Skip to main content Accessibility help
×
Home
  • Print publication year: 2010
  • Online publication date: May 2010

1 - Soil carbon relations: an overview

Summary

INTRODUCTION

Soils are localized between base rock, atmosphere and vegetation, and represent a home for numerous organisms and the place of countless biogeochemical transformation and transfer processes. In addition, soils store many substances that are essential to maintain human life and ecosystem processes. Therefore, soils have been a research focus for more than a century and soil science has deep connections to ecology, agriculture and nature conservation.

The most important practical applications of soil science are diagnostics and maintenance of soil fertility and, more recently, definition of the role of soils in the terrestrial carbon balance in the context of increasing atmospheric CO2 concentration and the resulting greenhouse effect. Carbon stored in soils represents the largest carbon pool in nearly all terrestrial biomes (Bolin et al., 2001) and thus it has a huge potential for either sequestering or releasing carbon into the atmosphere. Consequently, knowledge of the dynamics of soil carbon is essential for a better understanding of the terrestrial carbon balance. However, inter-annual changes in soil carbon stocks are small compared to the total carbon stored in soils, and thus determining any changes in soil carbon stocks by repeated inventories is difficult. On the other hand, flux measurements also bear inaccuracies and uncertainties, confounding attempts to directly measure and model the CO2 flux from the soil and linking this flux to the underlying processes. There are considerable challenges in monitoring soil fluxes without disturbing the plant–soil carbon flow.

Related content

Powered by UNSILO
REFERENCES
Ågren, G I. and Bosatta, E. (1996) Theoretical Ecosystem Ecology: Understanding Element Cycles. Cambridge: Cambridge University Press.
Akselsson, C., Berg, B., Meentemeyer, V. and Westling, O. (2005) Carbon sequestration rates in organic layers of boreal and temperate forest soils: Sweden as a case study. Global Ecology and Biogeography, 14, 77–84.
Albertsen, M. (1977) Labor- und Felduntersuchungen zum Gasaustausch zwischen Grundwasser und Atmosphäre über natürlichen und verunreinigten Grundwassern. Christian-Albrechts-Universität, Kiel.
Alef, K. and Nannipieri, P. (1995) Methods in Applied Soil Microbiology and Biochemistry. San Diego, CA: Academic Press.
Anderson, T. H. and Domsch, K H. (1990) Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biology and Biochemistry, 22, 251–5.
Arthur, M. F. and Frea, J. I. (1988) Microbial activity in soils contaminated with 2,3,7,8-TCDD. Environmental Toxicology and Chemistry, 7, 5–14.
Bahn, M., Knapp, M., Garajova, Z., Pfahringer, N. and Cernusca, A. (2006) Root respiration in temperate mountain grasslands differing in land use. Global Change Biology, 12, 995–1006.
Bardgett, R. D. and Saggar, S. (1994) Effects of heavy metal contamination on the short-term decomposition of labelled 14C-glucose in a pasture soil. Soil Biology and Biochemistry, 26, 727–33.
Bewley, R. J. and Stotzky, G. (1983) Simulated acid rain (H2SO4) and microbial activity in soil. Soil Biology and Biochemistry, 15, 425–9.
Bolin, B., Sukumar, R., Ciais, P.et al. (2001) The global perspective. In IPCC Special Report on Land Use, Land-use Change and Forestry, ed. Watson, R. T., Noble, I. R., Bolin, B.et al. Cambridge: Cambridge University Press, pp. 23–51.
Bond-Lamberty, B., Wang, C. K. and Gower, S. T. (2004) A global relationship between the heterotrophic and autotrophic components of soil respiration?Global Change Biology, 10, 1756–66.
Burton, A. J., Pregitzer, K. S., Zogg, G. P. and Zak, D. R. (1998) Drought reduces root respiration in sugar maple forests. Ecological Applications, 8, 771–8.
Butnor, J. R., Johnsen, K. H. and Maier, C. A. (2005) Soil properties differently influence estimates of soil CO2 efflux from three chamber-based measurement systems. Biogeochemistry, 73, 283–301.
Chopra, P. and Magu, S. P. (1985) Effect of selected herbicides and city compost on the rhizospheric microflora of wheat and maize. Indian Journal of Agronomy, 30, 5–9.
