Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T10:31:03.666Z Has data issue: false hasContentIssue false

20 - Approaches to representational momentum: theories and models

from Part IV - Spatial phenomena: forward shift effects

Published online by Cambridge University Press:  05 October 2010

Romi Nijhawan
Affiliation:
University of Sussex
Beena Khurana
Affiliation:
University of Sussex
Get access

Summary

Summary

Memory for the final position of a target is usually displaced in the direction of target motion, a finding referred to as representational momentum. There are several different approaches to explaining representational momentum, and these approaches range from low-level perceptual mechanisms (e.g., oculomotor behavior) to high-level cognitive mechanisms (e.g., internalization of the effects of momentum). These approaches are overviewed, and a classification system involving internalization theories, belief-based theories, neointernalization theories, low-level theories, and network models is proposed. The extent to which each approach is consistent with the wide range of existent empirical data regarding representational momentum is noted, and possible directions of and considerations for a more unified theory of displacement are addressed.

Memory for the final position of a previously viewed target is often displaced in the direction of target motion. This forward displacement has been referred to as representational momentum (Freyd & Finke 1984) and is influenced by numerous variables (Hubbard 1995b, 2005). Although initial studies of representational momentum appeared consistent with the hypothesis that observers internalize or incorporate the principle of momentum into the representation of the target, subsequent studies reported displacement inconsistent with such a literal internalization or incorporation of momentum. For example, variables other than implied momentum such as conceptual knowledge about target identity (Reed & Vinson 1996), expectations regarding future target motion (Verfaillie & d'Ydewalle 1991; Johnston & Jones 2006), attributions about the source of target motion (Hubbard & Ruppel 2002; Hubbard & Favretto 2003), and whether observers visually track the target (Kerzel 2000; Kerzel et al. 2001) influence displacement.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertamini, M. (2002). Representational momentum, internalized dynamics, and perceptual adaptation. Vis Cogn 9: 195–216.CrossRefGoogle Scholar
Bonnet, C., Le Gall, M., & Lorenceau, J. (1984). Visual motion aftereffects: adaptation and conditioned processes. In L., Spillman & B. R., Wooten (eds.), Sensory Experience, Adaptation, and Perception. Hillsdale, NJ: Erlbaum.Google Scholar
Brehaut, J. C., & Tipper, S. P. (1996). Representational momentum and memory for luminance. J Exp Psychol Hum Percept Perform 22: 480–501.CrossRefGoogle ScholarPubMed
Brouwer, A. M., Franz, V. H., & Thornton, I. M. (2004). Representational momentum in perception and grasping: translating versus transforming object. J Vis 4: 575–584.CrossRefGoogle Scholar
Conners, F. A., Wyatt, B. S., & Dulaney, C. L. (1998). Cognitive representation of motion in individuals with mental retardation. Am J Ment Retard 102: 438–450.2.0.CO;2>CrossRefGoogle ScholarPubMed
Cooper, L. A., & Munger, M. P. (1993). Extrapolations and remembering positions along cognitive trajectories: uses and limitations of analogies to physical momentum. In N., Eilen, R., McCarthy, & B., Brewer (eds.), Spatial Representation: Problems in Philosophy and Psychology (112–131). Cambridge, MA: Blackwell.Google Scholar
