Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T15:49:54.036Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 November 2018

Neil D. Broom
Affiliation:
University of Auckland
Ashvin Thambyah
Affiliation:
University of Auckland
Get access
Type
Chapter
Information
The Soft–Hard Tissue Junction
Structure, Mechanics and Function
, pp. 353 - 382
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaron, B. B., Gosline, J. M. (1981) Elastin as a random-network elastomer: a mechanical and optical analysis of single elastin fibers. Biopolymers 20, 12471260.CrossRefGoogle Scholar
Abe, H., Hayashi, K., Sato, M. (eds.) (1996) Data Book of Mechanical Properties of Living Cells, Tissues, and Organs. Japan: Springer.Google Scholar
Accadbled, F., Laffosse, J. M., Ambard, D., et al. (2008) Influence of location, fluid flow direction and tissue maturity on the macroscopic permeability of vertebral end plates. Spine 33, 612619.Google Scholar
Adams, M. A., Dolan, P. (2005) Spinal biomechanics. J Biomech 38, 19721083.Google Scholar
Adams, P., Eyre, D. R., Muir, H. (1977) Biochemical aspects of development and ageing of human lumbar intervertebral discs. Rheum Rehab 16, 2229.CrossRefGoogle ScholarPubMed
Adams, M. A., Hutton, W. C. (1981) The relevance of torsion to the mechanical derangement of the lumbar spine. Spine 6, 241248.Google Scholar
Adams, M. A., Hutton, W. C. (1982a) Prolapsed intervertebral disc: a hyperflexion injury. Spine 7, 184191.Google Scholar
Adams, M. A., Hutton, W. C. (1982b) The mechanics of prolapsed intervertebral disc. Int Orthop 6, 249253.Google Scholar
Adams, M. A., Hutton, W. C. (1985) Gradual disc prolapse. Spine 10, 524531.Google Scholar
Adams, M. A., Kerin, A. J., Wisnom, M. R. (1998) Sustained loading increases the compressive strength of articular cartilage. Connect Tiss Res 39, 245256.CrossRefGoogle ScholarPubMed
Aichroth, P. (1971) Osteochondritis dissecans of the knee: a clinical study. JBJS 59B, 440447.Google Scholar
Albert, H. B., Kjaer, P., Jensen, T. S., et al. (2008) Modic changes, possible causes and relation to low back pain. Med Hypoth 70, 361368.CrossRefGoogle ScholarPubMed
Albert, H. B., Lambert, P., Rollason, J., et al. (2013) Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae? Eur Spine J 22, 690696.CrossRefGoogle ScholarPubMed
Alexander, L. A., Hancock, E., Agouris, I., et al. (2007) The response of the nucleus pulposus of the lumbar intervertebral discs to functionally loaded positions. Spine 32, 15081512.Google Scholar
Alini, M., Eisenstein, S. M., Ito, K., et al. (2008) Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 17, 219.Google Scholar
Amis, A. A. (2012) The functions of the fibre bundles of the anterior cruciate ligament in anterior drawer, rotational laxity and the pivot shift. Knee Surg Sports Traumatol Arthrosc 20, 613620.CrossRefGoogle ScholarPubMed
Amis, A. A., Dawkins, G. P. C. (1991) Functional anatomy of the anterior cruciate ligament: fibre bundle actions related to ligament replacements and injuries. J Bone Joint Surg B 73, 260267.CrossRefGoogle ScholarPubMed
Arai, K., Misumi, K., Carter, S. D., et al. (2005) Analysis of cartilage oligomeric matrix protein (COMP) degradation and synthesis in equine joint disease. Equine Vet J 37, 3136.Google Scholar
Arvind, V., Huang, A. H. (2017) Mechanobiology of limb musculoskeletal development. Ann NY Acad Sci 1409, 1832.Google Scholar
Ashby, M. F., Hallam, S. D. (1986) The failure of brittle solids containing small cracks under compressive stress states. Acta Metall 34, 497510.Google Scholar
Atarod, M., Frank, C. B., Shrive, N. G. (2014) Decreased posterior cruciate and altered collateral ligament loading following ACL transection: a longitudinal study in the ovine model. J Orthop Res 32, 431438.Google Scholar
Ateshian, G. A. (2009) The role of interstitial fluid pressurization in articular cartilage lubrication. J Biomech 42, 11631176.Google Scholar
Atkinson, T., Ewers, B. J., Haut, R. C. (1999) The tensile and stress relaxation responses of human patellar tendon varies with specimen cross-sectional area. J Biomech 32, 907914.Google Scholar
Atkinson, T. S., Haut, R. C., Altiero, N. J. (1998) Impact-induced fissuring of articular cartilage: an investigation of failure criteria. J Biomech Eng 120, 181187.Google Scholar
Autio, R. A., Karppinen, J., Niinimaki, J., et al. (2006) Determinants of spontaneous resorption of intervertebral disc herniations. Spine 31, 12471252.Google Scholar
Bach, J. M., Hull, M. L., Patterson, H. A. (1997) Direct measurement of strain in the posterolateral bundle of the anterior cruciate ligament. J Biomech 30, 281283.CrossRefGoogle ScholarPubMed
Baer, E., Cassidy, J. J., Hiltner, A. (1988) Hierarchical structure of collagen and its relationship to the physical properties of tendon. In: Collagen Volume II, Biochemistry and Biomechanics. (ed. Nimni, M. E.), pp. 177199. Boca Raton: CRC Press.Google Scholar
Balazs, E. A., Bloom, G. D., Swann, D. A. (1966) Fine structure and glycosaminoglycan content of the surface layer of articular cartilage. Fed Proc 25, 18131816.Google ScholarPubMed
Balkovec, C., Adams, M. A., Doolan, P., et al. (2015) Annulus fibrosus can strip hyaline cartilage end plate from subchondral bone: a study of the intervertebral disk in tension. Global Spine J 5, 360365.Google Scholar
Bank, R. A., Soudry, M., Maroudas, A., et al. (2000) The increased swelling and instantaneous deformation of osteoarthritic cartilage is highly correlated with collagen degradation. Arth Rheum 43, 22022210.Google Scholar
Barr, E. D., Pinchbeck, G. L., Clegg, P. D., et al. (2009) Post mortem evaluation of palmar osteochondral disease (traumatic osteochondrosis) of the metacarpo/metatarsophalangeal joint in Thoroughbred racehorses. Equine Vet J 41, 366371.Google Scholar
Bartels, J. E. (1975) Femoral-tibial osteoarthrosis in the bull: I. clinical survey and radiological interpretation. J Am Vet Radiolog Soc 16, 151158.Google Scholar
Barthelat, F., Yin, Z., Buehler, M. J. (2016) Structure and mechanics of interfaces in biological materials. Nature Rev – Matls 1, 116.Google Scholar
Bass, E. C., Ashford, F. A., Segal, M. R., et al. (2004) Biaxial testing of human annulus fibrosus and its implications for a constitutive formulation. Ann Biomed Eng 32, 12311242.Google Scholar
Baxter, G. M. (1996) Subchondral cystic lesions in horses. In: Joint Disease in the Horse (eds. McIlwraith, C. W., and Trotter, G. W.), ch. 23. Philadelphia, PA: WB Saunders Company.Google Scholar
Beaulieu, M. L., Carey, G. E., Schlecht, S. H., et al. (2015) Quantitative comparison of the microscopic anatomy of the human ACL femoral and tibial entheses. J Orthop Res 33, 18111817.Google Scholar
Beaulieu, M. L., Carey, G. E., Schlecht, S. H., et al. (2016) On the heterogeneity of the femoral enthesis of the human ACL: microscopic anatomy and clinical implications. J Exp Orthop 3, 19.Google Scholar
Benjamin, M., Evans, E. J., Copp, L. (1986) The histology of tendon attachments to bone in man. J Anat 149, 89100.Google Scholar
Benjamin, M., Kumai, T., Milz, S., et al. (2002) The skeletal attachment of tendons – tendon ‘entheses’. Comparative Biochem Physiol Part A 133, 931945.Google Scholar
Benjamin, M., McGonagle, D. (2009) Entheses: tendon and ligament attachment sites. Scand J Med Sci Sports 19, 520527.Google Scholar
Benjamin, M., Ralphs, J. R. (1998) Fibrocartilage in tendons and ligaments: an adaptation to compressive load. J Anat 193, 481494.Google Scholar
Benjamin, M., Toumi, H., Ralphs, J. R., et al. (2006) Where tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load. J Anat 208, 471490.CrossRefGoogle ScholarPubMed
Bennett, G. A., Waine, H., Bauer, W. (1942) Changes in the Knee Joint at Various Ages, with Particular Reference to the Nature and Development of Degenerative Joint Disease, pp. 192. New York: The Commonwealth Fund.Google Scholar
Benninghoff, A. (1925) Form und bau der gelenkknorpel in ihren beziehungen zur funktion. Zeitschrift ZellforschungMikroskopische Anatomie 2, 783862.Google Scholar
Bernick, S., Walker, J. M., Paule, W. J. (1991) Age changes to the annulus fibrosus in human intervertebral discs. Spine 16, 520524.Google Scholar
Bevill, S. L., Thambyah, A., Broom, N. D. (2010) New insights into the role of the superficial tangential zone in influencing the microstructural response of articular cartilage to compression. Osteoarth Cart 18, 13101318.Google Scholar
Beynnon, B. D., Fleming, B. C., Johnson, R. J., et al. (1995) Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am J Sport Med 23, 2434.Google Scholar
Bick, E. M., Copel, J. W. (1950) Longitudinal growth of the human vertebra: a contribution to human osteogeny. JBJS 32, 803813.Google Scholar
Bick, E. M., Copel, J. W. (1951) The ring apophysis of the human vertebra: contribution to human osteogeny II. JBJS 33, 783787.Google Scholar
Biermann, H. (1957) Die Knochenbildung im Bereich periostaler-diaphysärer Sehnen- und Bandansätze. Zeitschrift fur Zellforschung und mikroskopische Anatomie 46, 635671.Google Scholar
Blaschke, U. K., Eikenberry, E. F., Hulmes, D. J. S., et al. (2000) Collagen XI nucleates self-assembly and limits lateral growth of cartilage fibrils. J Biol Chem 275, 1037010378.Google Scholar
Blitz, E., Viukov, S., Sharir, A., et al. (2009) Bone ridge patterning during musculoskeletal assembly is mediated through SCX regulation of Bmp4 at the tendon-skeleton junction. Devel Cell 17, 861873.Google Scholar
Blumer, M. J. F., Longato, S., Richter, E., et al. (2005) The role of cartilage canals in endochondral and perichondral bone formation: are there similarities between these two processes? J Anat 206, 359372.Google Scholar
Blumer, M. J. F., Schwarzer, C., Perez, M. T., et al. (2006) Identification and location of bone-forming cells within cartilage canals on their course into the secondary ossification centre. J Anat 208, 695707.CrossRefGoogle ScholarPubMed
Bobet, A., Einstein, H. H. (1998) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35, 863888.CrossRefGoogle Scholar
Bohndorf, K. (1996) Injuries at the articulating surfaces of bone (chondral, osteochondral, subchondral fractures and osteochondrosis dissecans). Eur J Radiol 22, 2229.Google Scholar
Bohndorf, K. (1999) Imaging of acute injuries of the articular surfaces (chondral, osteochondral and subchondral fractures). Skelet Radiol 28, 545560.Google Scholar
Bonfield, W., Behiri, J. C. (1989) Fracture toughness of natural composites with reference to cortical bone. In: Application of Fracture Mechanics to Composite Materials (ed. Friedrich, K.), pp. 615635. Amsterdam: Elsevier Science Publishers.Google Scholar
Bonnet, C. S., Walsh, D. A. (2005) Osteoarthritis, angiogenesis and inflammation. Rheumatology 44, 716.Google Scholar
Boos, N., Rieder, R., Schade, V., et al. (1995) The diagnostic accuracy of magnetic resonance imaging, work perception, and psychosocial factors in identifying symptomatic disc herniations. Spine 20, 26132625.CrossRefGoogle ScholarPubMed
Boskey, A. L., Timchak, D. M., Lane, J. M., et al. (1980) Phospholipid changes during fracture healing. Proc Soc Exp Biol Med 165, 368373.Google Scholar
Boyde, A., Firth, E. C. (2005) Musculoskeletal responses of 2-year-old Thoroughbred horses to early training. 8. Quantitative back-scattered electron scanning electron microscopy and confocal fluorescence microscopy of the epiphysis of the third metacarpal bone. NZ Vet J 53, 123132.Google Scholar
Boyde, A., Riggs, C. M., Bushby, A. J., et al. (2011) Cartilage damage involving extrusion of mineralisable matrix from the articular calcified cartilage and subchondral bone. Eur Cells Mats 21, 470478.Google Scholar
Brandt, K. D. (1994) insights into the natural history of osteoarthritis provided by the cruciate-deficient dog: an animal model of osteoarthritis. Ann NY Acad Sci 732, 199205.CrossRefGoogle Scholar
Brill, R., Wohlgemuth, W. A., Hempfling, H., et al. (2014) Dynamic impact force and association with structural damage to the knee joint: an ex-vivo study. Ann Anat 196, 456463.Google Scholar
Brinckmann, P., Biggemann, M., Hilweg, D. (1989) Prediction of the compressive strength of human lumbar vertebrae. Clin Biomech Suppl 2, 4, 127.CrossRefGoogle ScholarPubMed
Brinckmann, P., Frobin, W., Hierholzer, E., et al. (1983) Deformation of the vertebral end-plate under axial loading of the spine. Spine 8, 851856.CrossRefGoogle ScholarPubMed
Brinckmann, P., Grootenboer, H. (1991) Change of disc height, radial disc bulge, and intradiscal pressure from discectomy. An in vitro investigation on human lumbar discs. Spine 16, 641646.CrossRefGoogle Scholar
Broom, N. D. (1982) Abnormal softening in articular cartilage: its relationship to the collagen framework. Arth Rheum 25, 12091216.Google Scholar
Broom, N. D. (1984a) Further insights into the structural principles governing the function of articular cartilage. J Anat 139, 275294.Google Scholar
Broom, N. D. (1984b) The altered biomechanical state of human femoral head osteoarthritic articular cartilage. Arth Rheum 27, 10281039.Google Scholar
Broom, N. D. (1986) Structural consequences of traumatising articular cartilage. Ann Rheum Dis 45, 225234.Google Scholar
Broom, N. D. (1988) An enzymatically induced structural transformation in articular cartilage: its significance with respect to matrix breakdown. Arth Rheum 31, 210218.Google Scholar
