., 2008. Photochemical instability of the ancient Martian atmosphere. J. Geophys. Res. 113, E11004.Google Scholar
Zalucha, X., Zhu, A.M., Gulbis, A .A .S., Strobel, D.F., Elliot, J.L., 2011. An analysis of Pluto occultation light curves using an atmospheric radiative-conductive model. Icarus 211, 804818.Google Scholar
Zasova, L.V., Krasnopolsky, V.A., Moroz, V.I., 1981. Vertical distribution of SO2 in the upper cloud layer of Venus and origin of UV absorption. Adv. Space Res. 1, 1316.Google Scholar
Zasova, L.V., Moroz, V.I., Esposito, L.W., Na, C.Y., 1993. SO2 in the middle atmosphere of Venus: IR measurements from Venera 15 and comparison to UV data. Icarus 105, 92109.Google Scholar
Zasova, L.V., Moroz, V.I., Formisano, V., Ignatiev, N.I., Khatuntsev, I.V., 2004. Infrared spectrometry of Venus: IR Fourier spectrometer on Venera 15 as a precursor of PFS for Venus Express. Adv. Space Res. 34, 16551667.Google Scholar
Zasova, L.V., Moroz, V.I., Linkin, V.M., Khatountsev, I.A., Maiorov, B.S., 2006. Structure of the Venusian atmosphere from surface up to 100 km. Cosmic Res. 44, 364383.Google Scholar
Zhang, M.H.G., Luhmann, J.G., Kliore, A.J., 1990. An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods. J. Geophys. Res. 95, 1709517102.Google Scholar
Zhang, X., Liang, M.C., Mills, F.P., Belyaev, D.A., Yung, Y.L., 2012. Sulfur chemistry in the middle atmosphere of Venus. Icarus 217, 714739.Google Scholar
Zhang, X., Strobel, D.F., Imanaka, H., 2017. Haze heats Pluto’s atmosphere yet explains its cold temperature. Nature 551, 352355.Google Scholar
Zhu, X., Strobel, D.F., Erwin, J.T., 2014. The density and thermal structure of Pluto’s atmosphere and associated escape processes and rates. Icarus 228, 301314.Google Scholar
Zuber, M.T., et al., 1998. Observations of the north polar cap of Mars from the Mars orbiter laser altimeter. Science 282, 20532060.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Vladimir A. Krasnopolsky, Catholic University of America, Washington DC
  • Book: Spectroscopy and Photochemistry of Planetary Atmospheres and Ionospheres
  • Online publication: 09 February 2019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Vladimir A. Krasnopolsky, Catholic University of America, Washington DC
  • Book: Spectroscopy and Photochemistry of Planetary Atmospheres and Ionospheres
  • Online publication: 09 February 2019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Vladimir A. Krasnopolsky, Catholic University of America, Washington DC
  • Book: Spectroscopy and Photochemistry of Planetary Atmospheres and Ionospheres
  • Online publication: 09 February 2019
Available formats
×