Skip to main content Accessibility help
×
Home
  • Print publication year: 2013
  • Online publication date: December 2013

6 - Magnetostrictives and Electrostrictives

Summary

Magnetostrictives and electrostrictives are active materials that exhibit magneto-mechanical and electromechanical coupling, respectively. These materials undergo a change in dimensions in response to an applied magnetic or electric field. A common property of both materials is that the induced strain depends only on the magnitude of the applied field and is independent of its polarity. In other words, it can be said that the induced strain has a quadratic dependence on the applied field. It is this behavior that differentiates electrostriction from the piezoelectric effect, which is also caused by an electric field. This chapter discusses the basic mechanisms behind magnetostriction and electrostriction, and it describes how these materials are used to construct practical actuators and sensors. The behavior of magnetic shape memory alloys (SMAs) is also described.

Magnetostriction

A ferromagnetic material placed in a magnetic field generally undergoes a change in shape [1]. The internal structure of a ferromagnetic material consists of randomly oriented magnetic domains. When a magnetic field is applied, the domains rotate to align themselves along the field, causing a change in the material dimensions. This phenomenon is known as “magnetostriction.” The effect is small in most materials but is measurable (on the order of microstrain) in ferromagnetic materials. Some materials, such as Terfenol-D, exhibit magnetostrictive strains on the order of 2000 microstrain (2000 × 10×6). Such materials can be used as both solid-state actuators and magnetic-field sensors. Magnetostrictive materials are available in the form of rods, thin films, and powder.

[1] D., Jiles. Introduction to Magnetism and Magnetic Materials, 2nd Edition. Chapman and Hall, 1998.
[2] F. V., Hunt. Electroacoustics: The Analysis of Transduction and its Historical Background. American Institute of Physics for the Acoustical Society of America, 1953.
[3] M., Goodfriend, K., Shoop, and T., Hansen. Applications of magnetostrictive Terfenol-D. Proceedings of Actuator 94, 4th International Conference on New Actuators, Bremen, Germany, 1994.
[4] M. J., Dapino, F. T., Calkins, and A. B., Flatau. Magnetostrictive devices. Wiley Encyclopedia of Electrical and Electronics Engineering, edited by J. G., Webster. John Wileyand Sons, Inc., 1999.
[5] A. E., Clark. Magnetostrictive rare earth Fe2 compounds. Ferromagnetic materials, edited by E. P., Wohlfarth. North-Holland Pub., 1980.
[6] J. L., Butler, S. C., Butler, and A. E., Clark. Unidirectional magnetostrictive piezoelectric hybrid transducer. Journal of the Acoustical Society of America, 88(1):7–11, July 1990.
[7] J. L., Butler. Application Manual for the Design of ETREMA Terfenol-D Magnetostrictive Transducers. ETREMA Products, Edge Technologies, 1988.
[8] O. D., McMasters. Method of forming magnetostrictive rods from rare earth-iron alloys. Technical Report, U.S. Patent No. 4, 609, 402, September 1986.
[9] E. D., Gibson, J. D., Verhoeven, F. A., Schmidt, and O. D., McMasters. Method of forming magnetostrictive rods from rare earth-iron alloys. Technical Report, U.S. Patent No. 4, 770, 704, September 1988.
[10] J. D., Snodgrass and O. D., McMasters. Optimized Terfenol-D manufacturing processes. Technical Report, ETREMA Products Inc., Preprint, 1997.
[11] J. D., Verhoeven, E. D., Gibson, O. D., McMasters, and H. H., Baker. The growth of single crystal Terfenol-D crystals. Metallurgical Transactions A, 18A, 1987.
[12] J. D., Verhoeven, E. D., Gibson, O. D., McMasters, and J. E., Ostenson. Directional solidification and heat treatment of Terfenol-D magnetostrictive materials. Metallurgical Transactions A, 21(8):2249–2255,1990.
[13] A. E., Clark, M., Wun-Fogle, J. B., Restorff, and T. A., Lograsso. Magnetic and magnetostrictive properties of Galfenol alloys under large compressive stresses. Proceedings of the International Symposium on Smart Materials: Fundamentals and System Applications, Pacific Rim Conference on Advanced Materials and Processing (PRICM-4), Honolulu, Hawaii, December 2001.