Broom, N. D., Flachsmann, R. (2003) Physical indicators of cartilage health: the relevance of compliance, thickness, swelling and fibrillar texture. J Anat 202, 481494.Google Scholar
Broom, N. D., Marra, D. L. (1985) New structural concepts of articular cartilage demonstrated with a physical model. Connect Tiss Res 14, 18.Google Scholar
Broom, N. D., Marra, D. L. (1986) Ultrastructural evidence for fibril-to-fibril associations in articular cartilage and their functional implication. J Anat 146, 185200.Google Scholar
Broom, N. D., Ngo, T., Tham, E. (2005) Traversing the intact/fibrillated joint surface: a biomechanical interpretation. J Anat 206, 5567.Google Scholar
Broom, N. D., Oloyede, A. (1993) Experimental determination of the subchondral stress-reducing role of articular cartilage under static and dynamic compression. Clin Biomech 8, 102108.Google Scholar
Broom, N. D., Oloyede, A., Flachsmann, R., et al. (1996) Dynamic fracture characteristics of the osteochondral junction undergoing shear deformation. Med Eng Phys 18, 396404.Google Scholar
Broom, N. D., Poole, C. A. (1983) Articular cartilage collagen and proteoglycans: their functional interdependency. Arth Rheum 26, 11121119.CrossRefGoogle ScholarPubMed
Broom, N. D., Silyn-Roberts, H. (1989) The three-dimensional ‘knit’ of collagen fibrils in articular cartilage. Connect Tiss Res 23, 261277.Google Scholar
Broom, N. D., Silyn-Roberts, H. (1990) Collagen-collagen versus collagen-proteoglycan interactions in the determination of cartilage strength. Arth Rheum 33, 15121517.Google Scholar
Broom, N., Chen, M.-H., Hardy, A. (2001) A degeneration-based hypothesis for interpreting fibrillar changes in the osteoarthritic cartilage matrix. J Anat 199, 683698.Google Scholar
Brown, T., Hansen, R. J., Yorra, A. J. (1957) Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral discs. JBJS 39A, 11351164.Google Scholar
Brown, S., Rodrigues, S., Sharp, C., et al. (2017) Staying connected: structural integration at the intervertebral disc–vertebra interface of human lumbar spines. Eur Spine J 26, 248258.Google Scholar
Brown, T. D., Radin, E. L., Martin, R. B., et al. (1984) Finite element studies of some juxtarticular stress changes due to localized subchondral stiffening. J Biomech 17, 1124.Google Scholar
Brown, C. H., Steiner, M. E., Carson, E. W. (1993) The use of hamstring tendons for anterior cruciate ligament reconstruction. Technique and results. Clin Sports Med 12, 723756.CrossRefGoogle ScholarPubMed
Buckwalter, J. A. (1995) Spine update: aging and degeneration of the human intervertebral disc. Spine 20, 13071314.Google Scholar
Buckwalter, J. A., Cooper, R. R., Maynard, J. A. (1976) Elastic fibers in human intervertebral discs. JBJS 58A, 7376.Google Scholar
Buckwalter, J. A., Lane, N. E. (1997) Athletics and osteoarthritis. Am J Sport Med 25, 873881.CrossRefGoogle ScholarPubMed
Budde, B., Blumbach, K., Ylostalo, J., et al. (2005) Altered integration of matrilin–3 into cartilage extracellular matrix in the absence of collagen IX. Mol Cell Biol 25, 1046510478.Google Scholar
Bullough, P., Goodfellow, J. (1968) The significance of the fine structure of articular cartilage. JBJS 50B, 852857.Google Scholar
Bullough, P., Goodfellow, J., O’Connor, J. (1973) The relationship between degenerative changes and load-bearing in the human hip. JBJS 55B, 746758.Google Scholar
Bullough, P. G., Jagannath, A. (1983) The morphology of the calcification front in articular cartilage. JBJS 65B, 7278.Google Scholar
Bullough, P. G., Walker, P. S. (1977) The distribution of load through the knee joint and its possible significance to the observed patterns of articular cartilage breakdown. Bull Hosp Jt Dis Orthop Inst 37, 110123.Google Scholar
Bullough, P. G., Yawitz, P. S., Tafra, L., et al. (1985) Topographical variations in the morphology and biochemistry of adult canine tibia1 plateau articular cartilage. J Orth Res 3, 116.Google Scholar
Burr, D. B. (1998) Subchondral bone. In: Osteoarthritis (eds. Brandt, K. D., Doherty, M., Lohmander, L. S.), pp. 144156. Oxford: Oxford University Press.Google Scholar
Burr, D. B. (2004) Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis. Osteoarth Cart 12, S20–S30.Google Scholar
Burr, D. B., Radin, E. L. (2003) Microfractures and microcracks in subchondral bone: are they relevant to osteoarthrosis? Rheum Dis Clin Nth Am 29, 675685.Google Scholar
Buschmann, J., Burgisser, G. M. (2017) Biomechanics of Tendons and Ligaments, pp. 329. Duxford: Woodhead Publishing.Google Scholar
Butler, W. F. (1988) Comparative anatomy and development of the mammalian disc. In: The Biology of the Intervertebral Disc, Vol. 1. (ed. Ghosh, P.), pp. 84108. Boca Faton, FL: CRC Press.Google Scholar
Butler, D. L., Grood, E. S., Noyes, F. R., Zernicke, R. F., Brackett, K. (1984) Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J Biomech 17, 579596.Google Scholar
Butler, D. L., Guan, Y., Kay, M. D., et al. (1992) Location-dependent variations in the material properties of the anterior cruciate ligament. J Biomech 25, 511518.Google Scholar
Carlier, E. W. (1890) The fate of the notochord and development of the intervertebral disc in the sheep, with observations on the structure of the adult disc in these animals. J Anat Phys 24, 573584.Google Scholar
Carlstedt, C. A., Nordin, M. (1989) Biomechanics of tendons and ligaments. In: Basic Biomechanics of the Musculoskeletal System. (eds. Nordin, M. and Frankel, V. H.), pp. 5974. Philadelphia, PA: Lea and Febiger, 2nd edition.Google Scholar
Cassidy, J. J., Hiltner, A., Baer, E. (1989) Hierarchical structure of the intervertebral disc. Connect Tiss Res 23, 7588.Google Scholar
Chandraraj, S., Briggs, C. A. (1988) Role of cartilage canals in osteogenesis and growth of the vertebral centra. J Anat 158, 121136.Google Scholar
Charbonneau, N. L., Ono, R. N., Corson, G. M., et al. (2004) Fine tuning of growth factor signals depends on fibrillin microfibril networks. Birth Defects Res (Part C) 72, 3750.Google Scholar
Charnley, J. (1960). The lubrication of animal joints in relation to surgical reconstruction by arthroplasty. Ann Rheum Dis 19, 1019.Google Scholar
Chen, Ml-Hl, Broom, N. D. (1998) On the ultrastructure of softened cartilage: a possible model for structural transformation. J Anat 192, 329341.Google Scholar
Chen, M.-H., Broom, N. D. (1999) Concerning the ultrastructural origin of large-scale swelling in articular cartilage. J Anat 194, 445461.Google Scholar
Clarke, I. C. (1971) Articular cartilage: a review and scanning electron microscope study. JBJS 53B, 732750.Google Scholar
Cloyd, J. M., Elliott, D. M. (2007) Elastin content correlates with human disc degeneration in the anulus fibrosus and nucleus pulposus. Spine 32, 18261831.Google Scholar
Clark, J., Simonian, P. T. (1997) Scanning electron microscopy of ‘‘fibrillated’’ and ‘‘malacic’’ human articular cartilage: technical considerations. Micro Res Tech 37, 299313.Google Scholar
Collins, D. H. (1949) The Pathology of articular and Spinal Diseases, pp. 88. London: Edward Arnold and Co.Google Scholar
Costi, J. J., Stokes, I. A., Gardner-Morse, M., et al. (2007) Direct measurement of intervertebral disc maximum shear strain in six degrees of freedom: Motions that place disc tissue at risk of injury. J Biomech 40, 24572466.Google Scholar
Coventry, M. B. (1969) Anatomy of the intervertebral disc. Clin Orthop Rel Res 67, 915.Google Scholar
Coventry, M. B., Ghormley, R. K., Kernohan, J. W. (1945) The intervertebral disc: its microscopic anatomy and pathology. Part I: Anatomy, development, and physiology. JBJS 27, 105112.Google Scholar
Cs-Szabo, G., Roughley, P. J., Plaas, A. H. K., et al. (1995) Large and small proteoglycans of osteoarthritic and rheumatoid articular cartilage. Arth Rheum 38, 660668.Google Scholar
Dai, C., Guo, L., Yang, L., et al. (2015) Regional fibrocartilage variations in human anterior cruciate ligament tibial insertion: a histological three-dimensional reconstruction. Connective Tiss Res 56, 1824.Google Scholar
Daniel, M. (2014) Boundary cartilage lubrication: review of current concepts. Wien Med Wochenschr 164, 8894.Google Scholar
Danto, M. I., Woo, S. L.-Y. (1993) The mechanical properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates. J Orthop Res 11, 5867.Google Scholar
Dar, G., Masharawi, Y., Peleg, S., et al. (2011) The epiphyseal ring: a long forgotten anatomical structure with significant physiological function. Spine 36, 850856.Google Scholar
Day, S. M., Ostrum, R. F., Chao, E. Y. S., et al. (2000) Bone injury, regeneration, and repair. In: Orthopaedic Basic Science: Biology and Biomechanics of the Musculoskeletal System, (eds. Buckwalter, J. A., Einhorn, T. A., Simon, S. R.), pp. 371399. 2nd edition. Rosemont, IL: American Academy of Orthopaedic Surgeons.Google Scholar
Davies, D. V., Barnett, C. H., Cochrane, W., et al. (1962) Electron microscopy of articular cartilage in the young adult rabbit. Ann Rheum Dis 21, 1122.Google Scholar
Debelle, L., Tamburro, A. M. (1999) Elastin: molecular description and function. Int J Biochem Cell Biol 31, 261272.Google Scholar
Deucher, W. G., Love, J. G. (1939) Pathologic aspects of posterior protrusions of the intervertebral disks. Arch Path 27, 201211.Google Scholar
Deymier, A. C., An, Y., Boyle, J. J., et al. (2017) Micro-mechanical properties of the tendon-to-bone attachment. Acta Biomat 56, 2535.Google Scholar
Diamant, J., Keller, A., Baer, E., et al. (1972) Collagen; ultrastructure and its relation to mechanical properties as a function of ageing. Proc Roy Soc Lond B 180, 293315.Google Scholar
Dickinson, S. C., Vankemmelbeke, M. N., Buttle, D. J., et al. (2003) Cleavage of cartilage oligomeric matrix protein (thrombospondin-5) by matrix metalloproteinases and a disintegrin and metalloproteinase with thrombospondin motifs. Matrix Biol 22, 267278.Google Scholar
Dienst, M., Burks, R. T., Greis, P. E. (2002) Anatomy and biomechanics of the anterior cruciate ligament. Orthop Clin North Am 33, 605620.Google Scholar
Dolan, P., Adams, M. A. (1993) The relationship between EMG activity and extensor moment generation in the erector spinae muscles during bending and lifting activities. J Biomech 26, 513522.Google Scholar
Doschak, M. R., La Mothe, J. M., Cooper, D. M., et al. (2005) Bisphosphonates reduce bone mineral loss at ligament entheses after joint injury. Osteoarthritis Cartilage 13, 790797.Google Scholar
Drake, J. D. M., Aultman, C. D., McGill, S. M., et al. (2005) The influence of static axial torque in combined loading on intervertebral joint failure mechanics using a porcine model. Clin Biomech 20, 10381045.Google Scholar
Drake, J. D. M., Dobson, H., Callaghan, J. P. (2008) The influence of posture and loading on interfacet spacing: an investigation using magnetic resonance imaging on porcine spinal units. Spine 33, E728–E734.Google Scholar
Drake, J. D. M., Callaghan, J. P. (2008) Do flexion/extension postures affect the in vivo passive lumbar spine response to applied axial twist moments? Clin Biomech 23, 510519.Google Scholar
Duda, G. N., Eilers, M., Loh, L., et al. (2001) Chondrocyte death precedes structural damage in blunt impact trauma. Clin Orthop Rel Res 393, 302309.CrossRefGoogle Scholar
Durr, H. R., Martin, H., Pellengahr, C., et al. (2004) The cause of subchondral bone cysts in osteoarthrosis: a finite element analysis. Acta Orthop Scand 75, 554558.Google Scholar
Duthon, V. B., Barea, C., Abrassart, S., et al. (2006) Anatomy of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 14, 204213.Google Scholar
Ebeling, U., Reulen, H. J. (1992) Are there typical localisations of lumbar disc herniations? A prospective study. Acta Neurochir (Wien) 117, 143148.Google Scholar
Eberhardt, A. W., Keer, L. M., Lewis, J. L., et al. (1990) An analytical model of joint contact. J Biomech Eng 112, 407413.Google Scholar
Eberhardt, A. W., Lewis, J. L., Keer, L. M. (1991) Normal contact of elastic spheres with two elastic layers as a model of joint articulation. J Biomech Eng 113, 410417.Google Scholar
Eckstein, F., Lemberger, B., Gratzke, C., et al. (2005) In vivo cartilage deformation after different types of activity and its dependence on physical training status. Ann Rheum Dis 64, S14.23.Google Scholar
Eckstein, F., Tieschky, M., Faber, S., et al. (1998) Effect of physical exercise on cartilage volume and thickness in vivo: MR imaging study. Radiol 207, 243248.Google Scholar
Edwards, M. H., Gregson, C. L., Patel, H. P., et al. (2013) Muscle size, strength, and physical performance and their associations with bone structure in the Hertfordshire Cohort Study. J Bone Miner Res 28, 22952304.Google Scholar
Evanko, S. P., Vogel, K. G. (1990) Ultrastructure and proteoglycan composition in the developing fibrocartilaginous region of bovine tendon. Matrix 10, 420436.Google Scholar
Evans, E. J., Benjamin, M., Pemberton, D. J. (1991) Variations in the amount of calcified tissue at the attachments of the quadriceps tendon and patellar ligament in man. J Anat 174, 145151.Google Scholar
Ewalds, H. L., Wanhill, R. J. H. (1984) Fracture Mechanics, pp. 28116. London: Edward Arnold.Google Scholar
Ewers, B. J., Dvoracek-Driksna, D., Orth, M. W., et al. (2001) The extent of matrix damage and chondrocyte death in mechanically traumatized articular cartilage explants depends on rate of loading. J Orthop Res 19, 779784.Google Scholar