Christensen, S., Ronn, R., Ekelund, F.et al. (1996) Soil respiration profiles and protozoan enumeration agree as microbial growth indicators. Soil Biology and Biochemistry, 28, 865–8.
Conant, R. T., Smith, G. R. and Paustian, K. (2003) Spatial variability of soil carbon in forested and cultivated sites: implications for change detection. Journal of Environmental Quality, 32, 278–86.
Conant, R. T., Drijber, R. A., Haddix, M. L.et al. (2008) Sensitivity of organic matter decomposition to warming varies with its quality. Global Change Biology, 14, 868–77.
Conen, F., Yakutin, M. V. and Sambuu, A. D. (2003) Potential for detecting changes in soil organic carbon concentrations resulting from climate change. Global Change Biology, 9, 1515–20.
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. and Totterdell, I. J. (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–7.
Davidson, E. A. and Janssens, I. A. (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165–73.
Davidson, E. A., Janssens, I. A. and Luo, Y. Q. (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12, 154–64.
Domsch, K. H. (1961) Bodenatmung – Sammelbericht über Methoden und Ergebnisse. Zentralblatt fuer Bakteriologie, Mikrobiologie und Parasitenkunde Abt II, 116, 33–78.
Edwards, N. T. and Sollins, P. (1973) Continuous measurements of carbon dioxide evolution from partitioned forest floor components. Ecology, 54, 406–12.
Eidmann, F. E. (ed) (1943) Untersuchungen über die Wurzelatmung und Transpiration unserer Hauptholzarten. Frankfurt am Main: J. D. Sauerländer's Verlag.
Ekschmitt, K., Kandeler, E., Poll, C.et al. (2008) Soil-carbon preservation through habitat constraints and biological limitations on decomposer activity. Journal of Plant Nutrition and Soil Science, 171, 27–35.
Eliasson, P. E., McMurtrie, R. E., Pepper, D. A.et al. (2005) The response of heterotrophic CO2 flux to soil warming. Global Change Biology, 11, 167–81.
Epron, D., Farque, L., Lucot, E. and Badot, P. M. (1999) Soil CO2 efflux in a beech forest: dependence on soil temperature and soil water content. Annals of Forest Science, 56, 221–6.
Falloon, P. and Smith, P. (2002) Simulating SOC changes in long-term experiments with RothC and CENTURY: model evaluation for a regional scale application. Soil Use and Management, 18, 101–11.
Fang, C. and Moncrieff, J. B. (1999) A model for soil CO2 production and transport 1: model development. Agricultural and Forest Meteorology, 95, 225–36.
Fang, C., Smith, P. and Smith, J. U. (2005a) Is resistant soil organic matter more sensitive to temperature than the labile organic matter?Biogeosciences, 3, 65–8.
Fang, C., Smith, P., Moncrieff, J. B. and Smith, J. U. (2005b) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433, 57–9.
Flechard, C. R., Neftel, A., Jocher, M.et al. (2007) Temporal changes in soil pore space CO2 concentration and storage under permanent grassland. Agricultural and Forest Meteorology, 142, 66–84.
Gadgil, R. L. and Gadgil, P. D. (1971) Mycorrhiza and litter decomposition. Nature, 233, 133.
Giardina, C. P. and Ryan, M. G. (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature, 404, 858–61.
Haber, W. (1958) Ökologische Untersuchung der Bodenatmung. Mit einer Übersicht über frühere Bearbeitungen, insbesondere deren Methoden. Flora, 146, 109–57.
Hanson, P. J., Edwards, N. T., Garten, C. T. and Andrews, J. A. (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48, 115–46.
Heinemeyer, A., Ineson, P., Ostle, N. and Fitter, A. H. (2006) Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytologist, 171, 159–70.
Heinemeyer, A., Hartley, I. P., Evans, S. P., Fuente, J. A. C. and Ineson, P. (2007) Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas. Global Change Biology, 13, 1786–97.
Högberg, P., Nordgren, A., Buchmann, N.et al. (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411, 789–92.
