Skip to main content Accessibility help
  • Print publication year: 2010
  • Online publication date: May 2010

15 - Appendix: Towards a standardized protocol for the measurement of soil CO2 efflux



Soil CO2 efflux, more commonly termed soil respiration, is considered to be the second largest flux of carbon between terrestrial ecosystems and the atmosphere. Current estimates of global soil respiration are in the range of 68–80 Pg C a−1 (Raich and Potter, 1995; Raich et al., 2002), which exceeds estimated annual rates from fossil fuel combustion by an order of magnitude (Schlesinger and Andrews, 2000; IPCC, 2007). It must be noted that these estimates of global soil CO2 efflux are based on a very limited dataset: (1) the distribution of data for biomes is biased towards forests in the Northern hemisphere; (2) a considerable proportion of the data is based on static chamber measurements, which tend to underestimate soil respiration at high flux rates (Norman et al., 1997; Chapter 2, Pumpanen et al.); (3) annual estimates are often based on simplistic relationships (generally only temperature and sometimes also soil moisture) that capture only a limited fraction of the diurnal, seasonal, annual and inter-annual variation of soil respiration and (4) the spatial variation of soil respiration is generally not well captured, both within ecosystems and across similar ecosystems at a regional scale.

A further major problem for obtaining sensible estimates of global soil CO2 efflux is related to the fact that even though an increasing amount of data is becoming available, these more recent datasets are often not easily comparable due to different methodologies and to the limited availability of ancillary parameters.