Eyre, D. R. (1979) Biochemistry of the intervertebral disc. Int Rev Connect Tiss Res 8, 227291.Google Scholar
Eyre, D. (2002) Collagen of articular cartilage. Arthritis Res 4, 3035.Google Scholar
Eyre, D. R., Muir, H. (1976) Types I and II collagens in intervertebral disc: interchanging radial distributions in annulus fibrosus. Biochem J 157, 267270.Google Scholar
Eyre, D. R., Muir, H. (1977) Quantitative analysis of types I and II collagens in human intervertebral discs at various ages. Biochimica et Biophysica Acta 492, 2942.Google Scholar
Eyre, D. R., Pietka, T., Weis, M. A., et al. (2004) Covalent cross-linking of the NC1 domain of collagen type IX to collagen type II in cartilage. J Biol Chem 279, 25682574.Google Scholar
Eyre, D. R., Weis, M. A., Wu, J.-J. (2006) Articular cartilage collagen: an irreplaceable framework? Eur Cells Mats 12, 5763.Google Scholar
Eyre, D. R., Weis, M. A., Wu, J.-J. (2008) Advances in collagen cross-link analysis. Methods 45, 6574.Google Scholar
Fardon, D. F., Milette, P. C. (2001) Nomenclature and classification of lumbar disc pathology. Spine 26, E93–E113.Google Scholar
Fawns, H. T., Landells, J. W. (1953) Histochemical studies of rheumatic conditions: observations on the fine structures of the matrix of normal bone and cartilage. Ann Rheum Dis 12, 105113.Google Scholar
Fazey, P. J., Song, S., Monsas, A., et al. (2006) An MRI investigation of intervertebral disc deformation in response to torsion. Clin Biomech 21, 538542.Google Scholar
Fennell, A. J., Jones, A. P., Hukins, D. W. L. (1996) Migration of the nucleus pulposus within the intervertebral disc during flexion and extension of the spine. Spine 21, 27532757.Google Scholar
Ferretti, M., Ekdahl, M., Shen, W., et al. (2007a) Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthroscopy 23, 12181225.Google Scholar
Ferretti, M., Levicoff, E. A., Macpherson, T. A., et al. (2007b) The fetal anterior cruciate ligament: an anatomic and histologic study. Arthroscopy 23, 278283.Google Scholar
Fisher, A. G. T. (1920) A study of loose bodies composed of cartilage or of cartilage and bone occurring in Joints. With special reference to their pathology and etiology. Brit J Surg VIII, 493523.Google Scholar
Flachsmann, R., Broom, N. D., Hardy, A. E., et al. (2000) Why is the adolescent joint particularly susceptible to osteochondral shear fracture? Clin Orthop Rel Res 381, 212221.Google Scholar
Flachsmann, R., Broom, N. D., Oloyede, A. (1995) A biomechanical investigation of the unconstrained shear failure of the osteochondral region under impact loading. Clin Biomech 10, 156165.Google Scholar
Flachsmann, R., Kistler, M., Rentzios, A., et al. (2006) Influence of an initiating microsplit on the resistance to compression-induced rupture of the articular surface. Conn Tiss Res 47, 7784.Google Scholar
Fleming, B. C., Renstrom, P. A., Beynnon, B. D., et al. (2001) The effect of weight-bearing and external loading on anterior cruciate ligament strain. J Biomech 34, 163170.Google Scholar
Fong, D. T.-P., Chu, V. W.-S., Chan, K.-M. (2012) Myoelectric stimulation on peroneal muscles resists simulated ankle sprain motion. J Biomech 45, 20552057.Google Scholar
Franchi, M., Fini, M., Quaranta, M., et al. (2007) Crimp morphology in relaxed and stretched rat Achilles tendon. J Anat 210, 17.Google Scholar
Franchi, M., Quaranta, M., Macciocca, M., et al. (2009) Structure relates to elastic recoil and functional role in quadriceps tendon and patellar ligament. Micron 40, 370377.Google Scholar
Francois, R. J. (1975) Ligament insertions into the human lumbar vertebral body. Acta Anat 91, 467480.Google Scholar
Francois, R. J. (1982) Letter to the editor. Spine 7, 522.Google Scholar
François, R. J., Braun, J., Khan, M. A. (2001) Entheses and enthesitis: a histopathologic review and relevance to spondyloarthritides. Curr Opin Rheumatol 13, 255264.Google Scholar
Francois, R. J., Dhem, A. (1974) Microradiographic study of the normal human vertebral body. Acta Anat 89, 251265.Google Scholar
Frost, H. M. (1987) Bone “mass” and the mechanostat: a proposal. Anat Rec 219, 19.Google Scholar
Frost, H. M. (1994) Perspectives: a biomechanical model of the pathogenesis of arthroses. Anat Rec 240, 1931.Google Scholar
Fujimaki, Y., Thorhauer, E., Sasaki, Y., et al. (2016) Quantitative in situ analysis of the anterior cruciate ligament: length, midsubstance cross-sectional area, and insertion site areas. Am J Sports Med 44, 118125.Google Scholar
Fukashiro, S., Komi, P. V., Järvinen, M., et al. (1995) In vivo Achilles tendon loading during jumping in humans. Eur J Appl Physiol Occup Physiol 71, 453458.Google Scholar
Fukuta, S., Oyama, M., Kavalkovich, K., et al. (1998) Identification of types II, IX and X collagens at the insertion site of the bovine achilles tendon. Matrix Biol 17, 6573.Google Scholar
Gabriel, M. T., Wong, E. K., Woo, S. L.-Y. (2004) Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J Orthop Res 22, 8589.Google Scholar
Ganey, T. M., Ogden, J. A., Sasse, J., et al. (1995) Basement membrane composition of cartilage canals during development and ossification of the epiphysis. Anat Rec 241, 425437.Google Scholar
Gao, J., Messner, K. (1996) Quantitative comparison of soft tissue-bone interface at chondral ligament insertions in the rabbit knee joint. J Anat 188, 367373.Google Scholar
Gao, J., Messner, K., Ralphs, J. R., et al. (1996) An immunohistochemical study of enthesis development in the medial collateral ligament of the rat knee joint. Anat Embryol 194, 399406.Google Scholar
Gathercole, L. J., Keller, A. (1991) Crimp morphology in the fibre-forming collagens. Matrix 11, 214234.Google Scholar
Gautieri, A., Vesentini, S., Redaelli, A., et al. (2011) Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett 11, 757766.Google Scholar
Genin, G. M., Kent, A., Birman, V., et al. (2009) Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys J 97, 976985.Google Scholar
Genin, G. M., Thomopoulos, S. (2017) Unification through disarray. Nat Matls 16, 607608.Google Scholar
Gerber, H. P., Vu, T. H.. Ryan, A. M., et al. (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5, 623628.Google Scholar
Ghosh, P., Bushell, G. R., Taylor, T. F. K., et al. (1977) Collagens, elastin and noncollagenous protein of the intervertebral disk. Clin Orthop Rel Res 129, 124132.Google Scholar
Ghosh, P., Taylor, T. K. F., Horsburgh, B. A. (1975) The composition and protein metabolism in the immature rabbit intervertebral disc. Cell Tiss Res 163, 223238.Google Scholar
Gibbons, M. C., Singh, A., Engler, A. J., et al. (2017) The role of mechanobiology in progression of rotator cuff muscle atrophy and degeneration. J Orthop Res 36, 546556.Google Scholar
Gibson, G. (1998) Active role of chondrocyte apoptosis in endochondral ossification. Micro Res Tech 43, 191204.Google Scholar
Giori, N. J., Beaupre, G. S., Carter, D. R. (1993) Cellular shape and pressure may mediate mechanical control of tissue composition in tendons. J Orthop Res 11, 581591.Google Scholar
Giuliani, J. R., Kilcoyne, K. G., Rue, J. P. (2009) Anterior cruciate ligament anatomy: a review of the anteromedial and posterolateral bundles. J Knee Surg 22, 148154.Google Scholar
Goel, V. K., Monroe, B. T., Gilbertson, L. G., et al. (1995) Interlaminar shear stresses and laminae separation in a disc. Spine 20, 689698.Google Scholar
Goh, K. L., Holmes, D. F., Lu, Y., et al. (2012) Bimodal collagen fibril diameter distributions direct age-related variations in tendon resilience and resistance to rupture. J Appl Physio 113, 878888.Google Scholar
Goodfellow, J. W., Bullough, P. G. (1967) The pattern of ageing of the articular cartilage of the elbow joint. JBJS 49B, 175181.Google Scholar
Gordon, S. J., Yang, K. H., Mayer, P. J., et al. (1991) Mechanism of disc rupture: a preliminary report. Spine 16, 450456.Google Scholar
Gosline, J. M. (1980) The elastic properties of rubber-like proteins and highly extensible tissues. Symposia Soc Exp Biol 34, 332357.Google Scholar
Gray, W. R., Sandberg, L. B., Foster, J. A. (1973) Molecular model for elastin structure and function. Nature 246, 461466.Google Scholar
Green, E. (2012) Mechanisms of Elasticity in Elastic Proteins. Doctoral Thesis. University of Exeter.Google Scholar
Green, E., Ellis, R., Winlove, P. (2008) The molecular structure and physical properties of elastin fibers as revealed by Raman microspectroscopy. Biopolymers 89, 931940.Google Scholar
Green, T. P., Adams, M. A., Dolan, P. (1993) Tensile properties of the annulus fibrosus: II. Ultimate tensile strength and fatigue life. Eur Spine J 2, 209214.Google Scholar
Green, W. T., Martin, G. N., Eanes, E. D., et al. (1970) Microradiographic study of the calcified layer of articular cartilage. Arch Path 90, 151158.Google Scholar
Griffith, L. G., Naughton, G. (2002) Tissue engineering – current challenges and expanding opportunities. Science 295, 10091014.Google Scholar
Grignon, B., Grignon, Y., Mainard, D., et al. (2000) The structure of the cartilaginous end-plates in elder people. Surg Radiol Anat 22, 1319.Google Scholar
Gunzburg, R., Hutton, W. C., Crane, G. (1992) Role of the capsulo-ligamentous structures in rotation and combined fexion-rotation of the lumbar spine. J Spinal Disorders 5, 17.Google Scholar
Gunzburg, R., Hutton, W., Fraser, R. (1991) Axial rotation of the lumbar spine and the effect of flexion. An in vitro and in vivo biomechanical study. Spine 16, 2228.Google Scholar
Hagg, R., Bruckner, P., Hedbom, E. (1998) Cartilage fibrils of mammals are biochemically heterogeneous: differential distribution of decorin and collagen IX. J Cell Biol 142, 285294.Google Scholar
Hall, R. H. (1952) Energy and entropy effects on the elasticity of collagen fibres. Soc Leather Tech Chem 36, 137148.Google Scholar
Han, X. A., Abd Razak, H. R. B., Tan, H. C. A. (2014) The truth behind subchondral cysts in osteoarthritis of the knee. Open Orthop J 8, 710.Google Scholar
Han, S. K., Chen, C.-W., Wierwille, J., et al. (2015) Three dimensional mesoscale analysis of translamellar cross-bridge morphologies in the annulus fibrosus using optical coherence tomography. J Orthop Res 33, 304311.Google Scholar
Hansen, H. J., Ullberg, S. (1961) Uptake of S35 in the intervertebral discs after injection of S35-sulphate. An autoradiographic study. Acta Orthop Scand 30, 14.Google Scholar
Hansen, K. A., Weiss, J. A., Barton, J. K. (2002) Recruitment of tendon crimp with applied tensile strain. J Biomech Eng 124, 7277.Google Scholar
Happey, F., Johnson, A. G., Naylor, A., et al. (1964) Preliminary observations concerning the fine structure of the intervertebral disc. JBJS 46B, 563567.Google Scholar
Harada, Y., Nakahara, S. (1989) A pathological study of lumbar disc herniation in the elderly. Spine 14, 10201024.Google Scholar
Harfe, D. T., Chuinard, C. R., Espinoza, L. M., et al. (1998) Elongation patterns of the collateral ligaments of the human knee. Clin Biomech 13, 163175.Google Scholar
Hargrave-Thomas, E. J., Thambyah, A., McGlashan, S. R., et al. (2013) The bovine patella as a model of early osteoarthritis. J Anat 223, 651664.Google Scholar
Harkness, R. D. (1961) Biological functions of collagen. Biol Rev 36, 399463.Google Scholar
Harper, J., Klagsbrun, M. (1999) Cartilage to bone – angiogenesis leads the way. Nat Med 5, 617618.Google Scholar
Harrison, M. H. M., Schajowicz, F., Trueta, J. (1953) Osteoarthritis of the hip: a study of the nature and evolution of the disease. JBJS 35B, 598626.Google Scholar
Harrison, S. M., Whitton, R. C., Kawcak, C. E., et al. (2014) Evaluation of a subject-specific finite-element model of the equine metacarpophalangeal joint under physiological load. J Biomech 47, 6573.Google Scholar
Hashizume, H. (1980) Three-dimensional architecture and development of lumbar intervertebral discs. Acta Med Okayama 34, 301314.Google Scholar
Haut, R. C. (1989) Contact pressures in the patellofemoral joint during impact loading on the human flexed knee. J Orthop Res 7, 272280.Google Scholar
Haut, R. C., Ide, T. M., De Camp, C. E. (1995) Mechanical responses of the rabbit patella-femoral joint to blunt impact. J Biomech Eng 117, 402408.Google Scholar
Heathfield, T. F., Onnerfjord, P., Dahlberg, L., et al. (2004) Cleavage of fibromodulin in cartilage explants involves removal of the N-terminal tyrosine sulfate-rich region by proteolysis at a site that is sensitive to matrix metalloproteinase-13. J Biol Chem 279, 62866295.Google Scholar
Heinegard, D. (2009) Proteoglycans and more – from molecules to biology. Int J Exp Path 90, 575586.Google Scholar
Heinegard, D., Saxne, T. (2011) The role of the cartilage matrix in osteoarthritis. Nat Rev Rheumatol 7, 5056.Google Scholar
Herrero, C. F. P. S., Garcia, S. B., Garcia, L. V., et al. (2014) Endplate changes related to age and vertebral segment. Biomed Res Int Art ID 545017, 16 (http://dx.doi.org/10.1155/2014/545017).Google Scholar
Hickey, D. S., Hukins, D. W. L. (1980) Relation between the structure of the annulus fibrosus and the function and failure of the intervertebral disc. Spine 5, 106116.Google Scholar
Hilton, R. C., Ball, J., Benn, R. T. (1976) Vertebral end-plate lesions (Schmorl’s nodes) in the dorsolumbar spine. Ann Rheum Dis 35, 127132.Google Scholar
Hindle, R. J., Pearcy, M. J. (1989) Rotational mobility of the human back in forward flexion. J Biomed Eng 11, 219223.Google Scholar