Högberg, P., Nordgren, A. and Agren, G. I. (2002) Carbon allocation between tree root growth and root respiration in boreal pine forest. Oecologia, 132, 579–81.
Huggins, D. R., Buyanovsky, G. A., Wagner, G. H.et al. (1998) Soil organic C in the tallgrass prairie-derived region of the corn belt: effects of long-term crop management. Soil and Tillage Research, 47, 219–34.
Hunt, H. W. (1977) A simulation model for decomposition in grasslands. Ecology, 58, 469–84.
Hunt, H. W., Cole, C. V., Klein, D. A. and Coleman, D. C. (1977) A simulation model for the effect of predation on bacteria in continuous culture. Microbial Ecology, 3, 259–78.
,IPCC (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
Janssens, I. A., Kowalski, A. S., Longdoz, B. and Ceulemans, R. (2000) Assessing forest soil CO2 efflux: an in situ comparison of four techniques. Tree Physiology, 20, 23–32.
Janssens, I. A., Lankreijer, H., Matteucci, G.et al. (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 7, 269–78.
Jenkinson, D. S. and Johnston, A. E. (1977) Soil Organic Matter in the Hoosfield Continuous Barley Experiment. Rothamsted Experimental station. Report no. part 2.
Kimball, B. A. and Lemon, E. R. (1971) Air turbulence effects upon soil gas exchange. Soil Science Society of America Proceedings, 35, 16–21.
Kirschbaum, M. U. F. (2004) Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss?Global Change Biology, 10, 1870–7.
Knorr, W., Prentice, I. C., House, J. I. and Holland, E. A. (2005a) Long-term sensitivity of soil carbon turnover to warming. Nature, 433, 298–433.
Knorr, W., Prentice, I. C., House, J. I. and Holland, E. A. (2005b) On the available evidence for the temperature dependence of soil organic carbon. Biogeosciences Discussions, 2, 749–55.
Koch, G. W., Schulze, E. D., Percival, F., Mooney, H. A. and Chu, C. (1988) The nitrogen balance of Raphanus sativus x raphanistrum plants. II. Growth, nitrogen redistribution and photosynthesis under NO3 deprivation. Plant Cell and Environment, 11, 55.
Kögel-Knabner, I., Guggenberger, G., Kleber, M.et al. (2008) Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, 171, 61–82.
Körschgens, M. (1996) Long-term datasets from Germany and Eastern Europe. In Evaluation of Soil Organic Matter Models Using Existing, Long-term Datasets, ed. Powlson, D. S., Smith, P. and Smith, J. U.. Vol. 38. NATO ASI Series I. Berlin: Springer, pp. 69–80.
Kutsch, W. L. (1996) Untersuchung zur Bodenatmung zweier Ackerstandorte im Bereich der Bornhöveder Seenkette. EcoSys, Beiträge zur Ökosystemforschung, Suppl. 16, 125.
Kutsch, W. L. and Kappen, L. (1997) Aspects of carbon and nitrogen cycling in soils of the Bornhoved lake district. 2. Modelling the influence of temperature increase on soil respiration and organic carbon content in arable soils under different managements. Biogeochemistry, 39, 207–24.
Kutsch, W. L., Staack, A., Wötzel, J., Middelhoff, U. and Kappen, L. (2001) Field measurements of root respiration and total soil respiration in an alder forest. New Phytologist, 150, 157–68.
Lambers, H., Werf, A. and Konings, H. (1991) Respiratory patterns in roots in relation to their functioning. In Plant Roots: The Hidden Half, ed. Waisel, Y., Eshel, A. and Kafkafi, U.. New York: Marcel Dekker, pp. 229–64.
Lambers, H., Chapin, F. S. I. and Pons, T. L. (1998) Plant Physiological Ecology. New York: Springer.
Liski, J. and Westman, C. J. (1997) Carbon storage in forest soil of Finland 1. Effect of thermoclimate. Biogeochemistry, 36, 239–60.
Liski, J., Ilvesniemi, H., Mäkelä, A. and Westman, K. J. (1999) CO2 emissions from soil in response to climatic warming are overestimated: the decomposition of old soil organic matter is tolerant of temperature. Ambio, 28, 171–4.