Related content

Powered by UNSILO
Aubinet, M., Grelle, A., Ibrom, al. (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Advances in Ecological Research, 30, 113–75.
Bahn, M., Rodeghiero, M., Anderson-Dunn, al. (2008) Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems, 11, 1352–67.
Bain, W. G., Hutyra, L., Patterson, D. al. (2005) Wind-induced error in the measurement of soil respiration using closed dynamic chambers. Agricultural and Forest Meteorology, 131, 225–32.
Baldocchi, D., Falge, E., Gu, L. al. (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society, 82, 2415–34.
Baldocchi, D., Tang, J. W. and Xu, L. K. (2006) How switches and lags in biophysical regulators affect spatial-temporal variation of soil respiration in an oak-grass savanna – art. no. G02008. Journal of Geophysical Research – Biogeosciences, 111, 2008.
Davidson, E. A. and Janssens, I. A. (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165–73.
Davidson, E. A., Savage, K., Verchot, L. V. and Navarro, R. (2002) Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agricultural and Forest Meteorology, 113, 21–37.
Davidson, E. A., Savage, K. E., Trumbore, S. E. and Borken, W. (2006a) Vertical partitioning of CO2 production within a temperate forest soil. Global Change Biology, 12, 944–56.
Davidson, E. A., Janssens, I. A. and Luo, Y. Q. (2006b) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12, 154–64.
Drewitt, G. B., Black, T. A., Nesic, al. (2002) Measuring forest floor CO2 fluxes in a Douglas-fir forest. Agricultural and Forest Meteorology, 110, 299–317.
Elberling, B. and Brandt, K. K. (2003) Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of arctic C cycling. Soil Biology and Biochemistry, 35, 263–72.
Fierer, N. and Schimel, J. P. (2003) A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Science Society of America Journal, 67, 798–805.
Graf, A., Weihermüller, L., Huisman, J. al. (2008) Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies. Biogeosciences Discussions, 5, 1867–98.
Grubbs, F. E. (1969) Procedures for detecting outlying observations in samples. Technometrics, 11, 1–21.
Gu, L. H., Post, W. M. and King, A. W. (2004) Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: a model analysis – art. no. GB1022. Global Biogeochemical Cycles, 18, B1022.
Hanson, P. J., Edwards, N. T., Garten, C. T. and Andrews, J. A. (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48, 115–46.
Hanson, P. J., O'Neill, E. G. and Chambers, M. L. S. (2003) Soil respiration and litter decomposition. In North American Temperate Deciduous Forest Responses to Changing Precipitation Regimes, ed. Hanson, P. J. and Wullschleger, S. D.. New York: Springer, pp. 163–89.
Heinemeyer, A., Hartley, I. P., Evans, S. P., Fuente, J. A. C. and Ineson, P. (2007) Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas. Global Change Biology, 13, 1786–97.
Hibbard, K. A., Law, B. E., Reichstein, M. and Sulzman, J. (2005) An analysis of soil respiration across northern hemisphere temperate ecosystems. Biogeochemistry, 73, 29–70.
Hirano, T., Kim, H. and Tanaka, Y. (2003) Long-term half-hourly measurement of soil CO2 concentration and soil respiration in a temperate deciduous forest – art. no. 4631. Journal of Geophysical Research – Atmospheres, 108, 4631.
Hollinger, D. Y. and Richardson, A. D. (2005) Uncertainty in eddy covariance measurements and its application to physiological models. Tree Physiology, 25, 873–85.
,IPCC (2007) Climate Change 2007: The Physical Science Basis – Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press.
Janssens, I. A., Lankreijer, H., Matteucci, al. (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 7, 269–78.
Jassal, R. S., Black, T. A., Drewitt, G. al. (2004) A model of the production and transport of CO2 in soil: predicting soil CO2 concentrations and CO2 efflux from a forest floor. Agricultural and Forest Meteorology, 124, 219–36.
Jassal, R. S., Black, T. A., Novak, al. (2005) Relationship between soil CO2 concentrations and forest-floor CO2 effluxes. Agricultural and Forest Meteorology, 130, 176–92.
Kutsch, W. L. (1996) Untersuchung zur Bodenatmung zweier Ackerstandorte im Bereich der Bornhöveder Seenkette. EcoSys, Beiträge zur Ökosystemforschung, Suppl. 16.
Kutsch, W. L., Staack, A., Wötzel, J., Middelhoff, U. and Kappen, L. (2001) Field measurements of root respiration and total soil respiration in an alder forest. New Phytologist, 150, 157–68.
Kuzyakov, Y. (2002) Review: factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science, 165, 382–96.
Kuzyakov, Y. (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology and Biochemistry, 38, 425–48.
Dantec, V., Epron, D. and Dufrene, E. (1999) Soil CO2 efflux in a beech forest: comparison of two closed dynamic systems. Plant and Soil, 214, 125–32.
Longdoz, B., Yernaux, M. and Aubinet, M. (2000) Soil CO2 efflux measurements in a mixed forest: impact of chamber disturbances, spatial variability and seasonal evolution. Global Change Biology, 6, 907–17.