Hirsch, C., Schajowicz, F. (1952) Studies on structural changes in the lumbar annulus fibrosus. Acta Orthop Scand 22, 184231.Google Scholar
Hoeve, C. A. J., Flory, P. J. (1958) The elastic properties of elastin. J Am Chem Soc 80, 65236526.Google Scholar
Hoeve, C. A. J., Flory, P. J. (1974) The elastic properties of elastin. Biopolymers 13, 677686.Google Scholar
Holmdahl, D. E., Ingelmark, B. E. (1950) The contact between the articular cartilage and the medullary cavities of the bone. Acta Orthop 20, 156165.Google Scholar
Holzapfel, G. A., Schulze-Bauer, C. A. J., Feigl, G., et al. (2005) Single lamellar mechanics of the human lumbar annulus fibrosus. Biomech Model Mechanobiol 3, 125140.Google Scholar
Horii, H., Nemat-Nasser, S. (1985) Compression-induced microcrack growth in brittle solids: axial splitting and shear failure. J Geophys Res 90, 31053125.Google Scholar
Huang, H., Han, Q. (2008) Buckling of imperfect functionally graded cylindrical shells under axial compression. Eur J Mech A/Solids 27, 10261036.Google Scholar
Hukins, D. W. L. (1992) A simple model for the function of proteoglycans and collagen in the response to compression of the intervertebral disc. Proc R Soc Lond. B 249, 281285.Google Scholar
Hukins, D. W. L., Aspden, R. M. (1985) Composition and properties of connective tissues. TIBS July, 260264.Google Scholar
Hukins, D. W. L., Aspden, R. M., Yarker, Y. E. (1984) Fibre reinforcement and mechanical stability in articular cartilage. Eng Med 13, 153156.Google Scholar
Hull, M. L., Berns, G. S., Varma, H., et al. (1996) Strain in the medial collateral ligament of the human knee under single and combined loads. J Biomech 29, 199206.Google Scholar
Humzah, M. D., Soames, R. W. (1988) Human intervertebral disc: structure and function. Anat Rec 220, 337356.Google Scholar
Hunt, C. D., Ollerich, D. A., Nielsen, F. H. (1979) Morphology of the perforating cartilage canals in the proximal tibia1 growth plate of the chick. Anat Rec 194, 143158.Google Scholar
Hunter, W. (1742) Of the structure and diseases of articulating cartilage. Phil Trans 42, 514521.Google Scholar
Hutton, W. C., Adams, M. A. (1982) Can the lumbar spine be crushed in heavy lifting? Spine 7, 585590.Google Scholar
Hwang, W. S., Li, B., Jin, L. H., et al. (1992) Collagen fibril structure of normal, aging, and osteoarthritic cartilage. J Path 167, 425433.Google Scholar
Iatridis, J. C., Gwynn, I. (2004) Mechanisms for mechanical damage in the intervertebral disc annulus fibrosus. J Biomech 37, 11651175.Google Scholar
Imai, N., Tomatsu, T., Okamoto, H., et al. (1989) Clinical and roentgenological studies on malalignment disorders of the patello-femoral joint. Part III: Lesions of the patellar cartilage and subchondral bone associated with patello-femoral malalignment. J Jpn Orthop Assoc 63, 117.Google Scholar
Imhof, H., Sulzbacher, I., Grampp, S., et al. (2000) Subchondral bone and cartilage disease: a rediscovered functional unit. Invest Rad 35, 581588.Google Scholar
Imran, A., Huss, R. A., Holstein, H., et al. (2000) The variation in the orientations and moment arms of the knee extensor and flexor muscle tendons with increasing muscle force: a mathematical analysis. J Eng Med 214, 277286.Google Scholar
Inoue, H. (1981) Three-dimensional architecture of lumbar intervertebral discs. Spine 6, 139146.Google Scholar
Inoue, H., Takeda, T. (1975) Three-dimensional observation of collagen framework of lumbar intervertebral discs. Acta Orthop Scand 46, 949956.Google Scholar
Irarrázaval, S., Albers, M., Chao, T., et al. (2017) Gross, arthroscopic, and radiographic anatomies of the anterior cruciate ligament: foundations for anterior cruciate ligament surgery. Clinics Sports Med 36, 923.Google Scholar
Jahnke, M. R., McDevitt, C. A. (1988) Proteoglycans of the human intervertebral disc: electrophoretic heterogeneity of the aggregating proteoglycans of the nucleus pulposus. Biochem J 251, 347356.Google Scholar
Jayson, M. I. V., Herbert, C. M., Barks, J. S. (1973) Intervertebral discs: nuclear morphology and bursting pressures. Ann Rheum Dis 32, 308315.Google Scholar
Jeffcott, L. B., Kold, S. E., Melsen, F. (1983) Aspects of the pathology of stifle bone cysts in the horse. Equine Vet J 15, 304311.Google Scholar
Jeffrey, J. E., Gregory, D. W., Aspden, R. M. (1995) Matrix damage and chondrocyte viability following a single impact load on articular cartilage. Arch Biochem Biophys 322, 8796.Google Scholar
Joe, E., Lee, J. W., Park, K. W., et al. (2015) Herniation of cartilaginous endplates in the lumbar spine: MRI findings. Am J Roentgenol 204, 10751081.Google Scholar
Johnson, L. C. (1959) Kinetics of osteoarthritis. Lab Invest 8, 12231241.Google Scholar
Johnson, E. F., Berryman, H., Mitchell, R., et al. (1985) Elastic fibres in the anulus fibrosus of the adult human lumbar intervertebral disc. A preliminary report. J Anat 143, 5763.Google Scholar
Johnson, E. F., Caldwell, R. W., Berryman, H. E., et al. (1984) Elastic fibers in the annulus fibrosus of the dog intervertebral disc. Acta Anat 118, 238242.Google Scholar
Johnson, E. F., Chetty, K., Moore, I. M., et al. (1982) The distribution and arrangement of elastic fibres in the intervertebral disc of the adult human. J Anat 135, 301309.Google Scholar
Johnson-Nurse, C., Dandy, D. J. (1985) Fracture-separation of articular cartilage in the adult knee. JBJS 67B, 4243.Google Scholar
Johnstone, B., Markopoulos, M., Neame, P., et al. (1993) Identification and characterization of glycanated and non-glycanated forms of biglycan and decorin in the human intervertebral disc. Biochem J 292, 661666.Google Scholar
Kannus, P. (2000) Structure of the tendon connective tissue. Scand J Med Sci Sports 10, 312320.Google Scholar
Kastelic, J., Baer, E. (1980) Deformation in tendon collagen. Soc Exp Biol Symp XXXIV, 397435.Google Scholar
Kastelic, J., Galeski, A., Baer, E. (1978) The multicomposite structure of tendon. Connect Tiss Res 6, 1123.Google Scholar
Kear, M., Smith, R. N. (1975) A method for recording tendon strain in sheep during locomotion. Acta Orthop Scand 46, 896905.Google Scholar
Kelsey, J. L., Githens, P. B., White, A. A., et al. (1984) An epidemiologic study of lifting and twisting on the job and risk for acute prolapsed lumbar intervertebral disc. J Orthop Res 2, 6166.Google Scholar
Kennedy, J. C., Grainger, R. W., McGraw, R. W. (1966) Osteochondral fractures of the femoral condyles. JBJS 48B, 436440.Google Scholar
Kennedy, J. C., Weinberg, H. W., Wilson, A. S. (1974) The anatomy and function of the anterior cruciate ligament. J Bone Joint Surg 56-A, 223235.Google Scholar
Kerin, A. J., Wisnom, M. R., Adams, M. A. (1998) The compressive strength of articular cartilage. Proc Instn Mech Engrs 212 Part H, 273280.Google Scholar
Keyes, D. C., Compere, E. L. (1932) The normal and pathological physiology of the nucleus pulposus of the intervertebral disc: an anatomical, clinical, and experimental study. JBJS 14A, 897938.Google Scholar
Kielty, C. M., Weiss, T. J., Haston, L., et al. (2002) Fibrillin-rich microfibrils: elastic biopolymers of the extracellular matrix. J Muscle Res Cell Motility 23, 581596.Google Scholar
Killian, M. L., Cavinatto, L., Galatz, L. M., et al. (2012) The role of mechanobiology in tendon healing. J Shoulder Elbow Surg 21, 228237.Google Scholar
Kim, W., Thambyah, A., Broom, N. (2012) Does prior sustained compression make cartilage-on-bone more vulnerable to trauma? Clin Biomech 27, 637645.Google Scholar
Kirby, M. C., Sikoryn, T. A., Hukins, D. W., et al. (1989) Structure and mechanical properties of the longitudinal ligaments and ligamentum flavum of the spine. J Biomed Eng 11, 192196.Google Scholar
Kirsch, T. (2006) Determinants of pathological mineralization. Curr Opin Rheumatol 18, 174180.Google Scholar
Kirsch, T., Nah, H.-D., Shapiro, I. M., et al. (1997) Regulated production of mineralization-competent matrix vesicles in hypertrophic chondrocytes. J Cell Biol 137, 11491160.Google Scholar
Knese, K. H. (1957) Diaphysial Chondral Osteogenesis Before Birth. Z Zellforsch Mikrosk Anat 47, 80123.Google Scholar
Knese, K. H., Biermann, H. (1958) Osteogenesis in tendon and ligament insertions in the area of the original chondral apophyses. Z Zellforsch Mikrosk Anat 49, 142187.Google Scholar
Knop-Jergas, B. M., Zucherman, J. F., Hsu, K. Y., et al. (1996) Anatomic position of a herniated nucleus pulposus predicts the outcome of lumbar discectomy. J Spinal Disord 9, 246250.Google Scholar
Knudson, C. B., Knudson, W. (2001) Cartilage proteoglycans. Cell Dev Biol 12, 6978.Google Scholar
Koizumi, M. (1997) FGM activities in Japan. Composites Pt B 28, 14.Google Scholar
Kopf, S., Musahl, V., Tashman, S., et al. (2009) A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc 17, 213219.Google Scholar
Korol, R. M., Finlay, H. M., Josseau, M. J., et al. (2007) Fluorescence spectroscopy and birefringence of molecular changes in maturing rat tail tendon. J Biomed Optics 12, 024011. doi:10.1117/1.2714055.Google Scholar
Kuhle, J., Angele, P., Balcarek, P., et al. (2013) Treatment of osteochondral fractures of the knee: a meta-analysis of available scientific evidence. Int Orthop (SICOT) 37, 23852394.Google Scholar
Kumai, T., Takakura, Y., Rufai, A., et al. (2002) The functional anatomy of the human anterior talofibular ligament in relation to ankle sprains. J Anat 200, 457465.Google Scholar
Kumar, P., Oka, M., Nakamura, T., et al. (1991) Mechanical strength of osteochondral junction. Jpn Orthop Assoc 65, 10701077.Google Scholar
Laffosse, J. M., Kinkpe, C., Gomez-Brouchet, A., et al. (2009) Micro-computed tomography study of the subchondral bone of the vertebral endplates in a porcine model: correlations with histomorphometric parameters. Surg Radiol Anat 32, 335341.Google Scholar
Lama, P., Le Maitre, C. L., Dolan, P., et al. (2013) Do intervertebral discs degenerate before they herniate, or after? Bone Joint J 95B, 11271133.Google Scholar
Lama, P., Zehra, U., Balkovec, C., et al. (2014) Significance of cartilage endplate within herniated disc tissue. Eur Spine J 23, 18691877.Google Scholar
Landells, J. W. (1953) The bone cysts of osteoarthritis. JBJS 35B, 643649.Google Scholar
Landells, J. W. (1957) The reactions of injured human articular cartilage. JBJS 39B, 548562.Google Scholar
Lane, L. B., Bullough, P. G. (1980) Age-related changes in the thickness of the calcified zone and the number of tidemarks in adult human articular cartilage. JBJS 62B, 372375.Google Scholar
Lane, L. B., Villacin, A., Bullough, P. G. (1977) The vascularity and remodelling of subchondral bone and calcified cartilage in adult human femoral and humeral heads. JBJS 59B, 272278.Google Scholar
Lane, J. M., Weiss, C. (1975) Review of articular cartilage collagen research. Arth Rheum 18, 553562.Google Scholar
Lang, W. (1968) Nomarski differential interference-contrast microscopy. Zeiss Information 70, 114120.Google Scholar
Lanyon, L. E. (1987) Functional strain in bone tissue as an objective and controlling stimulus for adaptive bone remodelling. J Biomech 20, 10831093.Google Scholar
Laurencin, C. T., Freeman, J. W. (2005) Ligament tissue engineering: an evolutionary materials science approach. Biomaterials 26, 75307536.Google Scholar
Legnani, C., Ventura, A., Terzaghi, C., et al. (2010) Anterior cruciate ligament reconstruction with synthetic grafts. A review of literature. Int Orthop 34, 465471.Google Scholar
Lemperg, R. (1971) The subchondral bone plate of the femoral head in adult rabbits: I. Spontaneous remodelling studied by microradiography and tetracycline labelling. Virchows Arch Abt A Path Anat 352, 113.Google Scholar
Lewis, J. L., Deloria, L. B., Oyen-Tiesma, M., et al. (2003) Cell death after cartilage impact occurs around matrix cracks. J Orthop Res 21, 881887.Google Scholar
Li, B., Daggett, V. (2002) Molecular basis for the extensibility of elastin. J Musc Res Cell Motility 23, 561573.Google Scholar
Li, X., Haut, R. C., Altiero, N. J. (1995) An analytical model to study blunt impact response of the rabbit P-F joint. J Biomech Eng 117, 485491.Google Scholar
Li, G., Yin, J., Gao, J., et al. (2013) Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arth Res Therap 15, 223235.Google Scholar
Lin, H. S., Liu, Y. K., Adams, K. H. (1978) Mechanical response of the lumbar intervertebral joint under physiological (complex) loading. JBJS 60A, 4155.Google Scholar
Liu, H.-K., Liao, W.-C., Tseng, L., et al. (2004) Compression strength of pre-damaged concrete cylinders reinforced by non-adhesive filament wound composites. Composites Pt A 35, 281292.Google Scholar
Loitz, B., Zernicke, R. F. (1992) Strenuous exercise-induced remodelling of mature bone: relationships between in vivo strains and bone mechanics. J Exp Biol 170, 118.Google Scholar
Lothe, K., Spycher, M. A., Ruttner, J. R. (1973) “Matrix-streaks”: a peculiar pattern in the cartilage of the femoral head of ageing human subjects. JBJS 55B, 581587.Google Scholar
Love, J. G., Walsh, M. N. (1940) Intraspinal protrusion of intervertebral disks. Arch Surg 40, 454484.Google Scholar
Lu, H. H., Subramony, S. D., Boushell, M. K., et al. (2010) Tissue engineering strategies for the regeneration of orthopedic interfaces. Ann Biomed Eng 38, 21422154.Google Scholar
Lu, Y. M., Hutton, W. C., Gharpuray, V. M. (1996) Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model. Spine 21, 25702579.Google Scholar
Lu, H. H., Thomopoulos, S. (2013) Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu Rev Biomed Eng 15, 201226.Google Scholar
