Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T17:36:53.702Z Has data issue: false hasContentIssue false

17 - Power-system state-estimation security: attacks and protection schemes

from Part V - Security in smart grid communications and networking

Published online by Cambridge University Press:  05 January 2013

György Dán
Affiliation:
KTH Royal Institute of Technology, Sweden
Kin Cheong Sou
Affiliation:
KTH Royal Institute of Technology, Sweden
Henrik Sandberg
Affiliation:
KTH Royal Institute of Technology, Sweden
Ekram Hossain
Affiliation:
University of Manitoba, Canada
Zhu Han
Affiliation:
University of Houston
H. Vincent Poor
Affiliation:
Princeton University, New Jersey
Get access

Summary

Introduction

Supervisory control and data acquisition (SCADA) systems are widely used to monitor and control large-scale transmission power grids. Monitoring traditionally involves the measurement of voltage magnitudes and power flows; these data are collected by meters located in substations. In order to deliver the measured data from the substations to the control centre, the measurement data measured by meters in the same substation are multiplexed by a remote terminal unit (RTU) [1, 2]. Because electric power transmission systems extend over large geographical areas, typically entire countries, wide-area networks (WANs) are used to deliver the multiplexed measurement data from the substations to the control centre.

For large-scale transmission grids it is often not feasible to measure all power flows and voltages of interest. Furthermore, the measurements are often noisy. Therefore the measurement data are usually fed into a model-based state estimator (SE) at the control centre, which is used to estimate the complete physical state (complex bus voltages) of the power grid. The SE is used to identify faulty equipment and corrupted measurement data through the so-called bad-data detection (BDD) system. Apart from BDD, the state estimate is used by the human operators and by the energy-management systems (EMS) found in modern SCADA systems, such as optimal power flow analysis, and contingency analysis (CA), see for example [1]. Future power grids will be even more dependent on accurate state estimators to fulfil their task of optimally and dynamically routing power flows, because clean renewable power generation tends to be less predictable than nonrenewable power generation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×