[14] R. A., Kellogg, A. B., Flatau, A. E., Clark, M., Wun-Fogle, and T. A., Lograsso. Quasi-static transduction characterization of Galfenol. Journal of Intelligent Material Systems and Structures, 16(6):471–479, June 2005.
[15] R. A., Kellogg, A. M., Russell, T. A., Lograsso, A. B., Flatau, A. E., Clark, and M., Wun-Fogle. Tensile properties of magnetostrictive Iron-Gallium alloys. Acta Materialia,52(17):5043–5050, October 2004.
[16] A. E., Clark, J. B., Restorff, M., Wun-Fogle, T. A., Lograsso, and D. L., Schlagel. Magnetostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys. IEEE Transactions on Magnetics, 36(5):3238–3240, September 2000.
[17] R. A., Serway. Physics for Scientists and Engineers. Saunders College Publishing, 1983.
[18] S., Chikazumi. Physics of Magnetism. John Wiley and Sons, Inc., New York, 1964.
[19] K. H. J., Buschow and F. R., De Boer. Physics of magnetism and magnetic materials. Kluwer Academic Press, New York, 2003.
[20] M. J., Dapino. Nonlinear and hysteretic magnetomechanical model for magnetostrictive transducers. Ph.D. Dissertation, Iowa State University, 1999.
[21] E. W., Lee. Magnetostriction and magnetomechanical effects. Reports on Progress in Physics, 18:184–220, 1955.
[22] A. V., Andreev and K. H. J., Buschow. Handbook of Magnetic materials, Volume 8. Elsevier Science Publishers, Amsterdam, 1995.
[23] D., Gignoux. Material Science and Technology, Edited by R. W., Cahn, P., Haasen and E. J., Kran, volume 3A. VCH Verlag, Weinheim, 1992.
[24] B. D., Cullity. Introduction to Magnetic Materials. Addison-Wesley, Reading, MA, 1972.
[25] A. E., Clark. High power rare earth magnetostrictive materials. In Proceedings of Recent Advances in Adaptive and Sensory Materials and Their Applications, Technomic Publishing Co., Inc., Lancaster, PA, 1992.
[26] T. A., Duenas, L., Hsu, and G. P., Carman. Magnetostrictive composite material systems analytical/experimental. Symposium on Advances in Smart Materials-Fundamentals Applications, Boston, MA, 1996.
[27] D. C., Jiles and D. L., Atherton. Ferromagnetic hysteresis. IEEE Transactions on Magnetics, 19(5):2183–2185, 1983.
[28] D. C., Jiles and D. L., Atherton. Theory of ferromagnetic hysteresis. Journal of Applied Physics, 55(6):2115–2120, 1984.
[29] D. C., Jiles and D. L., Atherton. Theory of ferromagnetic hysteresis. Journal of Magnetism and Magnetic Materials, 61:48–60, 1986.
[30] K. H., Carpenter. A differential equation approach to minor loops in the Jiles-Atherton hysteresis model. IEEE Transactions on Magnetics, 27(6):4404–4406,1991.
[31] D. C., Jiles. A self-consistent generalized model for the calculation of minor loop excursions in the theory of hysteresis. IEEE Transactions on Magnetics, 28(5):2602–2604, 1992.
[32] D. C., Jiles. Frequency dependence of hysteresis curves in conducting magnetic materials. Journal of Applied Physics, 76(10):5849–5855, 1994.
[33] D. C., Jiles. Modelling the effects of eddy current losses on frequency dependent hysteresis in electrically conducting media. IEEE Transactions on Magnetics, 30(6):4326–4328, 1994.
[34] M. J., Dapino, R., Smith, L. E., Faidley, and A. B., Flatau. A coupled structural magnetic strain and stress model for magnetostrictive transducers. Journal of Intelligent Material Systems and Structures, 11(2):135–152, February 2000.
[35] F., Delince, A., Genon, J. M., Gillard, H., Hedia, W., Legros, and A., Nicolet. Numerical computation of the magnetostriction coefficient in ferromagnetic materials. Journal of Applied Physics, 69(8):5794–5796, 1991.
[36] V., Agayan. Thermodynamic model of ideal magnetostriction. Physica Scripta, 54:514–521, 1996.
