Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T13:50:39.667Z Has data issue: false hasContentIssue false

11 - Magnetic buoyancy instabilities in the tachocline

Published online by Cambridge University Press:  21 August 2009

D. W. Hughes
Affiliation:
University of Leeds
R. Rosner
Affiliation:
University of Chicago
N. O. Weiss
Affiliation:
University of Cambridge
Get access

Summary

It is natural to associate the tachocline with the region of generation of a strong toroidal field by the winding-up of a weaker poloidal component. Here I discuss the break-up and subsequent escape of such a field via magnetic buoyancy instabilities. I consider the different modelling approaches that have been employed and discuss which have the most relevance in a solar context.

Introduction

For many years, a controversial issue of solar magnetism has been that of the location of the site (or sites) of the generation and storage of the Sun's predominantly toroidal magnetic field, which eventually escapes and rises to the surface, leading to active regions and, ultimately, to much of the exotic magnetic behaviour observed in the photosphere, chromosphere and corona. For two rather different reasons, the idea had been put forward that the bulk of the toroidal field must be stored either at the base of, or just beneath, the convection zone. From estimates of the rise times of magnetic flux tubes through the convection zone, Parker (1975) argued that the dynamo must operate only in the ‘very lowest levels of the convective zone’. Golub et al. (1981) (see also Spiegel & Weiss 1980) proposed a similarly deep-seated layer of toroidal field, but from arguments based instead on the expulsion of magnetic fields by convective motions. The discovery of the tachocline by helioseismology provides probably the most compelling evidence for pinning down the location of the solar toroidal field.

Type
Chapter
Information
The Solar Tachocline , pp. 275 - 298
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×