Courtney, J. R., & Hubbard, T. L. (2008). Spatial memory and explicit knowledge: an effect of instruction on representational momentum. Q J Exp Psychol 61: 1778–1784.CrossRefGoogle ScholarPubMed
Dawson, M. R. W. (1998). Understanding Cognitive Science. Cambridge, MA: Blackwell.Google Scholar
Desmurget, M., & Grafton, S. (2003). Feedback or feedforward control: end of a dichotomy. In S. H., Johnson-Frey (ed.), Taking Action: Cognitive Neuroscience Perspectives on Intentional Acts (289–338). Cambridge, MA: MIT Press.Google Scholar
Erlhagen, W. (2003). Internal models for visual perception. Biol Cybern 88: 409–417.CrossRefGoogle ScholarPubMed
Erlhagen, W., & Jancke, D. (1999). Motion waves in primary visual cortex as a neural correlate for the perception of moving objects. Abstracts of the Society Neuroscience 25: 679.Google Scholar
Erlhagen, W., & Jancke, D. (2004). The role of action plans and other cognitive factors in motion extrapolation: a modeling study. Vis Cogn 11: 315–340.CrossRefGoogle Scholar
Faust, M. (1990). Representational Momentum: A Dual Process Perspective. Unpublished doctoral dissertation, University of Oregon, Eugene, OR.Google Scholar
Finke, R. A., & Freyd, J. J. (1985). Transformations of visual memory induced by implied motions of pattern elements. J Exp Psychol Learn Mem Cogn 11: 780–794.CrossRefGoogle ScholarPubMed
Finke, R. A., & Freyd, J. J. (1989). Mental extrapolation and cognitive penetrability: reply to Ranney and proposals for evaluative criteria. J Exp Psychol Gen 118: 403–408.CrossRefGoogle ScholarPubMed
Finke, R. A., Freyd, J. J., & Shyi, G. C. W. (1986). Implied velocity and acceleration induce transformations of visual memory. J Exp Psychol Gen 115: 175–188.CrossRefGoogle ScholarPubMed
Finke, R. A., & Shyi, G. C. W. (1988). Mental extrapolation and representational momentum for complex implied motions. J Exp Psychol Learn Mem Cogn 14: 112–120.CrossRefGoogle ScholarPubMed
Freyd, J. J. (1983). The mental representation of movement when static stimuli are viewed. Percept Psychophys 33: 575–581.CrossRefGoogle ScholarPubMed
Freyd, J. J. (1987). Dynamic mental representations. Psychol Rev 94: 427–438.CrossRefGoogle ScholarPubMed
Freyd, J. J. (1992). Dynamic representations guiding adaptive behavior. In F., Macar, V., Pouthas, & W. J., Friedman (eds.), Time, Action, and Cognition: Towards Bridging the Gap (309–323). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Freyd, J. J. (1993). Five hunches about perceptual processes and dynamic representations. In D., Meyer & S., Kornblum (eds.), Attention and Performance XIV: Synergies in Experimental Psychology, Artificial Intelligence, and Cognitive Neuroscience (99–119). Cambridge, MA: MIT Press.Google Scholar
Freyd, J. J., & Finke, R. A. (1984). Representational momentum. J Exp Psychol Learn Mem Cogn 10: 126–132.CrossRefGoogle Scholar
Freyd, J. J., & Finke, R. A. (1985). A velocity effect for representational momentum. Bull Psychon Soc 23: 443–446.CrossRefGoogle Scholar
Freyd, J. J., & Johnson, J. Q. (1987). Probing the time course of representational momentum. J Exp Psychol Learn Mem Cogn 13: 259–269.CrossRefGoogle ScholarPubMed
Freyd, J. J., & Jones, K. T. (1994). Representational momentum for a spiral path. J Exp Psychol Learn Mem Cogn 20: 968–976.CrossRefGoogle ScholarPubMed
Freyd, J. J., Kelly, M. H., & DeKay, M. L. (1990). Representational momentum in memory for pitch. J Exp Psychol Learn Mem Cogn 16: 1107–1117.CrossRefGoogle ScholarPubMed