Liu, Y., Birman, V., Chen, C., et al. (2011) Mechanisms of bimaterial attachment at the interface of tendon to bone. J Eng Mater Technol 133, doi:10.1115/1.4002641.Google Scholar
Lucas, S. R., Bass, C. R., Crandall, J. R., et al. (2009) Viscoelastic and failure properties of spine ligament collagen fascicles. Biomech Model Mechanobiol 8, 487498.Google Scholar
Lundin, O., Ekstrom, L., Hellstrom, M., et al. (1998) Injuries in the adolescent porcine spine exposed to mechanical compression. Spine 23, 25742579.Google Scholar
Lutfi, A. M. (1970) Mode of growth, fate and functions of cartilage canals. J Anat 106, 135145.Google Scholar
MacConaill, M. A. (1932) The function of intra-articular fibrocartilages, with special reference to the knee and inferior radio-ulnar joints. J Anat 66, 210227.Google Scholar
MacConaill, M. A. (1951) The mechanical structure of articulating cartilage. JBJS 33B, 251257.Google Scholar
Maezawa, S., Muro, T. (1992) Pain provocation at lumbar discography as analysed by computed tomography/discography. Spine 17, 13091315.Google Scholar
Mannion, A. F., Adams, M. A., Dolan, P. (2000) Sudden and unexpected loading generates high forces on the lumbar spine. Spine 25, 842852.Google Scholar
Mapp, P. I., Avery, P. S., McWilliams, D. F., et al. (2008) Angiogenesis in two animal models of osteoarthritis. Osteoarth Cart 16, 6169.Google Scholar
Marchand, F., Ahmed, A. M. (1990) Investigation of the laminate structure of lumbar disc annulus fibrosus. Spine 15, 402410.Google Scholar
Markolf, K. L., Jackson, S. R., Foster, B., et al. (2014) ACL forces and knee kinematics produced by axial tibial compression during a passive flexion-extension cycle. J Orthop Res 32, 8995.Google Scholar
Maroudas, A. (1968) Physicochemical properties of cartilage in the light of ion exchange theory. Biophys J 8, 575595.Google Scholar
Maroudas, A. (1976) Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260, 808809.Google Scholar
Maroudas, A., Bullough, P. (1968) Permeability of articular cartilage. Nature 219, 12601261.Google Scholar
Maroudas, A., Bullough, P., Swanson, S. A. V., et al. (1968) The permeability of articular cartilage. JBJS 50B, 166177.Google Scholar
Maroudas, A., Mizrahi, J., Katz, E. P., et al. (1986) Physicochemical properties and functional behaviour of normal and osteoarthritic human cartilage. In: Articular Cartilage Biochemistry (eds. Kuettner, K. E., Schleyerbach, R., Hascall, V. C.), pp. 311327. New York, NY: Raven Press.Google Scholar
Maroudas, A., Stockwell, R. A., Nachemson, A., et al. (1975) Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J Anat 120, 113130.Google Scholar
Maroudas, A., Venn, M. (1977) Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. Ann Rheum Dis 36, 399406.Google Scholar
Maroudas, A., Ziv, I., Weisman, N., et al. (1985) Studies of hydration and swelling pressure in normal and osteoarthritic cartilage. Biorheol 22, 159169.Google Scholar
Martin, R. B., Burr, D. M., Sharkey, N. A. (1998) Skeletal Tissue Mechanics, pp. 2979. New York: Springer-Verlag.Google Scholar
Matyas, J. R., Anton, M. G., Shrive, N. G., et al. (1995) Stress governs tissue phenotype at the femoral insertion of the rabbit MCL. J Biomech 28, 147157.Google Scholar
Matyas, J. R., Bodie, D., Andersen, M., et al. (1990) The developmental morphology of a “periosteal” ligament insertion: growth and maturation of the tibial insertion of the rabbit medial collateral ligament. J Orthop Res 8, 412424.Google Scholar
Matthewson, M. H., Dandy, D. J. (1978) Osteochondral fractures of the lateral femoral condyle: a result of indirect violence to the knee. JBJS 60B, 199202.Google Scholar
McCutchen, C. W. (1962a) Animal joints and weeping lubrication. New Scientist No. 301, 412415.Google Scholar
McCutchen, C. W. (1962b) The frictional properties of animal joints. Wear 5, 117.Google Scholar
McCutchen, C. W. (1983) Joint lubrication. Bull Hosp Jt Dis Orthop Inst 43, 118129.Google Scholar
McCutchen, C. W. (1990) Joint lubrication: Lysenko revisited. The Kroc Memorial Lecture, presented at Massachusetts Institute of Technology, 17 January 1990.Google Scholar
McKibbin, B. (1978) The biology of fracture healing in long bones. JBJS 60B, 150162.Google Scholar
McNary, S. M., Athanasiou, K. A., Reddi, A. H. (2012) Engineering lubrication in articular cartilage. Tissue Eng Part B 18, 88100.Google Scholar
McNully, D. S., Adams, M. A., Goodship, A. E. (1993) Can intervertebral disc prolapse be predicted by disc mechanics? Spine 18, 15251530.Google Scholar
Meachim, G. (1972) Light microscopy of Indian ink preparations of fibrillated cartilage. Ann Rheum Dis 31, 457464.Google Scholar
Meachim, G. (1976) Cartilage fibrillation on the lateral tibial plateau in Liverpool necropsies. J Anat 121, 97106.Google Scholar
Meachin, G., Bentley, G. (1978) Horizontal splitting in patellar articular cartilage. Arth Rheum 21, 669674.Google Scholar
Melrose, J., Fuller, E. S., Roughley, P. J., et al. (2008) Fragmentation of decorin, biglycan, lumican and keratocan is elevated in degenerate human meniscus, knee and hip articular cartilages compared with age-matched macroscopically normal and control tissues. Arth Res Therapy 10, R79 (doi:10.1186/ar2453).Google Scholar
Melrose, J., Ghosh, P., Taylor, T. K. F. (2001) A comparative analysis of the differential spatial and temporal distributions of the large (aggrecan, versican) and small (decorin, biglycan, fibromodulin) proteoglycans of the intervertebral disc. J Anat 198, 315.Google Scholar
Mente, P., Lewis, J. (1994) Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J Orthop Res 12, 637647.Google Scholar
Meyer, K. H., Ferri, C. (1937) Die elastischen eigenschaften der elastischen und der kollagenen fasern und ihre molekulare deutung. Pflugers Archiv für die Gesamte Physiologie 238, 7890.Google Scholar
Michalek, A. J., Buckley, M. R., Bonassar, L. J., et al. (2009) Measurement of local strains in intervertebral disc annulus fibrosus tissue under dynamic shear: Contributions of matrix fiber orientation and elastin content. J Biomech 42, 22792285.Google Scholar
Mikawa, Y., Hamagami, H., Shikata, J., et al. (1986) Elastin in the human intervertebral disk: a histological and biochemical study comparing it with elastin in the human yellow ligament. Arch Orthop Trauma Surg 105, 343349.Google Scholar
Mikos, A. G., Herring, S. W., Ochareon, P., et al. (2006) Engineering complex tissues. Tissue Eng 12, 33073338.Google Scholar
Milentijevic, D., Rubel, I. F., Liew, A. S. L., et al. (2005) An in vivo rabbit model for cartilage trauma: a preliminary study of the influence of impact stress magnitude on chondrocyte death and matrix damage. J Orthop Traum 19, 466473.Google Scholar
Milgram, J. E. (1943) Tangential osteochondral fracture of the patella. JBJS 15, 271280.Google Scholar
Milz, S., Benjamin, M., Putz, R. (2005) Molecular parameters indicating adaptation to mechanical stress in fibrous connective tissue. Adv Anat Embryol Cell Biol 178, 171.Google Scholar
Milz, S., McNeilly, C., Putz, R., et al. (1998) Fibrocartilages in the extensor tendons of the interphalangeal joints of human toes. Anat Rec 252, 264270.Google Scholar
Milz, S., Putz, R., Ralphs, J. R., et al. (1999) Fibrocartilage in the extensor tendons of the human metacarpophalangeal joints. Anat Rec 256, 139145.Google Scholar
Milz, S., Rufai, A., Buettner, A., et al. (2002) Three-dimensional reconstructions of the Achilles tendon insertion in man. J Anat 200, 145152.Google Scholar
Mithieux, S. M., Weiss, A. S. (2005) Elastin. Adv Protein Chem 70, 437461.Google Scholar
Mittelstedt, C., Becker, W. (2007) Free-edge effects in composite laminates. Appl Mech Rev 60, 217244.Google Scholar
Mixter, W. J., Barr, J. S. (1934) Rupture of the intervertebral disc with involvement of the spinal canal. N Engl J Med 211, 210215.Google Scholar
Moffat, K. L., Sun, W. H. S., Pena, P. E., et al. (2008) Characterization of the structure-function relationship at the ligament-to-bone interface. Proc Natl Acad Sci 105, 79477952.Google Scholar
Moffett, B. C., Johnson, L. C., McCabe, J. B., et al. (1964) Articular remodeling in the adult human temporomandibular joint. Am J Anat 115, 119142.Google Scholar
Momersteeg, T. J. A., Blankevoort, L., Huiskes, R., et al. (1995) The effect of variable relative insertion orientation of human knee bone-ligament-bone complexes on the tensile stiffness. J Biomech 28, 745752.Google Scholar
Moore, R. J. (2000) The vertebral end-plate: what do we know? Eur Spine J 9, 9296.Google Scholar
Moore, R. J. (2006) The vertebral endplate: disc degeneration, disc regeneration. Eur Spine J 15 (Suppl 3), 333337.Google Scholar
Moore, R. J., Vernon-Roberts, B., Fraser, R. D., et al. (1996) The origin and fate of herniated lumbar intervertebral disc tissue. Spine 21, 21492155.Google Scholar
Mosher, T. J., Liu, Y., Torok, C. M. (2010) Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running. Osteoarth Cart 18, 358364.Google Scholar
Moskowitz, R. W., Goldberg, V. M., Malemud, C. J. (1981) Metabolic responses of cartilage in experimentally induced osteoarthritis. Ann Rheum Dis 40, 584592.Google Scholar
Muir, H. (1989) Biochemical basis for cartilage degeneration, destruction and loss of function in OA. In: Mechanisms of Articular Cartilage Damage and Repair in OA (eds. Muir, H., Hirohata, K., Shichikawa, K.), pp. 3142. Toronto: Hogrefe & Huber Publishers.Google Scholar
Muir, P., Peterson, A. L., Sample, S. J., et al. (2008) Exercise-induced metacarpophalangeal joint adaptation in the Thoroughbred racehorse. J Anat 213, 706717.Google Scholar
Muller-Glauser, W., Humbel, B., Glatt, M., et al. (1986) On the role of type IX collagen in the extracellular matrix of cartilage: type IX collagen is localized to intersections of collagen fibrils. J Cell Biol 102, 19311939.Google Scholar
Murdoch, A. D., Hardingham, T. E., Eyre, D. R., et al. (2016) The development of a mature collagen network in cartilage from human bone marrow stem cells in transwell culture. Matrix Biol 50, 1626.Google Scholar
Nachemson, A. (1966) The load on lumbar disks in different positions of the body. Clin Orthop Rel Res 45, 107122.Google Scholar
Nachemson, A. L., Evans, J. H. (1968) Some mechanical properties of the third human lumbar interlaminar ligament (ligamentun flavum). J Biomech 1, 211220.Google Scholar
Neu, C. P., Komvopoulos, K., Reddi, A. H. (2008) The interface of functional biotribology and regenerative medicine in synovial joints. Tissue Eng Part B 14, 235247.Google Scholar
Nickien, M., Thambyah, A., Broom, N. (2013) How changes in fibril-level organization correlate with the macrolevel behavior of articular cartilage. WIREs Syst Biol Med 5, 495509.Google Scholar
Nickien, M., Thambyah, A., Broom, N. D. (2015) How a radial focal incision influences the internal shear distribution in articular cartilage with respect to its zonally differentiated microanatomy. J Anat 227, 315324.Google Scholar
Nimni, M. E., Harkness, R. D. (1988) Molecular structures and functions of collagen. In: Collagen Volume 1, Biochemistry. (ed. Nimni, M. E.), pp. 177. Boca Raton, FL: CRC Press.Google Scholar
Ninomiya, M., Muro, T. (1992) Pathoanatomy of lumbar disc herniation as demonstrated by computed tomography/discography. Spine 17, 13161322.Google Scholar
Niyibizi, C., Visconti, C. S., Gibson, G., et al. (1996) Identification and immunolocalization of Type X collagen at the ligament–bone interface. Biochem Biophys Res Communications 222, 584589.Google Scholar
Nordin, M., Lorenz, T., Campello, M. (1989) Biomechanics of tendons and ligaments. In: Basic Biomechanics of the Musculoskeletal System 3rd Edition. (eds. Nordin, M., Frankel, V. H.), ch. 4, Philadelphia, PA: Lea & Febiger.Google Scholar
Naylor, A., Happey, F., Macrae, T. (1954) The collagenous changes in the intervertebral disc with age and their effect on its elasticity: an X-ray crystallographic study. Br Med J 2, 570573.Google Scholar
Norrdin, R. W., Kawcak, C. E., Capwell, B. A., et al. (1998) Subchondral bone failure in an equine model of overload arthrosis. Bone 22, 133139.Google Scholar
Norwood, L. A., Cross, M. J. (1979) Anterior cruciate ligament: functional anatomy of its bundles in rotatory instabilities. Am J Sports Med 7, 2326.Google Scholar
Nosikova, Y. S., Santerre, J. P., Grynpas, M., et al. (2012) Characterization of the annulus fibrosus–vertebral body interface: identification of new structural features. J Anat 221, 577589.Google Scholar
Noyes, F. R., Butler, D. L., Grood, E. S., et al. (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. JBJS 66-A, 344352.Google Scholar
Noyes, F. R., DeLucas, J. L., Torvik, P. J. (1974) Biomechanics of anterior cruciate ligament failure: an analysis of strain-rate sensitivity and mechanisms of failure in primates. J Bone Jt Surg 56-A, 236253.Google Scholar
Ochia, R. S., Inoue, N., Renner, S. M., et al. (2006) Three-dimensional in vivo measurement of lumbar spine segmental movement. Spine 31, 20732078.Google Scholar
Oegema, T. R., Thompson, R. C. (1992) The zone of calcified cartilage: its role in osteoarthritis. In: Articular Cartilage and Osteoarthritis (eds. Kuettner, K. E., Schleyerbach, R., Hascall, V. C.), pp. 319331. New York, NY: Raven Press.Google Scholar
Ogston, A. (1875) On articular cartilage. J Anat Physiol 10, 474.Google Scholar