Lohm, U., Larsson, K. and Nommik, H. (1984) Acidification and liming of coniferous forest soil: long-term effects on turnover rates of carbon and nitrogen during an incubation experiment. Soil Biology and Biochemistry, 16, 343–6.
Luckai, N. and Larocque, G. R. (2002) Challenges in the application of existing process-based models to predict the effect of climate change on C pools in forest ecosystems. Climatic Change, 55, 39–60.
Lundegårdh, H. (1924) Der Kreislauf der Kohlensäure in der Natur. Ein Beitrag zur Pflanzenökologie und zur Landwirtschaftlichen Düngungslehre. Jena: Gustav Fischer Verlag.
Lundegårdh, H. (1927) Carbon dioxide evolution of soil and crop growth. Soil Science, 23, 417–53.
Luo, Y. Q., Wan, S. Q., Hui, D. F. and Wallace, L. L. (2001) Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413, 622–5.
Mai, H. and Fiedler, H. J. (1988) Microbiological characterization of different soil forms of a Gneiss Catena under deciduous forests. Zentralblatt Fur Mikrobiologie, 143, 73–82.
Manefield, M., Whiteley, A. S., Griffiths, R. I. and Bailey, M. J. (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Applied Environmental Microbiology, 68, 5367–73.
McGill, W. B. (1996) Review and classification of ten soil organic matter (SOM) models. In Evaluation of Soil Organic Matter Models Using Existing, Long-term Data-sets, ed. Powlson, D. S., Smith, P. and Smith, J. U.. NATO ASI I38. Berlin: Springer-Verlag, pp. 111–33.
McHale, P. J., Mitchell, M. J. and Bowles, F. P. (1998) Soil warming in a northern hardwood forest: trace gas fluxes and leaf litter decomposition. Canadian Journal of Forest Research, 28, 1365–72.
Melillo, J. M., Steudler, P. A., Aber, J. D.et al. (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science, 298, 2173–6.
Moncrieff, J. B. and Fang, C. (1999) A model for soil CO2 production and transport 2: application to a Florida Pinus elliotte plantation. Agricultural and Forest Meteorology, 95, 237–56.
Moyano, F. E., Kutsch, W. L. and Schulze, E.-D. (2007) Response of mycorrhizal, rhizosphere and soil basal respiration to temperature and photosynthesis in a barley field. Soil Biology and Biochemistry, 39, 843–53.
Nadelhoffer, K. J. and Raich, J. W. (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology, 73, 1139–47.
Nannipieri, P., Ascher, J., Ceccherini, M. T.et al. (2003) Microbial diversity and soil functions. European Journal of Soil Science, 54, 655–70.
Odum, E. P. (1969) The strategy of ecosystem development. Science, 164, 262–70.
Paul, E. A. and Clark, F. E. (1989) Soil Microbiology and Biochemistry. New York: Academic Press.
Pendall, E., Bridgham, S., Hanson, P. J.et al. (2004) Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytologist, 162, 311–22.
Powlson, D. S., Smith, P., Coleman, K.et al. (1998) A European network of long-term sites for studies on soil organic matter. Soil and Tillage Research, 47, 263–74.
Prescott, C. E., Blevins, L. L. and Staley, C. (2004) Litter decomposition in British Columbia forests: controlling factors and influences of forestry activities. Journal of Ecosystems and Management, 5, 45–57.
Pumpanen, J., Kolari, P., Ilvesniemi, H.et al. (2004) Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology, 123, 159–76.
Raich, J. W. and Schlesinger, W. H. (1992) The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus Series B – Chemical and Physical Meteorology, 44, 81–99.
Raich, J. W. and Tufekciogul, A. (2000) Vegetation and soil respiration: correlations and controls. Biogeochemistry, 48, 71–90.
Reichstein, M., Rey, A., Freibauer, A.et al. (2003) Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemical Cycles, 17, 1104.
Reichstein, M., Katterer, T., Andren, O.et al. (2005) Temperature sensitivity of decomposition in relation to soil organic matter pools: critique and outlook. Biogeosciences, 2, 317–21.
Ritz, K., Dighton, J. and Giller, K. (1994) Beyond the Biomass. Chichester: Wiley.