Lund, C. P., Riley, W. J., Pierce, L. L. and Field, C. B. (1999) The effects of chamber pressurization on soil-surface CO2 flux and the implications for NEE measurements under elevated CO2. Global Change Biology, 5, 269–81.
Moldrup, P., Olsen, T., Yamaguchi, T., Schjonning, P. and Rolston, D. E. (1999) Modelling diffusion and reaction in soil. IX. The Buckingham-Burdine–Campbell equation for gas diffusivity in undisturbed soil. Soil Science, 164, 542–51.
Monson, R. K., Burns, S. P., Williams, M. al. (2006) The contribution of beneath-snow soil respiration to total ecosystem respiration in a high-elevation, subalpine forest. Global Biogeochemical Cycles, 20, GB3030, doi:10.1029/2005GB002684.
Norman, J. M., Kucharik, C. J., Gower, S. al. (1997) A comparison of six methods for measuring soil-surface carbon dioxide fluxes. Journal of Geophysical Research – Atmospheres, 102, D24, 28771–7.
Papale, D., Reichstein, M., Aubinet, al. (2006) Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 3, 571–83.
Pavelka, M., Acosta, M., Marek, M. V., Kutsch, W. and Janous, D. (2007) Dependence of the Q10 values on the depth of the soil temperature measuring point. Plant and Soil, 292, 171–9.
Pendall, E., Del Grosso, S., King, J. al. (2003) Elevated atmospheric CO2 effects and soil water feedbacks on soil respiration components in a Colorado grassland. Global Biogeochemical Cycles, 17, 1046, doi:10.1029/ 2001GB001821.
Pumpanen, J., Kolari, P., Ilvesniemi, al. (2004) Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology, 123, 159–76.
Raich, J. W. and Potter, C. S. (1995) Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 9, 23–36.
Raich, J. W., Potter, C. S. and Bhagawati, D. (2002) Interannual variability in global soil respiration, 1980–94. Global Change Biology, 8, 800–12.
Reichstein, M., Rey, A., Freibauer, al. (2003) Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices – art. no. 1104. Global Biogeochemical Cycles, 17, 1104.
Reichstein, M., Subke, J. A.Angeli, A. C. and Tenhunen, J. D. (2005a) Does the temperature sensitivity of decomposition of soil organic matter depend upon water content, soil horizon, or incubation time?Global Change Biology, 11, 1754–67.
Reichstein, M., Katterer, T., Andren, al. (2005b) Temperature sensitivity of decomposition in relation to soil organic matter pools: critique and outlook. Biogeosciences, 2, 317–21.
Richardson, A. D. and Hollinger, D. Y. (2005) Statistical modeling of ecosystem respiration using eddy covariance data: maximum likelihood parameter estimation, and Monte Carlo simulation model and parameter uncertainty, applied to three simple models. Agricultural and Forest Meteorology, 131, 191–208.
Rodeghiero, M. and Cescatti, A. (2005) Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Global Change Biology, 11, 1024–41.
Sachs, L. and Hedderich, J. (2006) Angewandte Statistik. Methodensammlung mit R; mit 180 Tabellen, 12th edn. Berlin: Springer.
Sampson, D. A., Janssens, I. A., Yuste, J. C. and Ceulemans, R. (2007) Basal rates of soil respiration are correlated with photosynthesis in a mixed temperate forest. Global Change Biology, 13, 2008–17.
Savage, K., Davidson, E. A. and Richardson, A. D. (2008) A conceptual and practical approach to data quality and analysis procedures for high-frequency soil respiration measurements. Functional Ecology, doi: 10.1111/j.1365–2435.2008.01414.x.
Savage, K. E. and Davidson, E. A. (2003) A comparison of manual and automated systems for soil CO2 flux measurements: trade-offs between spatial and temporal resolution. Journal of Experimental Botany, 54, 891–9.
Schlesinger, W. H. and Andrews, J. A. (2000) Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7–20.
Subke, J. A., Hahn, V., Battipaglia, al. (2004) Feedback interactions between needle litter decomposition and rhizosphere activity. Oecologia, 139, 551–9.
Subke, J. A., Inglima, I. and Cotrufo, M. F. (2006) Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Global Change Biology, 12, 921–43.
Takle, E. S., Massman, W. J., Brandle, J. al. (2004) Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil. Agricultural and Forest Meteorology, 124, 193–206.
Tang, J. W., Baldocchi, D. D., Qi, Y. and Xu, L. K. (2003) Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors. Agricultural and Forest Meteorology, 118, 207–20.
Tang, J. W., Baldocchi, D. D. and Xu, L. (2005) Tree photosynthesis modulates soil respiration on a diurnal time scale. Global Change Biology, 11, 1298–304.
Welles, J. M., Demetriades-Shah, T. H. and McDermitt, D. K. (2001) Considerations for measuring ground CO2 effluxes with chambers. Chemical Geology, 177, 3–13.
Werner, D., Grathwohl, P. and Hohener, P. (2004) Review of field methods for the determination of the tortuosity and effective gas-phase diffusivity in the vadose zone. Vadose Zone Journal, 3, 1240–8.
Xu, L., Furtaw, M. D., Madsen, R. al. (2006) On maintaining pressure equilibrium between a soil CO2 flux chamber and the ambient air. Journal of Geophysical Research, 111, D08S10, doi:10.1029/2005JD006435.