Freyd, J. J., Pantzer, T. M., & Cheng, J. L. (1988). Representing statics as forces in equilibrium. J Exp Psychol Gen 117: 395–407.CrossRefGoogle ScholarPubMed
Futterweit, L. R., & Beilin, H. (1994). Recognition memory for movement in photographs: a developmental study. J Exp Child Psychol 57: 163–179.CrossRefGoogle ScholarPubMed
Getzmann, S., Lewald, J., & Guski, R. (2004). Representational momentum in spatial hearing. Perception 33: 591–599.CrossRefGoogle ScholarPubMed
Halpern, A. R., & Kelly, M. H. (1993). Memory biases in left versus right implied motion. J Exp Psychol Learn Mem Cogn 19: 471–484.CrossRefGoogle ScholarPubMed
Hayes, A. E., & Freyd, J. J. (2002). Representational momentum when attention is divided. Vis Cogn 9: 8–27.CrossRefGoogle Scholar
Hubbard, T. L. (1990). Cognitive representation of linear motion: possible direction and gravity effects in judged displacement. Memory & Cognition 18: 299–309.CrossRefGoogle ScholarPubMed
Hubbard, T. L. (1993a). Auditory representational momentum: musical schemata and modularity. Bull Psychon Soc 31: 201–204.CrossRefGoogle Scholar
Hubbard, T. L. (1993b). The effects of context on visual representational momentum. Memory & Cognition 21: 103–114.CrossRefGoogle ScholarPubMed
Hubbard, T. L. (1994). Judged displacement: a modular process? Am J Psychol 107: 359–373.CrossRefGoogle Scholar
Hubbard, T. L. (1995a). Cognitive representation of motion: evidence for representational friction and gravity analogues. J Exp Psychol Learn Mem Cogn 21: 241–254.CrossRefGoogle Scholar
Hubbard, T. L. (1995b). Environmental invariants in the representation of motion: implied dynamics and representational momentum, gravity, friction, and centripetal force. Psychon Bull Rev 2: 322–338.CrossRefGoogle ScholarPubMed
Hubbard, T. L. (1996). Representational momentum, centripetal force, and curvilinear impetus. J Exp Psychol Learn Mem Cogn 22: 1049–1060.CrossRefGoogle ScholarPubMed
Hubbard, T. L. (1997). Target size and displacement along the axis of implied gravitational attraction: effects of implied weight and evidence of representational gravity. J Exp Psychol Learn Mem Cogn 23: 1484–1493.CrossRefGoogle Scholar
Hubbard, T. L. (1998a). Representational momentum and other displacements in memory as evidence for nonconscious knowledge of physical principles. In S., Hameroff, A., Kaszniak, & A., Scott (eds.), Towards a Science of Consciousness II: The Second Tucson Discussions and Debates (505–512). Cambridge, MA: MIT Press.Google Scholar
Hubbard, T. L. (1998b). Some effects of representational friction, target size, and memory averaging on memory for vertically moving targets. Can J Exp Psychol 52: 44–49.CrossRefGoogle ScholarPubMed
Hubbard, T. L. (1999). How consequences of physical principles influence mental representation: the environmental invariants hypothesis. In P. R., Killeen & W. R., Uttal (eds.), Fechner Day 99: The End of 20th Century Psychophysics. Proceedings of the 15th Annual Meeting of the International Society for Psychophysics (274–279). Tempe, AZ: The International Society for Psychophysics.Google Scholar
Hubbard, T. L. (2004). The perception of causality: insights from Michotte's launching effect, naive impetus theory, and representational momentum. In A. M., Oliveira, M.P., Teixeira, G. F., Borges, & M. J., Ferro (eds.), Fechner Day 2004 (116–121). Coimbra, Portugal: The International Society for Psychophysics.Google Scholar
Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: a review of the findings. Psychon Bull Rev 12: 822–851.CrossRefGoogle ScholarPubMed
