Skip to main content Accessibility help
×
Home
  • Print publication year: 2008
  • Online publication date: December 2009

2 - An overview of determinants of oocyte and embryo developmental competence: specificity, accuracy and applicability in clinical IVF

from Section 1 - Preliminaries

REFERENCES

1. P. Steptoe and R. Edwards, Birth after the reimplantation of a human embryo. Lancet, 2 (1978), 366.
2. H. Foulot, C. Ranoux, J. Dubuissonet al., In vitro fertilization without ovarian stimulation: a simplified protocol applied in 80 cycles. Fertil. Steril., 52 (1989), 617–621.
3. M. Pelinek, A. Hoek, A. Simmons and M. Heineman, Efficacy of natural cycle IVF: a review of the literature. Hum. Reprod. Update, 8 (2002), 129–139.
4. J. Gerris, Reducing the number of embryos to transfer after IVF/ICSI. In J. Van Blerkom and L. Gregory, eds., Essential IVF, Basic Research and Clinical Applications (Boston: Kluwer Academic Publishers, 2004), pp. 505–554.
5. R. Edwards, Causes of early embryonic loss in human pregnancy. Hum. Reprod., 1 (1986), 185–198.
6. J. Van Blerkom (ed.), The Biological Basis of Early Human Reproductive Failure: Applications to Medically-Assisted Conception. (New York: Oxford University Press, 1994)
7. J. Boue, A. Boue and P. Lazar, Retrospective and prospective epidemiological studies of 1500 karyotyped spontaneous human abortions. Teratology, 12 (1975), 11–26.
8. P. Burgoyne, K. Holland and R. Stephens, Incidence of numerical chromosome abnormalities in human pregnancy: estimation from induced and spontaneous abortion data. Hum. Reprod., 6 (1991), 555–564.
9. H. Wramsby, K. Fredga and P. Leidholm, Chromosomal analysis of human oocytes recovered from preovulatory follicles in stimulated cycles. N. Engl. J. Med., 316 (1987), 121–124.
10. R. Angell, W. Ledger, E. Yong, L. Harkness and D. Baird, Cytogenetic analysis of unfertilized human oocytes. Hum. Reprod., 6 (1991), 568–573.
11. J. Van Blerkom, Developmental failure in human reproduction associated with chromosomal abnormalities and cytoplasmic pathologies in meiotically mature oocytes. In J. Van Blerkom, ed., The Biological Basis of Early Human Reproductive Failure: Applications to Medically-Assisted Conception (New York: Oxford University Press, 1994), pp. 283–326.
12. J. Van Blerkom and G. Henry, Cytogenetic analysis of living human oocytes: cellular basis and developmental consequences of perturbations in chromosomal organization and complement. Hum. Reprod., 3 (1988), 777–790.
13. A. Viega, G. Calderon, J. Santalo, P. Barri and J. Egozcue, Chromosome studies in oocytes and zygotes from an IVF programme. Hum. Reprod., 2 (1987), 425–430.
14. L. Veeck, An Atlas of Human Gametes and Conceptuses: An Illustrated Reference for Assisted Reproductive Technology (New York: Parthenon Publishing Group, 1998).
15. J. Van Blerkom, Occurrence and developmental consequences of aberrant cellular organization in meiotically mature human oocytes after exogenous ovarian hyperstimulation. J. Electron Microsc. Tech., 16 (1990), 324–346.
16. J. Van Blerkom and G. Henry, Oocyte dysmorphism and aneuploidy in meiotically mature human oocytes after ovarian stimulation. Hum. Reprod., 7 (1992), 379–390.
17. J. Otsuki, K. Okada, Y. Morimotoet al., The relationship between pregnancy outcome and smooth endoplasmic reticulum clusters in MII human oocytes. Hum. Reprod., 19 (2004), 2334–2339.
18. J. Meriano, J. Alexis, S. Visram-Zaveret al., Tracking of oocyte dysmorphisms for ICSI patients may prove relevant to outcome in subsequent patient cycles. Hum. Reprod., 16 (2001), 2118–2123.