[37] R. D., James and D., Kinderlehrer. Theory of magnetostriction with applications to TbxDy1-xFe2. Philosophical Magazine B, 68(2):237–274,1993.
[38] A. E., Clark, H. T., Savage, and M. L., Spano. Effect of stress on the magnetostriction and magnetization of single crystal Tb0.27Dy0.73Fe2. IEEE Transactions on Magnetics, 20(5):1443–1445, 1984.
[39] F., Claeyssen, N., Lhermet, R., Le. Letty and P. Bouchilloux. Design and construction of a resonant magnetostrictive motor. IEEE Transactions on Magnetics, 32(5):4749–4751, 1996.
[40] R. M., Bozorth. Ferromagnetism. Van Nostrand, New York, 1951.
[41] H. W., Katz. Solid-State Magnetic and Dielectric Devices. John Wiley and Sons, Inc., New York, 1959.
[42] M., Moffet, A. E., Clark, M., Wun-Fogle, J., Linberg, J., Teter, and E., McLaughlin. Characterization of Terfenol-D for magnetostrictive transducers. Journal of the Acoustical Society of America, 89(3):1448–1455, 1991.
[43] F. T., Calkins, M. J., Dapino, and A. B., Flatau. Effect of pre-stress on the dynamic performance of a Terfenol-D transducer. Proceedings of the SPIE Symposium on Smart Structures and Materials, 3041:293–304, 1997.
[44] R., Greenough, A., Jenner, M., Schulze, and A., Wilkinson. The properties and applications of magnetostrictive rare-earth compounds. Journal of Magnetism and Magnetic Materials, 101:75–80, 1991.
[45] J. R., Pratt, S. C., Oueini, and A. H., Nayfeh. Terfenol-D nonlinear vibration absorber. Journal of Intelligent Material Systems and Structures, 10(1):29–35, January 1999.
[46] G., Engdahl and L., Svensson. Simulation of the magnetostrictive performance of Terfenol-D in mechanical devices. Journal of Applied Physics, 63(8):3924–3926, 1988.
[47] L., Kvarnsjo and G., Engdahl. Nonlinear 2-D transient modeling of Terfenol-D rods. IEEE Transactions on Magnetics, 27(6):5349–5351, 1991.
[48] F., Claeyssen, R., Bossut, and D., Boucher. Modeling and characterization of the magnetostrictive coupling. In B. F., Hamonic, O. B., Wilson, and J.-N., Decarpigny, editors, Proceedings of the International Workshop on Power Transducers for Sonics and Ultrasonics, Toulon, France, pages 132–151. Springer-Verlag, June 1990.
[49] C. H., Sherman and J. L., Butler. Analysis of harmonic distortion in electroacoustic transducers. The Journal of the Acoustical Society of America, 98(3):1596–1611, 1995.
[50] M. M., Roberts, M., Mitrovic, and G. P., Carman. Nonlinear behavior of coupled magnetostrictive material systems analytical/experimental. Proceedings of the SPIE Smart Structures and Materials Symposium, 2441:341–354, 1995.
[51] D. C., Jiles. Theory of the magnetomechanical effect. Journal of Physics D: Applied Physics, 28:1537–1546, 1995.
[52] M., Anjanappa and J., Bi. A theoretical and experimental study of magnetostrictive mini-actuators. Smart Materials and Structures, 3(2):83–91,1994.
[53] M., Anjanappa and Y., Wu. Magnetostrictive particulate actuators: Configuration, modeling and characterization. Smart Materials and Structures, 6(4):393–402, 1997.
[54] S. C., Pradhan, Y. T., Ng, K. Y., Lam, and J. N., Reddy. Control of laminated composite plates using magnetostrictive layers. Smart Materials and Structures, 10(4):657–667,2001.
[55] G. P., Carman and M., Mitrovic. Nonlinear constitutive relations for magnetostrictive materials with applications to 1-D problems. Journal of Intelligent Material Systems and Structures, 6(5):673–683, 1995.
[56] M. J., Sablik and D. C., Jiles. A model of hysteresis in magnetostriction. Journal of Applied Physics, 64(10):5402–5404, 1988.
[57] M. J., Sablik and D. C., Jiles. Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Transactions on Magnetics, 29(4):2113–2123,1993.