Ogston, A. G., Stanier, J. E. (1953) The physiological function of hyaluronic acid in synovial fluid; viscous, elastic and lubricant properties. J Physiol 119, 244252.Google Scholar
Olczyk, K. (1994) Age-related changes of elastin content in human intervertebral discs. Folia Histochem Cytobiol 32, 4144.Google Scholar
Oloyede, A., Broom, N. D. (1991) Is classical consolidation theory applicable to articular cartilage deformation? Clin Biomech 6, 206212.Google Scholar
Oloyede, A., Broom, N. D. (1993) Stress-sharing between the fluid and solid components of articular cartilage under varying rates of compression. Connect Tiss Res 30, 127141.Google Scholar
Oloyede, A., Broom, N. D. (1994a) Complex nature of stress inside loaded articular cartilage. Clin Biomech 9, 149156.Google Scholar
Oloyede, A., Broom, N. D. (1994b) The generalized consolidation of articular cartilage: an investigation of its near-physiological response to static load. Connect Tiss Res 31, 7586.Google Scholar
Oloyede, A., Broom, N. (1996) The biomechanics of cartilage load-carriage. Connect Tiss Res 34, 119143.Google Scholar
Oloyede, A., Flachsmann, R., Broom, N. D. (1992) The dramatic influence of loading velocity on the compressive response of articular cartilage. Connect Tiss Res 27, 211224.Google Scholar
Ondrouch, A. S. (1963) Cyst formation in osteoarthritis. JBJS 45B, 755760.Google Scholar
Osti, O. L., Vernon-Roberts, B., Moore, R., et al. (1992) Annular tears and disc degeneration in the lumbar spine: a post-mortem study of 135 discs. JBJS 74B, 678682.Google Scholar
Outerbridge, R. E. (1961) The etiology of chondromalacia patellae. JBJS 43B, 752757.Google Scholar
Paget, J. (1870) On the production of some loose bodies in joints. St Bartholomew’s Hosp Rpt 6, 1.Google Scholar
Paietta, R. C., Burger, E. L., Ferguson, V. L. (2013) Mineralization and collagen orientation throughout aging at the vertebral endplate in the human lumbar spine. J Struct Biol 184, 310320.Google Scholar
Panagiotakis, E., Mok, K.-M., Fong, D. T.-P., et al. (2017) Biomechanical analysis of ankle ligamentous sprain injury cases from televised basketball games: understanding when, how and why ligament failure occurs. J Sci Med Sport 20, 10571061.Google Scholar
Park, S., Krishnan, R., Nicoll, S. B., et al. (2003) Cartilage interstitial fluid load support in unconfined compression. J Biomech 36, 17851796.Google Scholar
Parry, D. A. D., Barnes, G. R. G., Craig, A. S. (1978) A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proc R Soc Lond B203, 305321.Google Scholar
Parry, D. A. D., Craig, A. S. (1988) Collagen fibrils during development and maturation and their contribution to the mechanical attributes of connective tissue. In: Collagen Volume II, Biochemistry and Biomechanics. (ed. Nimni, M. E.), pp. 123. Boca Raton, FL: CRC Press.Google Scholar
Peacock, A. (1952) Observation on the postnatal structure of the intervertebral disc in man. J Anat 86, 162178.Google Scholar
Pearcy, M. J. (1993) Twisting mobility of the human back in flexed postures. Spine 18, 114119.Google Scholar
Pearcy, M. J., Tibrewal, S. B. (1984) Axial rotation and lateral bending in the normal lumbar spine measured by three-dimensional radiography. Spine 9, 582587.Google Scholar
Pedowitz, D., Kirwan, G. (2013) Achilles tendon ruptures. Curr Rev Musculoskelet Med 6, 285293.Google Scholar
Pendegrass, C. J., Oddy, M. J., Cannon, S. R., et al. (2004) A histomorphological study of tendon reconstruction to a hydroxyapatite-coated implant: regeneration of a neo-enthesis in vivo. J Orthop Res 22, 13161324.Google Scholar
Perren, S. M. (1979) Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Rel Res 138, 175196.Google Scholar
Perren, S. M. (2002) Evolution of the internal fixation of long bone fractures. JBJS 84B, 10931110.Google Scholar
Petersen, W., Zantop, T. (2007) Anatomy of the anterior cruciate ligament with regard to its two bundles. Clin Orthop Rel Res 454, 3547.Google Scholar
Pezowicz, C. A. (2010) Analysis of selected mechanical properties of the intervertebral disc annulus fibrosus in macro and microscopic scale. J Theoretical Appl Mech 48, 917932.Google Scholar
Pezowicz, C. A., Robertson, P. A., Broom, N. D. (2005) Intralamellar relationships within the collagenous architecture of the annulus fibrosus imaged in its fully hydrated state. J Anat 207, 299312.Google Scholar
Pezowicz, C. A., Robertson, P. A., Broom, N. D. (2006a) The structural basis of interlamellar cohesion in the intervertebral disc wall. J Anat 208, 317330.Google Scholar
Pezowicz, C. A., Schechtman, H., Robertson, P. A., et al. (2006b) Mechanisms of annular failure resulting from excessive intradiscal pressure a microstructural-micromechanical investigation. Spine 31, 28912903.Google Scholar
Pfirrmann, C. W. A., Metzdorf, A., Zanetti, M., et al. (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26, 18731878.Google Scholar
Pintar, F. A., Yoganandan, N., Myers, T., et al. (1992) Biomechanical properties of human lumbar spine ligaments. J Biomech 25, 13511356.Google Scholar
Pioletti, D. P., Rakotomanana, L. R., Leyvraz, P. F. (1999) Strain rate effect on the mechanical behaviour of the anterior cruciate ligament-bone complex. Med Eng Phys 21, 95100.Google Scholar
Plamondon, A., Gagnon, M., Maurais, G. (1988) Application of a stereoradiographic method for the study of intervertebral motion. Spine 13, 10271032.Google Scholar
Plewes, L. W. (1940) Osteoarthritis of the hip. Brit J Surg 27, 682695.Google Scholar
Pond, M. J., Nuki, G. (1973) Experimentally-induced osteoarthritis in the dog. Ann Rheum Dis 32, 387388.Google Scholar
Pool, R. R. (1996) Pathologic manifestations of joint disease in the athletic horse. In: Joint Disease in the Horse (eds. McIlwraith, C. W., Trotter, G. W.), pp. 87104. Philadelphia: Saunders.Google Scholar
Pool, R. R., Meagher, D. M. (1990) Pathologic findings and pathogenesis of racetrack injuries. Vet Clin Nth Am 6, 130.Google Scholar
Puxkandl, R., Zizak, I., Paris, O., et al. (2002) Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Phil Trans R Soc Lond B 357, 191197.Google Scholar
Quatman, C. E., Quatman-Yates, C. C., Hewett, T. E. (2010) A ‘plane’ explanation of anterior cruciate ligament injury mechanisms: a systematic review. Sports Med 40, 729746.Google Scholar
Race, A., Broom, N. D., Robertson, P. A. (2000) Effect of loading rate and hydration on the mechanical properties of the disc. Spine 25, 662669.Google Scholar
Radin, E. L. (1999) Subchondral bone changes and cartilage damage. Equine Vet J 31, 9495.Google Scholar
Radin, E. L., Martin, R. B., Burr, D. B., et al. (1984) Effects of mechanical loading on the tissues of the rabbit knee. J Orthop Res 2, 221234.Google Scholar
Radin, E. L., Parker, H. G., Pugh, J. W., et al. (1973) Response of joints to impact loading – III: relationship between trabecular microfractures and cartilage degeneration. J Biomech 6, 5157.Google Scholar
Radin, E. L., Paul, I. L. (1970) Does cartilage compliance reduce skeletal impact loads? Arth Rheum 13, 139144.Google Scholar
Radin, E. L., Paul, I. L. (1971) Importance of bone in sparing articular cartilage from impact. Clin Orthop Rel Res 78, 342344.Google Scholar
Radin, E. L., Paul, I. L., Lowy, M. (1970a) A comparison of the dynamic force transmitting properties of subchondral bone and articular cartilage. JBJS 52A, 444456.Google Scholar
Radin, E. L., Paul, I. L., Rose, R. M. (1972) Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet March 4, 519521.Google Scholar
Radin, E. L., Paul, I. L., Tolkoff, M. J. (1970b) Subchondral bone changes in patients with early degenerative joint disease. Arth Rheum 13, 400405.Google Scholar
Radin, E. L., Rose, R. M. (1986) Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Rel Res 213, 3440.Google Scholar
Radtke, C. L., Danova, N. A., Scollay, M. C., et al. (2003) Macroscopic changes in the distal ends of the third metacarpal and metatarsal bones of Thoroughbred racehorses with condylar fractures. Am J Vet Res 64, 11101116.Google Scholar
Rahn, B. A., Gallinaro, P., Baltensperger, A., et al. (1971) Primary bone healing: an experimental study in the rabbit. JBJS 53A, 783786.Google Scholar
Rajasekaran, S., Bajaj, N., Tubaki, V., et al. (2013) ISSLS Prize Winner: The anatomy of failure in lumbar disc herniation. Spine 38, 14911500.Google Scholar
Ray, C. S., Baxter, G. M., McIlwraith, C. W., et al. (1996) Development of subchondral cystic lesions after articular cartilage and subchondral bone damage in young horses. Equine Vet J 28, 225232.Google Scholar
Reilly, G. C., Currey, J. D., Goodship, A. E. (1997) Exercise of young Thoroughbred horses increases impact strength of the third metacarpal bone. J Orthop Res 15, 862868.Google Scholar
Redler, I., Mow, V. C., Zimny, M. L., et al. (1975) The ultrastructure and biomechanical significance of the tidemark of articular cartilage. Clin Orthop Rel Res 112, 357362.Google Scholar
Repo, R. U., Finlay, J. B. (1977) Survival of articular cartilage after controlled impact. JBJS 59A, 10681076.Google Scholar
Rettig, A. C. (1998) Elbow, forearm and wrist injuries in the athlete. Sports Med 25, 115130.Google Scholar
Rigby, B. J., Hirai, N., Spikes, J. D. et al. (1959) The mechanical properties of rat tail tendon. J Gen Physiol 43, 265283.Google Scholar
Riggs, C. M. (2002) Fractures – a preventable hazard of racing thoroughbreds? Vet J 163, 1929.Google Scholar
Riggs, C. M., Whitehouse, G. H., Boyde, A. (1999) Pathology of the distal condyles of the third metacarpal and third metatarsal bones of the horse. Equine Vet J 31, 140148.Google Scholar
Ritchie, R. O. (2011) The conflicts between strength and toughness. Nat Mat 10, 817822.Google Scholar
Roach, H. I., Erenpreisa, J. E. (1996) The phenotypic switch from chondrocytes to bone-forming cells involves asymmetric cell division and apoptosis. Conn Tiss Res 35, 139145.Google Scholar
Roaf, R. (1960) A study of the mechanics of spinal injuries. JBJS 42B, 810823.Google Scholar
Roberts, S., Bains, M. A., Kwan, A., et al. (1998) Type X collagen in the human invertebral disc: an indication of repair or remodelling? Histochem J 30, 8995.Google Scholar
Roberts, S., Caterson, B., Evans, H., et al. (1994) Proteoglycan components of the intervertebral disc and cartilage endplate: an immunolocalization study of animal and human tissues. Histochem J 26, 402411.Google Scholar
Roberts, S., Menage, J., Duance, V., et al. (1991) Type III collagen in the intervertebral disc. Histochem J 23, 503508.Google Scholar
Roberts, S., Menage, J., Urban, J. P. G. (1989) Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine 14, 166174.Google Scholar
Robinson, J. R., Bull, A. M. J., Amis, A. A. (2005) Structural properties of the medial collateral ligament complex of the human knee. J Biomech 38, 10671074.Google Scholar
Rodrigues, S. A. (2015) A structural exploration of annulus-endplate integration in the ovine intervertebral disc. Doctoral dissertation, University of Auckland.Google Scholar
Rodrigues, S. A., Wade, K. R., Thambyah, A., et al. (2012) Micromechanics of annulus–end plate integration in the intervertebral disc. The Spine J 12, 143150.Google Scholar
Rodrigues, S. A., Thambyah, A., Broom, N. D. (2015) A multiscale structural investigation of the annulus-endplate anchorage system and its mechanisms of failure. The Spine J 15, 405416.Google Scholar
Rodrigues, S. A., Thambyah, A., Broom, N. D. (2017) How maturity influences annulus-endplate integration in the ovine intervertebral disc: a micro- and ultra-structural study. J Anat 230, 152164.Google Scholar
Rodriguez, A. G., Rodriguez-Soto, A. E., Burghardt, A. J., et al. (2012) Morphology of the human vertebral endplate. J Orthop Res 30, 280287.Google Scholar
Rohl, L., Larsen, E., Linde, F., et al. (1991) Tensile and compressive properties of cancellous bone. J Biomech 24, 11431149.Google Scholar
Rolander, S. D., Blair, W. E. (1975) Deformation and fracture of the lumbar vertebral end-plate. Orthop Clin North Am 6, 7581.Google Scholar
Ropes, M. W., Robertson, W. B., Rossmeisl, E. C., et al. (1947) Synovial fluid mucin. Acta Med Scand (Suppl) 196, 700744.Google Scholar
Rosenberg, N. J. (1964) Osteochondral fractures of the lateral femoral condyle. JBJS 46A, 10131026.Google Scholar
Rossetti, L., Kuntz, L. A., Kunold, E., et al. (2017) The microstructure and micromechanics of the tendon-bone insertion. Nat Matls 16, 664672.Google Scholar
Roughley, P. J., Alini, M., Antoniou, J. (2002) The role of proteoglycans in aging, degeneration and repair of the intervertebra1 disc. Biochem Soc Trans 30, 869874.Google Scholar
Roughley, P. J., Melching, L. I., Heathfield, T. F., et al. (2006) The structure and degradation of aggrecan in human intervertebral disc. Eur Spine J 15 (Suppl 3), 326332.Google Scholar
Ruttner, J. R., Spycher, M. A. (1968) Electron microscope investigations on aging and osteoarthritic human cartilage. Path Microbiol 31, 1424.Google Scholar
Saadat, F., Deymier, A. C., Birman, V., et al. (2016) The concentration of stress at the rotator cuff tendon-to-bone attachment site is conserved across species. J Mech Behav Biomed Mater 62, 2432.Google Scholar
Sapiee, N. H., Thambyah, A., Robertson, P. A., et al. (2018) New evidence for structural integration across the cartilage-vertebral endplate junction and its relation to herniation. The Spine J, In Press.Google Scholar