Hubbard, T. L. (2006a). Bridging the gap: possible roles and contributions of representational momentum. Psicologica 27: 1–34.Google Scholar
Hubbard, T. L. (2006b). Computational theory and cognition in representational momentum and related types of displacement: a reply to Kerzel. Psychon Bull Rev 13: 174–177.CrossRefGoogle Scholar
Hubbard, T. L., & Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion. Percept Psychophys 44: 211–221.CrossRefGoogle ScholarPubMed
Hubbard, T. L., Blessum, J. A., & Ruppel, S. E. (2001). Representational momentum and Michotte's (1946/1963) “Launching Effect” paradigm. J Exp Psychol Learn Mem Cogn 27: 294–301.CrossRefGoogle ScholarPubMed
Hubbard, T. L., & Courtney, J. R. (2006). Evidence for a separation of perceptual and cognitive dynamics. In L., Albertazzi (ed.), Visual Depictive Thought (71–97). New York: Benjamins Publishing Company.CrossRefGoogle Scholar
Hubbard, T. L., & Favretto, A. (2003). Explorations of Michotte's “Tool Effect”: evidence from representational momentum. Psychol Res 67: 134–152.Google Scholar
Hubbard, T. L., Kumar, A. M., & Carp, C. L. (2009). Effects of spatial cueing on representational momentum. J Exp Psychol Learn Mem Cogn. 35: 666–677.CrossRefGoogle ScholarPubMed
Hubbard, T. L., Matzenbacher, D. L., & Davis, S. E. (1999). Representational momentum in children: dynamic information and analogue representation. Percept Mot Skills 88: 910–916.CrossRefGoogle ScholarPubMed
Hubbard, T. L., & Ruppel, S. E. (1999). Representational momentum and landmark attraction effects. Can J Exp Psychol 53: 242–256.CrossRefGoogle Scholar
Hubbard, T. L., & Ruppel, S. E. (2002). A possible role of naive impetus in Michotte's “Launching Effect:” evidence from representational momentum. Vis Cogn 9: 153–176.CrossRefGoogle Scholar
Jarrett, C. B., Phillips, M., Parker, A., & Senior, C. (2002). Implicit motion perception in schizotypy and schizophrenia: a representational momentum study. Cogn Neuropsychiatry 7: 1–14.CrossRefGoogle ScholarPubMed
Johnston, H., & Jones, M. R. (2006). Higher-order pattern structure influences auditory representational momentum. J Exp Psychol Hum Percept Perform 32: 2–17.CrossRefGoogle ScholarPubMed
Joordens, S., Spalek, T. M., Razmy, S., & van Duijn, M. (2004). A clockwork orange: compensation opposing momentum in memory for location. Memory & Cognition 32: 39–50.CrossRefGoogle ScholarPubMed
Jordan, J. S. (1998). Recasting Dewey's critique of the reflex-arc concept via a theory of anticipatory consciousness: implications for theories of perception. New Ideas Psychol 16: 165–187.CrossRefGoogle Scholar
Jordan, J. S., & Hunsinger, M. (2008). Learned patterns of action-effect extrapolation contribute to the spatial displacement of continuously moving stimuli. J Exp Psychol Hum Percept Perform 34(1): 113–124.CrossRefGoogle Scholar
Jordan, J. S., & Knoblich, G. (2004). Spatial perception and control. Psychon Bull Rev 11: 54–59.CrossRefGoogle ScholarPubMed
Jordan, J. S., Stork, S., Knuf, L., Kerzel, D., & Müsseler, J. (2002). Action planning affects spatial localization. In W., Prinz & B., Hommel (eds.), Attention and Performance XIX: Common Mechanisms in Perception and Action. (158–176). New York: Oxford University Press.Google Scholar
Kaiser, M. K., Proffitt, D. R., & Anderson, K. (1985). Judgments of natural and anomalous trajectories in the presence and absence of motion. J Exp Psychol Learn Mem Cognition 11: 795–803.CrossRefGoogle Scholar