[58] E. T., Lacheisserie. Magnetoelastic coupling in materials with spherical symmetry. In W., Gorzkowski, M., Gutowski, H. K., Lachowicz, and H., Szymczak, editors, Proceedings of the Fifth International Conference on Physics of Magnetic Materials, Madralin, Poland, pages 164–203. World Scientific Publishing Co., Singapore, October 1990.
[59] A. E., Clark and H. T., Savage. Giant magnetically induced changes in the elastic moduli in Tb0.3Dy0.7Fe2. IEEE Transactions on Sonics and Ultrasonics, 22(1):50–52, 1975.
[60] A. E., Clark, J. B., Restorff, and M., Wun-Fogle. Magnetoelastic coupling and Delta-E effect in TbxDy1-x single crystals. Journal of Applied Physics, 73:6150–6152, May 1993.
[61] R., Kellogg and A. B., Flatau. Wide-band tunable mechanical resonator employing the ΔE effect of Terfenol-D. Journal of Intelligent Material Systems and Structures, 15(5): 355–368, May 2004.
[62] R., Kellogg and A. B., Flatau. Blocked-force characteristics of Terfenol-D transducers. Journal of Intelligent Material Systems and Structures, 15(2):117–128, February 2004.
[63] A. V., Krishnamurty, M., Anjanappa, and Y., Wu. Use of magnetostrictive particle actuators for vibration attenuation of flexible beams. Journal of Sound and Vibration, 206(2): 133–149, 1997.
[64] A. B., Flatau, M. J., Dapino, and F. T., Calkins. Comprehensive Composite Materials Handbook, edited by A., Kelly and C., Zweben, volume 5, chapter Magnetostrictive Composites, pages 563–574. Elsevier Science, 2000.
[65] R. L., Stoll. The Analysis of Eddy Currents. Clarendon Press, Oxford, 1974.
[66] F. T., Calkins, A. B., Flatau, and M. J., Dapino. Overview of magnetostrictive sensor technology. Paper# AIAA-I999-I55I, Proceedings of the 40th AIAA, ASME, ASCE, AHS, and ASC Structures, Structural Dynamics and Materials Conference, St. Louis, MO, April 1999.
[67] A. B., Flatau, M. J., Dapino, and F. T., Calkins. High bandwidth tunability in a smart vibration absorber. Journal of Intelligent Material Systems and Structures, 11(12):923–929, December 2000.
[68] J., Pratt and A. B., Flatau. Development and analysis of a self-sensing magnetostrictive actuator design. Journal of Intelligent Material Systems and Structures, 6(5):639–648, 1995.
[69] A. E., Clark, M., Wun-Fogle, J. B., Restorff, T. A., Lograsso, and G., Petculescu. Magnetostriction and elasticity of body-centered cubic Fe100-xBex alloys. Journal of Applied Physics, 95(11):6942–6944, 2004.
[70] J. B., Restorff, M., Wun-Fogle, A. E., Clark, T. A., Lograsso, A. R., Ross, and D. L., Schlagel. Magnetostriction of ternary Fe-Ga-X alloys (X = Ni,Mo,Sn,Al). Journal of Applied Physics, 91(10):8225, 2002.
[71] L., Dai, J., Cullen, M., Wuttig, E., Quandt, and T., Lograsso. Magnetism, elasticity, and magnetostriction of FeCoGa alloys. Journal of Applied Physics, 93(10):8267–8269, 2003.
[72] J., Atulasimha and A. B., Flatau. A review of magnetostrictive iron-gallium alloys. Smart Materials and Structures, 20(4):043001–15, pp., 2011.
[73] J., Atulasimha and A. B., Flatau. Experimental actuation and sensing behavior of single-crystal iron-gallium alloys. Journal of Intelligent Material Systems and Structures, 19(12): 1371–1381, 2008.
[74] K., Ullakko, J. K., Huang, C., Kantner, R. C., O'Handley, and V. V., Kokorin. Large magnetic-field-induced strains in Ni2MnGa single crystals. Applied Physics Letters, 69 (13):1966–1968, September 1996.
[75] A., Sozinov, A. A., Likhachev, N., Lamska, and K., Ullakko. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Applied Physics Letters, 80(10): 1746–1748, March 2002.