Romell, L. G. (1922) Luftväxlingen i marken som ekologisk faktor. Medd Seadens Shogsfarsösanstalt, 19.
Schulze, W. X., Gleixner, G., Kaiser, K.et al. (2005) A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia, 142, 335–43.
Simard, S. W., Perry, D. A., Jones, M. D.et al. (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature, 388, 579–82.
Singh, J. S. and Gupta, S. R. (1977) Plant decomposition and soil respiration in terrestrial ecosystems. Botanical Review, 43, 449–528.
Smith, P. (2004) How long before a change in soil organic carbon can be detected?Global Change Biology, 10, 1878–83.
Smith, P., Powlson, D. S., Smith, J. U. and Glendining, M. J. (1996) The GCTE SOMNET: a global network and database of soil organic matter models and long-term datasets. Soil Use and Management, 12, 104.
Smith, P., Powlson, D. S., Smith, J. U. and Elliott, E. T. (1997) Special issue: evaluation and comparison of soil organic matter models using datasets from seven long-term experiments – preface. Geoderma, 81, 1–3.
Staddon, P. L., Heinemeyer, A. and Fitter, A. H. (2002) Mycorrhizas and global environmental change: research at different scales. Plant Soil, 244, 253–61.
Stoklasa, J. and Ernest, A. (1922) Über den Ursprung, die Menge und die Bedeutung des Kohlendioxyds im Boden. Zentralblatt fuer Bakteriologie, Mikrobiologie und Parasitenkunde Abt II, 14, 732–6.
Subke, J. A., Inglima, I. and Cotrufo, M. F. (2006) Trends and methodological impacts in soil CO2 efflux partitioning: a meta-analytical review. Global Change Biology, 12, 921–43.
Takle, E. S., Massman, W. J., Brandle, J. R.et al. (2004) Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil. Agricultural and Forest Meteorology, 124, 193–206.
Tansley, A. G. (1935) The use and abuse of vegetational concepts and terms. Ecology, 16, 284–307.
Thornley, J. H. M. and Cannell, M. G. R. (2001) Soil carbon storage response to temperature: an hypothesis. Annals of Botany, 87, 591–8.
Torn, M. S., Lapenis, A. G., Timofeev, A.et al. (2002) Organic carbon and carbon isotopes in modern and 100-year-old-soil archives of the Russian steppe. Global Change Biology, 8, 941–53.
Trumbore, S. (2006) Carbon respired by terrestrial ecosystems: recent progress and challenges. Global Change Biology, 12, 141–53.
't Hoff, J. H. (1898) Lectures on Theoretical and Physical Chemistry. Part 1. Chemical Dynamics. London: Edward Arnold.
Bavel, C. H. M. (1951) A soil aeration theory based on diffusion. Soil Science, 72, 33–46.
Bavel, C. H. M. (1952) Gaseous diffusion and porosity in porous media. Soil Science, 73, 91–104.
Suchtelen, F. H. H. (1910) Über die Messung der Lebenstätigkeit der aerobiotischen Bakterien im Boden durch Kohlensäureproduktion. Zentralblatt fuer Bakteriologie, Mikrobiologie und Parasitenkunde Abt II, 28, 45–89.
Vance, E. D. and Chapin, F. S. (2001) Substrate limitations to microbial activity in taiga forest floors. Soil Biology and Biochemistry, 33, 173–88.
Wallman, P., Belyazid, S., Svensson, M. G. E. and Svedrup, H. (2004) DECOMP: a semi-mechanistic model of litter decomposition. Environmental Modelling and Software, 21, 33–44.
Walterscheidt, W. (1960) Die Bedeutung des Blasius-Segens für die Bodenfruchtbarkeit, dargestellt am Beispiel der Bodenatmung gesegneter und ungesegneter Äcker im Hochsauerland. Schriftenreihe der Kath Landbewegung im Erzbistum Köln, 52, 132–8.
Wilke, B. M. (1988) Effects of sodium selenite on microbial activity of mull, moder and mor soils. Biology and Fertility of Soils, 6, 148–52.
Wollny, E. (1880) Untersuchungen über den Kohlensäuregehalt der Bodenluft. Die landwirtschaftlichen Versuchs-Stationen, 25, 373–93.