Kaiser, M. K., Proffitt, D. R., Whelan, S. M., & Hecht, H. (1992). Influence of animation on dynamical judgments. J Exp Psychol Hum Percept Perform 18: 669–690.CrossRefGoogle ScholarPubMed
Kelly, M. H., & Freyd, J. J. (1987). Explorations of representational momentum. Cogn Psychol 19: 369–401.CrossRefGoogle ScholarPubMed
Kerzel, D. (2000). Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Res 40: 3703–3715.CrossRefGoogle ScholarPubMed
Kerzel, D. (2002a). A matter of design: no representational momentum without predictability. Vis Cogn 9: 66–80.CrossRefGoogle Scholar
Kerzel, D. (2002b). Attention shifts and memory averaging. Q J Exp Psychol 55(A): 425–443.CrossRefGoogle ScholarPubMed
Kerzel, D. (2002c). The locus of “memory displacement” is at least partially perceptual: effects of velocity, expectation, friction, memory averaging, and weight. Percept Psychophys 64: 680–692.CrossRefGoogle Scholar
Kerzel, D. (2003a). Attention maintains mental extrapolation of target position: irrelevant distractors eliminate forward displacement after implied motion. Cognition 88: 109–131.CrossRefGoogle ScholarPubMed
Kerzel, D. (2003b). Centripetal force draws the eyes, not memory of the target, toward the center. J Exp Psychol Learn Mem Cogn 29: 458–466.CrossRefGoogle Scholar
Kerzel, D. (2003c). Mental extrapolation of target position is strongest with weak motion signals and motor responses. Vision Res 43: 2623–2635.CrossRefGoogle ScholarPubMed
Kerzel, D. (2005). Representational momentum beyond internalized physics. Curr Dir Psychol Sci 14: 180–184.CrossRefGoogle Scholar
Kerzel, D. (2006). Why eye movements and perceptual factors have to be controlled in studies on “representational momentum.”Psychon Bull Rev 13: 166–173.CrossRefGoogle ScholarPubMed
Kerzel, D., & Gegenfurtner, K. R. (2003). Neuronal processing delays are compensated in the sensorimotor branch of the visual system. Curr Biol 13: 1975–1978.CrossRefGoogle ScholarPubMed
Kerzel, D., Jordan, J. S., & Müsseler, J. (2001). The role of perception in the mislocalization of the final position of a moving target. J Exp Psychol Hum Percept Perform 27: 829–840.CrossRefGoogle ScholarPubMed
Kozhevnikov, M., & Hegarty, M. (2001). Impetus beliefs as default heuristics: dissociation between explicit and implicit knowledge about motion. Psychon Bull Rev 8: 439–453.CrossRefGoogle ScholarPubMed
Marr, D. (1982). Vision. New York: W. H. Freeman and Company.Google Scholar
McCloskey, M. (1983). Naive theories of motion. In D., Gentner & A. L., Stevens (eds.), Mental Models (299–324). Hillsdale, NJ: Erlbaum.Google Scholar
McCloskey, M., & Kohl, D. (1983). Naive physics: the curvilinear impetus principle and its role in interactions with moving objects. J Exp Psychol Learn Mem Cogn 9: 146–156.CrossRefGoogle ScholarPubMed
Michotte, A. (1963). The Perception of Causality (T. R., Miles & E., Miles, Trans.). New York: Basic Books (original work published 1946).Google Scholar
Motes, M. A., Hubbard, T. L., Courtney, J. R., & Rypma, B. (2008). A principal components analysis of dynamic spatial memory biases. J Exp Psychol Learn Mem Cogn 34: 1076–1083.CrossRefGoogle ScholarPubMed
Munger, M. P., & Minchew, J. H. (2002). Parallels between remembering and predicting an object's location. Vis Cogn 9: 177–194.CrossRefGoogle Scholar
Munger, M. P., & Owens, T. R. (2004). Representational momentum and the flash-lag effect. Vis Cogn 11: 81–103.CrossRefGoogle Scholar
Munger, M. P., Solberg, J. L., & Horrocks, K. K. (1999). On the relation between mental rotation and representational momentum. J Exp Psychol Learn Mem Cogn 25: 1557–1568.CrossRefGoogle Scholar