[76] A. A., Likhachev and K., Ullakko. Magnetic-field-controlled twin boundary motion and giant magneto-mechanical effects in Ni-Mn-Ga shape memory alloys. Physics Letters A, 275(1-2):142–151, 2000.
[77] S. J., Murray, M. A., Marioni, A. M., Kukla, J., Robinson, R. C., O'Handley, and S. M., Allen. Large field-induced strain in single crystalline Ni-Mn-Ga ferromagnetic shape memory alloy. Journal of Applied Physics, 87(9):5774–5776, May 2000.
[78] J., Tellinen, I., Suorsa, A., Jääskeläinen, I., Aaltio, and K., Ullakko. Basic properties of magnetic shape memory actuators. 8th International Conference ACTUATOR 2002, Bremen, Germany, June 2002.
[79] K., Ullakko, Y., Ezer, A., Sozinov, G., Kimmel, P., Yakovenko, and V. K., Lindroos. Magnetic-field-induced strains in polycrystalline Ni-Mn-Ga at room temperature. Scripta Materialia, 44(3):475–480, March 2001.
[80] K., Ullakko, A., Likhachev, O., Heczko, A., Sozinov, T., Jokinen, K., Forsman, and I., Aaltio. Magnetic shape memory (MSM) – A new way to generate motion in electromechanical devices. ICEM 2000, pages 1195–1199, August 2000.
[81] R. N., Couch, J., Sirohi, and I., Chopra. Development of a quasi-static model of NiMnGa magnetic shape memory alloy. Journal of Intelligent Material Systems and Structures, 18(6):611–622, 2007.
[82] F., Pablo and B., Petitjean. Characterization of 0.9PMN-0.1PT patches of active vibration control of plate host structures. Journal of Intelligent Material Systems and Structures, 11(11):857–867, November 2000.
[83] R., Yimnirun, M., Unruan, Y., Laosiritaworn, and S., Ananta. Change of dielectric properties of ceramics in lead magnesium niobate-lead titanate systems with compressive stress. Journal of Physics D: Applied Physics, 39(14):3097–3102, 2006.
[84] G. H., Blackwood and M. A., Ealey. Electrostrictive behavior in lead magnesium niobate (PMN) actuators. I. Materials perspective. Smart Materials and Structures, 2(2):124–133, 1993.
[85] K., Uchino. Electrostrictive actuators. Ceramic Bulletin, 65:647–652, 1986.
[86] D., Damjanovic and R. E., Newnham. Electrostrictive and piezoelectric materials for actuator applications. Journal of Intelligent Material Systems and Structures, 3(2):190–208, 1992.
[87] C. L., Hom, S. M., Pilgrim, N., Shankar, K., Bridger, M., Massuda, and S. R., Winzer. Calculation of quasi-static electromechanical coupling coefficients for electrostrictive ceramic materials. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 41(4):542–551, July 1994.
[88] A. F., Devonshire. Theory of ferroelectrics. Philosophical Magazine, 3:85–130, 1954.
[89] J., Scortesse, J. F., Manceau, F., Bastien, M., Lejeune, S., Kurutcharry, and M., Oudjedi. Apparent Young's modulus in PMN-PT electrostrictive ceramics. The European Physical Journal of Applied Physics, 14(3):155–158, 2001.
[90] C., Namboodri. Experimental investigation and modeling of the electrostrictive relaxor ferroelectric lead magnesium niobate-lead titanate. Master's thesis, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, 1992.
[91] M., Fripp and N., Hagood. Comparison of electrostrictive and piezoceramic actuators for vibration suppression. Proceedings of the SPIE Smart Structures and Materials Symposium, 2443:334–348, 1995.
[92] C. L., Hom and N., Shankar. A fully coupled constitutive model for electrostrictive ceramic materials. Journal of Intelligent Material Systems and Structures, 5(6):795–801, November 1994.
[93] C. L., Hom and N., Shankar. A constitutive model for relaxor ferroelectrics. Proceedings of the SPIE Smart Structures and Materials Symposium, 3667:134–144, 1999.
[94] M., Fripp and N., Hagood. Distributed structural actuation with electrostrictives. Journal of Sound and Vibration, 203(1):11–40, 1997.
[95] J. C., Piquette and S. E., Forsythe. A nonlinear material model of lead magnesium niobate (PMN). Journal of the Acoustical Society of America, 101(1):289–296, 1997.