Santer, V., White, R. J., Roughley, P. J. (1981) Proteoglycans from normal and degenerate cartilage of the adult human tibial plateau. Arth Rheum 24, 691700.Google Scholar
Schechtman, H., Robertson, P. A., Broom, N. D. (2006) Failure strength of the bovine caudal disc under internal hydrostatic pressure. J Biomech 39, 14011409.Google Scholar
Schindler, O. S. (2007) Osteochondritis dissecans of the knee. Curr Orthop 21, 4758.Google Scholar
Schlecht, S. H. (2012) Understanding entheses: bridging the gap between clinical and anthropological perspectives. Anat Rec 295, 12391251.Google Scholar
Schmid, G., Witteler, A., Willberger, R., et al. (2004) Lumbar disk herniation: correlation of histologic findings with marrow signal intensity changes in vertebral endplates at MR imaging. Radiol 231, 352358.Google Scholar
Schmidt, H., Kettler, A., Rohlmann, A., et al. (2007) The risk of disc prolapses with complex loading in different degrees of disc degeneration – A finite element analysis. Clin Biomech 22, 988998.Google Scholar
Schollmeier, G., Lahr-Eigen, R., Lewandrowski, K. U. (2000) Observations on fiber-forming collagens in the annulus fibrosus. Spine 25, 27362741.Google Scholar
Schollum, M. L. (2010) Microstructural investigation of the intervertebral disc wall. Doctoral dissertation, University of Auckland.Google Scholar
Schollum, M. L., Robertson, P. A., Broom, N. D. (2008) ISSLS Prize Winner: Microstructure and mechanical disruption of the lumbar disc annulus Part I: a microscopic investigation of the translamellar bridging network. Spine 33, 27022710.Google Scholar
Schollum, M. L., Robertson, P. A., Broom, N. D. (2009) A microstructural investigation of intervertebral disc lamellar connectivity: detailed analysis of the translamellar bridges. J Anat 214, 805816.Google Scholar
Schollum, M. L., Robertson, P. A., Broom, N. D. (2010) How age influences unravelling morphology of annular lamellae – a study of interfibre cohesivity in the lumbar disc. J Anat 216, 310319.Google Scholar
Screen, H. R., Lee, D. A., Bader, D. L., et al. (2004) An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. J Eng Med 218,109119.Google Scholar
Seroussi, R. E., Krag, M. H., Muller, D. L., et al. (1989) Internal deformations of intact and denucleated human lumbar discs subjected to compression, flexion, and extension loads. J Orthop Res 7, 122131.Google Scholar
Shah, J. S., Jayson, M. I. V., Hampson, W. G. J. (1977) Low tension studies of collagen from the ligaments of the human spine. Ann Rheum Dis 36, 139145.Google Scholar
Shan, Z., Fan, S., Xie, Q., et al. (2014) Spontaneous resorption of lumbar disc herniation is less likely when modic changes are present. Spine 39, 736744.Google Scholar
Shaw, H. M., Benjamin, M. (2007) Structure-function relationships of entheses in relation to mechanical load and exercise. Scand J Med Sci Sports 17, 303315.Google Scholar
Shen, W., Jordan, S., Fu, F. (2007) Review article: anatomic double bundle anterior cruciate ligament reconstruction. J Orthop Surg 15, 216221.Google Scholar
Sheng, G. G., Wang, X. (2010) Thermoelastic vibration and buckling analysis of functionally graded piezoelectric cylindrical shells. Appl Math Modelling 34, 26302643.Google Scholar
Shirado, O., Yamazaki, Y., Takeda, N., et al. (2005) Lumbar disc herniation associated with separation of the ring apophysis. Clin Orthop Rel Res 431, 120128.Google Scholar
Siebold, R., Ellert, T., Metz, S., et al. (2008) Tibial insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry, arthroscopic landmarks, and orientation model for bone tunnel placement. Arthroscopy 24, 154161.Google Scholar
Silberberg, R. (1968) Ultrastructure of articular cartilage in health and disease. Clin Orth Rel Res 57, 233257.Google Scholar
Silyn-Roberts, H., Broom, N. D. (1988) A biomechanical profile across the patellar groove articular cartilage: implications for defining matrix health. J Anat 160, 175188.Google Scholar
Silyn-Roberts, H., Broom, N. D. (1990) Fracture behaviour of cartilage-on-bone in response to repeated impact loading. Connect Tiss Res 24, 143156.Google Scholar
Silver, F. H., Freeman, J. W., Seehra, G. P. (2003) Collagen self-assembly and the development of tendon mechanical properties. J Biomech 36, 15291553.Google Scholar
Simon, S. R., Radin, E. L. (1972) The response of joints to impact loading – II: in vivo behaviour of subchondral bone. J Biomech 5, 267272.Google Scholar
Sinclair, K. D., Curtis, B. D., Koller, K. E., et al. (2011) Characterization of the anchoring morphology and mineral content of the anterior cruciate and medial collateral ligaments of the knee. Anat Rec 294, 831838.Google Scholar
Singh, K., Masuda, K., Thonar, E. J. M. A., et al. (2009) Age-related changes in the extracellular matrix of nucleus pulposus and anulus fibrosus of human intervertebral disc. Spine 34, 1016.Google Scholar
Skaggs, D. L., Weidenbaum, M., Iatridis, J. C., et al. (1994) Regional variation in tensile properties and biochemical composition of the human lumbar annulus fibrosus. Spine 19, 13101319.Google Scholar
Smigielski, R., Zdanowicz, U., Drwiega, M., et al. (2015) Ribbon like appearance of the midsubstance fibres of the anterior cruciate ligament close to its femoral insertion site: a cadaveric study including 111 knees. Knee Surg Sports Traumatol Arthrosc 23, 31433150.Google Scholar
Smit, T. H. (2002) The use of a quadruped as an in vivo model for the study of the spine – biomechanical considerations. Eur Spine J 11, 137144.Google Scholar
Smith, K. D., Clegg, P. D., Innes, J. F., et al. (2014) Elastin content is high in the canine cruciate ligament and is associated with degeneration. Vet J 199, 169174.Google Scholar
Smith, L. J., Elliott, D. M. (2011) Formation of lamellar cross bridges in the annulus fibrosus of the intervertebral disc is a consequence of vascular regression. Matrix Biol 30, 267274.Google Scholar
Smith, L. J., Fazzalari, N. L. (2006) Regional variations in the density and arrangement of elastic fibres in the anulus fibrosus of the human lumbar disc. J Anat 209, 359367.Google Scholar
Smith, L. J., Byers, S., Costi, J. J., et al. (2008) Elastic fibers enhance the mechanical integrity of the human lumbar anulus fibrosus in the radial direction. Annals Biomed Eng 36, 214223.Google Scholar
Sokoloff, L. (1993) Microcracks in the calcified layer of articular cartilage. Arch Path Lab Med 117, 191195.Google Scholar
Soltz, M. A., Ateshian, G. A. (1998) Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. J Biomech 31, 927934.Google Scholar
Soltz, M. A., Ateshian, G. A. (2000) Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage. Ann Biomed Eng 28, 150159.Google Scholar
Souter, W. A., Taylor, T. K. F. (1970) Sulphated acid mucopolysaccharide metabolism in the rabbit intervertebral disc. JBJS 52B, 371384.Google Scholar
Spalazzi, J. P., Gallina, J., Fung-Kee-Fung, S. D., et al. (2006) Elastographic imaging of strain distribution in the anterior cruciate ligament and at the ligament-bone insertions. J Orthop Res 24, 20012010.Google Scholar
Speer, D. P., Dahners, L. (1979) The collagenous architecture of articular cartilage. Clin Orth Rel Res 139, 267275.Google Scholar
Steineman, B. D., Moulton, S. G., Haut Donahue, T. L., et al. (2017) Overlap between anterior cruciate ligament and anterolateral meniscal root insertions: a scanning electron microscopy study. Am J Sports Med 45, 362368.Google Scholar
Subit, D., Masson, C., Brunet, C., et al. (2008) Microstructure of the ligament-to-bone attachment complex in the human knee joint. J Mech Behav Biomed Mat 1, 360367.Google Scholar
Sylven, B., Paulson, S., Hirsch, C., et al. (1951) Biophysical and physiological investigations on cartilage and other mesenchymal tissues. II. The ultrastructure of bovine and human nuclei pulposi. JBJS 33A, 333340.Google Scholar
Takata, K., Inoue, S. I., Takahashi, K., et al. (1988) Fracture of the posterior margin of a lumbar vertebral body. JBJS 70A, 589594.Google Scholar
Tanamas, S. K., Wluka, A., Pelletier, J.-P., et al. (2010) The association between subchondral bone cysts and tibial cartilage volume and risk of joint replacement in people with knee osteoarthritis: a longitudinal study. Arth Res Therap 12, R58.Google Scholar
Tanaka, M., Nakahara, S., Inoue, H. (1993) A pathologic study of discs in the elderly: separation between the cartilaginous endplate and the vertebral body. Spine 18, 14561462.Google Scholar
Tang, C. A., Kou, S. Q. (1998) Crack propagation and coalescence in brittle materials under compression. Eng Fracture Mech 61, 311324.Google Scholar
Tapper, J. E., Ronsky, J. L., Powers, M. J., et al. (2004) In vivo measurement of the dynamic 3-D kinematics of the ovine stifle joint. J Biomech Eng 126, 301318.Google Scholar
Tavakoli, J., Costi, J. J. (2018a) A method for visualization and isolation of elastic fibres in annulus fibrosus of the disc. Mat Sci Eng 93, 299304.Google Scholar
Tavakoli, J., Costi, J. J. (2018b) Ultrastructural organization of elastic fibres in the partition boundaries of the annulus fibrosus within the intervertebral disc. Acta Biomaterialia 68, 6777.Google Scholar
Tavakoli, J., Elliott, D. M., Costi, J. J. (2017) The ultra-structural organization of the elastic network in the intra- and inter-lamellar matrix of the intervertebral disc. Acta Biomaterialia 58, 269277.Google Scholar
Taylor, T. K. F., Ghosh, P., Bushell, G. R. (1981) The contribution of the intervertebral disk to the scoliotic deformity. Clin Orthop Rel Res 156, 7990.Google Scholar
Tehranzadeh, J., Vanarthos, W., Pais, M. J. (1990) Osteochondral impaction of the femoral head associated with hip dislocation: CT study in 35 patients. Am J Radiol 155, 10491052.Google Scholar
Tejwani, S. G., Shen, W., Fu, F. H. (2007) Soft tissue allograft and double-bundle reconstruction. Clin Sports Med 26, 639660.Google Scholar
Thambyah, A. (2008) How critical are the tibiofemoral joint reaction forces during frequent squatting in Asian populations? Knee 15, 286294.Google Scholar
Thambyah, A., Broom, N. D. (2006) Micro-anatomical response of cartilage-on-bone to compression: mechanisms of deformation within and beyond the directly loaded matrix. J Anat 209, 611622.Google Scholar
Thambyah, A., Broom, N. D. (2007) On how degeneration influences load-bearing in the cartilage-bone system: a microstructural and micromechanical study. Osteoarth Cart 15, 14101423.Google Scholar
Thambyah, A., Broom, N. D. (2009) On new bone formation in the pre-osteoarthritic joint. Osteoarth Cart 17, 456463.Google Scholar
Thambyah, A., Broom, N. D. (2010) How subtle structural changes associated with maturity and mild degeneration influence the impact-induced failure modes of cartilage-on-bone. Clin Biomech 25, 737744.Google Scholar
Thambyah, A., Zhao, J.-Y., Bevill, S. L., et al. (2012) Macro-, micro- and ultrastructural investigation of how degeneration influences the response of cartilage to loading. J Mech Behav Biomed Mat 5, 206215.Google Scholar
Thambyah, A., Zhao, L., Broom, N. D. (2009) Microstructural response and fluid flow mechanisms in cartilage loading: new insights using a novel indentation method. J Strain Analysis 44 (special issue), 319326.Google Scholar
Thambyah, A., Zhao, L., Broom, N. D. (2014) Microanatomy of the medial collateral ligament enthesis in the bovine knee. Anat Rec 297, 22542261.Google Scholar
Thomopoulos, S., Das, R., Birman, V., et al. (2011) Fibrocartilage tissue engineering: the role of the stress environment on cell morphology and matrix expression. Tissue Eng Part A 17, 10391053.Google Scholar
Thomopoulos, S., Marquez, J. P., Weinberger, B., et al. (2006) Collagen fiber orientation at the tendon to bone insertion and its influence on stress concentrations. J Biomech 39, 18421851.Google Scholar
Thomopoulos, S., Genin, G. M., Galatz, L. M. (2010) The development and morphogenesis of the tendon-to-bone insertion: what development can teach us about healing. J Musculoskelet Neuronal Interact 10, 3545.Google Scholar
Thomopoulos, S., Williams, G. R., Gimbel, J. A., et al. (2003) Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J Orthop Res 21, 413419.Google Scholar
Thomopoulos, S., Williams, G. R., Soslowsky, L. J. (2003a) Tendon to bone healing: differences in biomechanical, structural, and compositional properties due to a range of activity levels. J Biomech Eng 125, 106113.Google Scholar
Thompson, R. C., Oegema, T. R., Lewis, J. L., et al. (1991) Osteoarthritic changes after acute transarticular load: an animal model. JBJS 73A, 9901001.Google Scholar
Thornton, G. M., Shrive, N. G., Frank, C. B. (2002) Ligament creep recruits fibres at low stresses and can lead to modulus-reducing fibre damage at higher creep stresses: a study in rabbit medial collateral ligament model. J Orthop Res 20, 967974.Google Scholar
Thorpe, C. T., Birch, H. L., Clegg, P. D., et al. (2013a) The role of the non-collagenous matrix in tendon function. Int J Exp Pathol 94, 248259.Google Scholar
Thorpe, C. T., Klemt, C., Riley, G. P., Birch, H. L., Clegg, P. D., Screen, H. R. (2013b) Helical sub-structures in energy-storing tendons provide a possible mechanism for efficient energy storage and return. Acta Biomater 9, 79487956.Google Scholar
Thorpe, C. T., Karunaseelan, K. J., Ng Chieng Hin, J., et al. (2016) Distribution of proteins within different compartments of tendon varies according to tendon type. J Anat 229, 450458.Google Scholar