Munger, M. P., Solberg, J. L., Horrocks, K. K., & Preston, A. S. (1999). Representational momentum for rotations in depth: effects of shading and axis. J Exp Psychol Learn Mem Cogn 25: 157–171.CrossRefGoogle ScholarPubMed
Müsseler, J., & Aschersleben, G. (1998). Localizing the first position of a moving stimulus: the Fröhlich effect and an attention-shifting explanation, Percept Psychophys 60: 683–695.CrossRefGoogle ScholarPubMed
Müsseler, J., Stork, S., & Kerzel, D. (2002). Comparing mislocalizations with moving stimuli: the Fröhlich effect, the flash-lag, and representational momentum. Vis Cogn 9: 120–138.CrossRefGoogle Scholar
Müsseler, J., van der Heijden, A. H. C., Mahmud, S. H., Deubel, H., & Ertsey, S. (1999). Relative mislocalization of briefly presented stimuli in the retinal periphery. Percept Psychophys 61: 1646–1661.CrossRefGoogle ScholarPubMed
Nijhawan, R. (2002). Neural delays, visual motion and flash-lag effect. Trends Cogn Sci 6: 387–393.CrossRefGoogle ScholarPubMed
Poljansek, A. (2002). The effect of motion acceleration on displacement of continuous and staircase motion in the frontoparallel plane. Psiholoska obzorja/Horizons of Psychology 11: 7–21.Google Scholar
Raymond, J. E., O'Donnell, H. L., & Tipper, S. P. (1998). Successive episodes produce direction contrast effects in motion perception. Vision Res 38: 579–590.CrossRefGoogle ScholarPubMed
Reed, C. L., & Vinson, N. G. (1996). Conceptual effects on representational momentum. J Exp Psychol Hum Percept Perform 22: 839–850.CrossRefGoogle ScholarPubMed
Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cogn Psychol 8: 382–439.CrossRefGoogle Scholar
Rosenbaum, D. A., Kenny, S., & Derr, M. A. (1983). Hierarchical control of rapid motor sequences. J Exp Psychol Hum Percept Perform 9: 86–102.CrossRefGoogle Scholar
Ruppel, S. E., Fleming, C. N., & Hubbard, T. L. (2009). Representational momentum is not (totally) impervious to error feedback. Can J Exp Psychol 63: 49–58.CrossRefGoogle Scholar
Senior, C., Barnes, J., & David, A. S. (2001). Mental imagery increases representational momentum: preliminary findings. J Ment Imagery 25: 177–184.Google Scholar
Shepard, R. N. (1975). Form, formation, and transformation of internal representations. In R. L., Solso (ed.), Information Processing and Cognition: The Loyola Symposium (87–122). Hillsdale, NJ: Erlbaum.Google Scholar
Shepard, R. N. (1981). Psychophysical complementarity. In M., Kubovy & J. R., Pomerantz (eds.), Perceptual Organization (279–341). Hillsdale, NJ: Erlbaum.Google Scholar
Shepard, R. N., & Chipman, S. (1970). Second-order isomorphism of internal representations: shapes of states. Cogn Psychol 1: 1–17.CrossRefGoogle Scholar
Thornton, I. M., & Hayes, A. E. (2004). Anticipating action in complex scenes. Vis Cogn 11: 341–370.CrossRefGoogle Scholar
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cogn Psychol 12: 97–136.CrossRefGoogle Scholar
Verfaillie, K., & d'Ydewalle, G. (1991). Representational momentum and event course anticipation in the perception of implied periodical motions. J Exp Psychol Learn Mem Cogn 17: 302–313.CrossRefGoogle ScholarPubMed
Vinson, N. G., & Reed, C. R. (2002). Sources of object-specific effect in representational momentum. Vis Cogn 9: 41–65.CrossRefGoogle Scholar
Whitney, D., & Cavanagh, P. (2002). Surrounding motion affects the perceived locations of moving stimuli. Vis Cogn 9: 139–152.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×