19. A. Mikkelsen and S. Lindenberg, Morphology of in-vitro matured oocytes: impact on fertility potential and embryo quality. Hum. Reprod., 16 (2001), 1714–1718.
20. P. De Sutter, D. Dozortsev, C. Qianet al., Oocyte morphology does not correlate with fertilization rate and embryo quality after intracytoplasmic sperm injection. Hum. Reprod., 11 (1996), 595–597.
21. B. Balaban, B. Urman, A. Sertacet al., Oocyte morphology does not affect fertilization rate, embryo quality and implantation rate after intracytoplasmic sperm injection. Hum. Reprod., 13 (1998), 3431–3433.
22. M. Alikani, G. Palermo, A. Adleret al., Intracytoplasmic sperm injection in dysmorphic human oocytes. Zygote, 3 (1995), 283–288.
23. J. Van Blerkom, G. Henry and R. Porreco, Preimplantation human embryonic development from polypronuclear eggs after in vitro fertilization. Fertil. Steril., 41 (1984), 686–696.
24. J. Osborn and R. Moor, An assessment of the factors causing embryonic loss after fertilization in vitro. J. Reprod. Fertil., 36: Suppl. (1988), 59–72.
25. J. Van Blerkom and G. Henry, Dispermic fertilization of human oocytes. J. Electron Microsc. Tech., 17 (1991), 437–449.
26. L. Liu, R. Oldenbourg, J. Trimarchiet al., A reliable, noninvasive technique for spindle imaging and enucleation of mammalian oocytes. Nat. Biotechnol., 18 (2000), 223–225.
27. L. Liu, J. Trimarchi, R. Oldenberget al., Increased birefringence in the meiotic spindle provides a new marker for the onset of activation in living oocytes. Biol Reprod., 63 (2000), 251–258.
28. D. Keefe, W. Liu, W. Wanget al., Imaging meiotic spindles by polarizing light microscopy, principles and applications to IVF. Reprod. Biomed. Online, 7 (2003), 24–29.
29. U. Eichenlaub-Ritter, Y. Shen and H. Tinneberg, Manipulation of the oocyte, possible damage to the spindle apparatus. Reprod. Biomed. Online, 5 (2002), 117–124.
30. L. Rienzi, F. Ubaldi, F. Martinezet al., Relationship between meiotic spindle location with regard to polar body position and oocyte developmental potential after ICSI. Hum. Reprod., 18 (2003), 1289–1293.
31. W. Wang, L. Meng and R. Hackett, Limited recovery of meiotic spindles in living human oocytes after cooling-rewarming observed using polarized light microscopy. Hum. Reprod., 16 (2001), 2374–2378.
32. W. Wang, L. Meng, R. Hackettet al., Developmental ability of human oocytes with or without birefringent spindles imaged by PolScope before insemination. Hum. Reprod., 16 (2001), 1464–1468.
33. L. Rienzi, F. Ubaldi, M. Iacobelliet al., Meiotic spindle visualization in living human oocytes. Reprod. Biomed. Online, 10 (2005), 192–198.
34. H. Zeng, Z. Ren, S. Williamet al., Low mitochondrial DNA and ATP contents contribute to the absence of birefringent spindle imaged with PolScope in in vitro matured human oocytesHum. Reprod., 22 (2007), 1681–1686.
35. Y. Shen, T. Stalf, C. Mehnertet al., Light retardance by human oocyte spindle is positively related to pronuclear score after ICSI. Reprod. Biomed. Online, 12 (2006), 737–751.
36. Y. Shen, T. Stalf, C. Mehnertet al., High magnitude of light retardation by the zona pellucida is associated with conception cycles. Hum. Reprod., 20 (2005), 1596–1606.
37. G. Rama Raju, G. Prakash, K. Krishna and K. Madan, Meiotic spindle and zona pellucida characteristics as predictors of embryonic development: a preliminary study using PolScope imaging. Reprod. Biomed. Online, 14 (2007), 166–174.
38. M. Montag, T. Schimming, M. Kosteret al., Oocyte zona birefringence is associated with implantation potential in ICSI cycles. Reprod. Biomed. Online, 16, 239–244.