Toumi, H., Higashiyama, I., Suzuki, D., et al. (2006) Regional variations in human patellar trabecular architecture and the structure of the proximal patellar tendon enthesis. J Anat 208, 4757.Google Scholar
Toldt, C., Rosa, A. D. (1903) An Atlas of Human Anatomy for Students and Physicians, Section 2, Arthrology. 3rd Edition. London: Rebman Ltd.Google Scholar
Tomatsu, T., Imai, N., Takeuchi, N., et al. (1992) Experimentally produced fractures of articular cartilage and bone: the effects of shear forces on the pig knee. JBJS 74B, 457462.Google Scholar
Torzilli, P. A., Grigiene, R., Borrelli, J., et al. (1999) Effect of impact load on articular cartilage: cell metabolism and viability, and matrix water content. J Biomech Eng 121, 433441.Google Scholar
Trotter, G. W., McIlwraith, C. W. (1981) Osteochondritis dissecans and subchondral cystic lesions and their relationship to osteochondrosis in the horse. J Equine Vet Sci 1, 157162.Google Scholar
Turley, S. M. (2017) Site-specific effects of loading on the osteochondral tissues of the equine distal metacarpus. Doctoral dissertation, University of Auckland.Google Scholar
Turley, S., Thambyah, A., Firth, E., et al. (2011) Failure mechanisms of cartilage-on-bone tissues and the influence of loading history. Adv Mat Res 275, 139142.Google Scholar
Turley, S. M., Thambyah, A., Riggs, C. M., et al. (2014) Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model. J Anat 224, 647658.Google Scholar
Urban, J. P. G., Roberts, S., Ralphs, J. R. (2000) The nucleus of the intervertebral disc from development to degeneration. Amer Zool 40, 5361.Google Scholar
Urry, D. W. (1983) What is elastin; what is not. Ultrastructural Pathol 4, 227251.Google Scholar
Urry, D. W., Hugel, T., Seitz, M., et al. (2002) Elastin: a representative ideal protein elastomer. Phil Trans R Soc Lond B 357, 169184.Google Scholar
Urry, D. W., Parker, T. M. (2002) Mechanics of elastin: molecular mechanism of biological elasticity and its relationship to contraction. J Musc Res Cell motility 23, 543559.Google Scholar
Urry, D. W., Venkatachalam, C. (1983) A librational entropy mechanism for elastomers with repeating peptide sequences in helical array. Int J Quantum Chem 10, 8193.Google Scholar
Valiaev, A., Lim, D. W., Schmidler, S., et al. (2008) Hydration and conformational mechanics of single, end-tethered elastin-like polypeptides. J Am Chem Soc 130, 1093910946.Google Scholar
Van der Rest, M., Garrone, R. (1991) Collagen family of proteins. FASEB 5, 28142823.Google Scholar
Van Heeswijk, V. M., Thambyah, A., Robertson, P. A., et al. (2017) Posterolateral disc prolapse in flexion initiated by lateral inner annular failure: an investigation of the herniation pathway. Spine 42, 16041613.Google Scholar
Vellet, A. D., Marks, P. H., Fowler, P. J., et al. (1991) Occult posttraumatic osteochondral lesions of the knee: prevalence, classification, and short-term sequelae evaluated with MR imaging. Radiol 178, 271276.Google Scholar
Vener, M. J., Thompson, R. C., Lewis, J. L., et al. (1992) Subchondral damage after acute transarticular loading: an in vitro model of joint injury. J Orthop Res 10, 759765.Google Scholar
Veres, S. P. (2009) Studies on the internal failure mechanics of lumbar intervertebral discs. Doctoral dissertation, University of Auckland.Google Scholar
Veres, S. P., Robertson, P. A., Broom, N. D. (2008) ISSLS Prize Winner: Microstructure and mechanical disruption of the lumbar disc annulus. Part II: how the annulus fails under hydrostatic pressure. Spine 33, 27112720.Google Scholar
Veres, S. P., Robertson, P. A., Broom, N. D. (2009) The morphology of acute disc herniation. A clinically relevant model defining the role of flexion. Spine 34, 22882296.Google Scholar
Veres, S. P., Robertson, P. A., Broom, N. D. (2010a) The influence of torsion on disc herniation when combined with flexion. Eur Spine J 19, 14681478.Google Scholar
Veres, S. P., Robertson, P. A., Broom, N. D. (2010b) ISSLS Prize Winner: How loading rate influences disc failure mechanics. Spine 35, 18971908.Google Scholar
Vernon-Roberts, B., Fazzalari, N., Manthey, B. A. (1997) Pathogenesis of tears of the annulus investigated by multiple-level transaxial analysis of the T12-L1 disc. Spine 22, 26412646.Google Scholar
Vernon-Roberts, B., Moore, R. J., Fraser, R. D. (2007) The natural history of age-related disc degeneration: the pathology and sequelae of tears. Spine 32, 27972804.Google Scholar
Vershooten, F., De Moor, A. (1982) Subchondral cystic and related lesions affecting the equine pedal bone and stifle. Equine Vet J 14, 4754.Google Scholar
Verteramo, A., Seedhom, B. B. (2004) Zonal and directional variations in tensile properties of bovine articular cartilage with special reference to strain rate variation. Biorheol 41, 203213.Google Scholar
Vialle, L. R., Vialle, E. N., Henao, J. E. S., et al. (2010) Lumbar disc herniation. Rev Bras Ortop 45, 1722.Google Scholar
Viano, D. C. (1986) Biomechanics of bone and tissue: a review of material properties and failure characteristics. Proc SAE Technical Paper 861923 (doi:10.4271/861923).Google Scholar
Vieira, A. C., Guedes, R. M., Marques, A. T. (2009) Development of ligament tissue biodegradable devices: a review. J Biomech 42, 24212430.Google Scholar
Vignon, E., Arlot, M., Meunier, P., Vignon, G. (1974) Quantitative histological changes in osteoarthritic hip cartilage. Clin Orthop Rel Res 103, 269278.Google Scholar
Villani, V., Tamburro, A. M. (1999) Conformational chaos of an elastin-related peptide in aqueous solution. Ann NY Acad Sci 879, 284287.Google Scholar
Wade, K. R. (2012) Reconsidering the disc nucleus and its surroundings. Doctoral dissertation, University of Auckland.Google Scholar
Wade, K. R., Robertson, P. A., Broom, N. D. (2011) A fresh look at the nucleus-endplate region: new evidence for significant structural integration. Eur Spine J 20, 12251232.Google Scholar
Wade, K. R., Robertson, P. A., Broom, N. D. (2012a) On the extent and nature of nucleus-annulus integration. Spine 37, 18261833.Google Scholar
Wade, K. R., Robertson, P. A., Broom, N. D. (2012b) On how nucleus-endplate integration is achieved at the fibrillar level in the ovine lumbar disc. J Anat 221, 3946.Google Scholar
Wade, K. R., Robertson, P. A., Broom, N. D. (2014a) Influence of maturity on nucleus–endplate integration in the ovine lumbar spine. Eur Spine J 23, 732744.Google Scholar
Wade, K. R., Robertson, P. A., Thambyah, A., et al. (2014b) How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion. Spine 39, 10181028.Google Scholar
Wade, K. R., Robertson, P. A., Thambyah, A., et al. (2015) “Surprise” loading in flexion increases the risk of disc herniation due to annulus-endplate junction failure. Spine 40, 891901.Google Scholar
Wagermaier, W., Fratzl, P. (2012) Collagen. In: Polymer Science: A Comprehensive Reference, Vol. 9. (eds. Matyjaszewski, K., Moller, M.), pp. 3555. Newnes: Elsevier.Google Scholar
Walker, D. F. (1971) Stifle conditions. In: Bovine Medicine and Surgery (eds. Gibbons, W. J., Catcott, E. J., Smithcors, J. F.). Santa Barbara: Am. Vet. Publications.Google Scholar
Walmsley, R. (1953) The development and growth of the intervertebral disc. Edinburgh Med J 60, 341364.Google Scholar
Walsh, D. A., Bonnet, C. S., Turner, E. L., et al. (2007) Angiogenesis in the synovium and at the osteochondral junction in osteoarthritis. Osteoarth Cart 15, 743751.Google Scholar
Wang, M., Nasiri, A., Van Houten, J. N., et al. (2014) The remarkable migration of the medial collateral ligament. J Anat 224, 490498.Google Scholar
Weatherall, J. M., Mroczek, K., Tejwani, N. (2010) Acute Achilles tendon ruptures. Orthopedics 33, 758764.Google Scholar
Wei, X., Messner, K. (1996) The postnatal development of the insertions of the medial collateral ligament in the rat knee. Anat Embryol 193, 5359.Google Scholar
Weiner, S., Wagner, H. D. (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28, 271298.Google Scholar
Weis-Fogh, T., Andersen, S. O. (1970) New molecular model for the long-range elasticity of elastin. Nature 227, 718721.Google Scholar
Weiss, C., Rosenberg, L., Helfet, A. J. (1968) An ultrastructural study of normal young adult human articular cartilage. JBJS 50A, 663674.Google Scholar
Wilke, H. J., Kettler, A., Claes, L. E. (1997b) Are sheep spines a valid biomechanical model for human spines? Spine 22, 23652374.Google Scholar
Wilke, H. J., Kettler, A., Wenger, K. H., et al. (1997a) Anatomy of the sheep spine and its comparison to the human spine. Anat Rec 247, 542555.Google Scholar
Willburger, R. E., Ehiosun, U. K., Kuhnen, C., et al. (2004) Clinical symptoms in lumbar disc herniations and their correlation to the histological composition of the extruded disc material. Spine 29, 16551661.Google Scholar
Wilson, N. A., Sheehan, F. T. (2010) Dynamic in vivo quadriceps lines of action. J Biomech 43, 21062113.Google Scholar
Wong, R. H. C., Tang, C. A., Chau, K. T., et al. (2002) Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression. Eng Fracture Mech 69, 18531871.Google Scholar
Woo, S. L-.Y., Buckwalter, J. A. (1988) Injury and repair of the musculoskeletal soft tissues. J Orthop Res 6, 907931.Google Scholar
Woo, S. L-.Y., Gomez, M. A., Sites, T. J., et al. (1987) The biomechanical and morphological changes in the medial collateral ligament of the rabbit after immobilization and remobilization. JBJS 69-A, 12001211.Google Scholar
Woo, S. L-.Y., Orlando, C. A., Gomez, M. A., et al. (1986) Tensile properties of the medial collateral ligament as a function of age. J Orthop Res 4, 133141.Google Scholar
Wu, C. C. M., Kahn, M., Moy, W. (1996) Piezoelectric ceramics with functional gradients: a new application in material design. J Am Ceram Soc 79, 808812.Google Scholar
Wu, J.-J., Woods, P. E., Eyre, D. R. (1992) Identification of cross-linking sites in bovine cartilage type IX collagen reveals an antiparallel type II-type IX molecular relationship and type IX to type IX bonding. J Biol Chem 267, 2300723014.Google Scholar
Yasuma, T., Makino, E., Saito, S., et al. (1986) Histological development of intervertebral disc herniation. JBJS 68A, 10661072.Google Scholar
Yildiz, S., Yalcm, B. (2013) The anterior talofibular and calcaneofibular ligaments: an anatomic study. Surg Radiol Anat 35, 511516.Google Scholar
Yoganandan, N., Maiman, D. J., Pintar, F., et al. (1988) Microtrauma in the lumbar spine: a cause of low back pain. Neurosurg 23, 162168.Google Scholar
Yoganandan, N., Larson, S. J., Gallagher, M., et al. (1994) Correlation of microtrauma in the lumbar spine with intraosseous pressures. Spine 19, 435440.Google Scholar
Yu, J. (2002) Elastic tissues of the intervertebral disc. Biochem Soc Trans 30, 848852.Google Scholar
Yu, J., Fairbank, J. C. T., Roberts, S., et al. (2005) The elastic fiber network of the anulus fibrosus of the normal and scoliotic human intervertebral disc. Spine 30, 18151820.Google Scholar
Yu, J., Winlove, C. P., Roberts, S., et al. (2002) Elastic fibre organization in the intervertebral discs of the bovine tail. J Anat 201, 465475.Google Scholar
Yu, J., Schollum, M. L., Wade, K. R., et al. (2015) ISSLS Prize winner: A detailed examination of the elastic network leads to a new understanding of annulus fibrosus organization. Spine 40, 1149–157.Google Scholar
Yu, J., Tirlapur, U., Fairbank, J., et al. (2007) Microfibrils, elastin fibres and collagen fibres in the human intervertebral disc and bovine tail disc. J Anat 210, 460471.Google Scholar
Zantop, T., Herbort, M., Raschke, J., et al. (2007) The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation. Am J Sports Med 35, 223227.Google Scholar
Zantop, T., Petersen, W., Sekiya, J. K., et al. (2006) Anterior cruciate ligament anatomy and function relating to anatomical reconstruction. Knee Surg Sports Traumatol Arthrosc 14, 982992.Google Scholar
Zhang, G., Ezura, Y., Chervoneva, I., et al. (2006) Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J Cell Biochem 98, 14361449.Google Scholar
Zhao, L., Lee, P. V. S., Ackland, D. C., et al. (2017) Microstructure variations in the soft-hard tissue junction of the human anterior cruciate ligament. Anat Rec 300, 15471559.Google Scholar
Zhao, F.-D., Pollintine, P., Hole, B. D., et al. (2009) Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone 44, 372379.Google Scholar
Zhao, L., Thambyah, A., Broom, N. D. (2014) A multi-scale structural study of the porcine anterior cruciate ligament tibial enthesis. J Anat 224, 624633.Google Scholar
Zhao, L., Thambyah, A., Broom, N. (2015) Crimp morphology in the ovine anterior cruciate ligament. J Anat 226, 278288.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Neil D. Broom, University of Auckland, Ashvin Thambyah, University of Auckland
  • Book: The Soft–Hard Tissue Junction
  • Online publication: 13 November 2018
  • Chapter DOI: https://doi.org/10.1017/9781316481042.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Neil D. Broom, University of Auckland, Ashvin Thambyah, University of Auckland
  • Book: The Soft–Hard Tissue Junction
  • Online publication: 13 November 2018
  • Chapter DOI: https://doi.org/10.1017/9781316481042.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Neil D. Broom, University of Auckland, Ashvin Thambyah, University of Auckland
  • Book: The Soft–Hard Tissue Junction
  • Online publication: 13 November 2018
  • Chapter DOI: https://doi.org/10.1017/9781316481042.019
Available formats
×