39. C. Garello, H. Baker, J. Raiet al., Pronuclear orientation, polar body placement, and embryo quality after intracytoplasmic sperm injection and in-vitro fertilization: further evidence for polarity by single human preimplantation embryos. Hum. Reprod., 14 (1999), 2588–2595.
40. J. Van Blerkom, Clinical applications of symmetry, asymmetry and polarity in early human development. In A. Trounson and R. Gosden, eds., Biology and Pathology of the Oocyte: Role in Fertility and Reproductive Medicine (Cambridge: Cambridge University Press, 2003), pp. 163–181.
41. R. Edwards and H. Beard, Oocyte polarity and cell determinaiton in early mammalian embryos. Mol. Hum. Reprod., 3 (1997), 863–905.
42. M. Antczak and J. Van Blerkom, Oocyte influences on early development: the regulatory proteins leptin and STAT3 are polarized in mouse and human oocytes and differentially distributed within the cells of the preimplantation stage embryo. Mol. Hum. Reprod., 3 (1997), 1067–1086.
43. R. Edwards and H. Beard, Hypothesis: sex determination and germline formation are committed at the pronuclear stage in mammalian embryos. Mol. Hum. Reprod., 5 (1999), 595–606.
44. T. Hiiragi and D. Solter, First cleavage plane of the mouse egg is not predetermined but defined by the topology of the two apposing pronuclei. Nature, 430 (2004), 360–364.
45. J. Rossant and P. Tam, Emerging asymmetry and embryonic patterning in early mouse development. Dev. Cell, 7 (2004), 155–164.
46. R. Gardner, Specification of embryonic axes begins before cleavage in normal mouse development. Development, 128 (2001), 839–847.
47. K. Piotrowska-Nitshe, A. Perea-Gomez, S. Haraguchi and M. Zernicke-Goetz, Four-cell stage mouse blastomeres have differential developmental properties. Development, 132 (2005), 479–490.
48. D. Strumpf, C. A. Mao, Y. Yamanaka, et al., Cdx2 is required for corrrect cell fate specification and differentiation of trophectoderm in the mouse blastocysts. Development, 132 (2005), 2093–2102.
49. K. Deb, M. Sivaguru, H. Yong and R. Roberts, Cdx2 gene expression and trophectoderm lineage specification in mouse embryos. Science, 311 (2006), 992–996.
50. R. Roberts, M. Sivaguru and H. Yong, Retraction of Cdx2 gene expression and trophectoderm lineage specification in mouse embryos. Science, 317 (2007), 450.
51. D. Payne, S. Flaherty, M. Barry and C. Mathews, Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography. Hum. Reprod., 12 (1997), 532–541.
52. L. Scott and S. Smith, The successful use of pronuclear embryo transfer the day following oocyte retrieval. Hum. Reprod., 13 (1998), 1003–1013.
53. J. Tesarik and E. Greco, The probability of abnormal preimplantation development can be predicted by a single static observation on pronuclear stage morphology. Hum. Reprod., 14 (1999), 1318–1325.
54. L. Scott, R. Alvero, M. Leondires and B. Miller, The morphology of human pronuclear embryos is positively related to blastocyst development and implantation. Hum. Reprod., 15 (2000), 2394–2403.
55. L. Scott, Pronuclear scoring as a predictor of embryo development. Reprod. Biomed. Online, 6 (2003), 201–204.
56. L. Scott, The biological basis of oocyte and embryo competence: morphodynamic criteria for embryo selection in in vitro fertilization. In J. Van Blerkom and L. Gregory, eds., Essential IVF: Basic Research and Clinical Applications (Boston: Kluwer Academic Publishers, 2004), pp. 333–376.
57. J. Tesarik, A. Junca, A. Hazouet al., Embryos with high implantation potential after intracytoplasmic sperm injection can be recognized by a single, non-invasive examination of pronuclear morphology. Hum. Reprod., 15 (2000), 1396–1399.
58. M. Lundqvist, U. Johansson, Q. Lundqvistet al., Does pronuclear morphology and/or early cleavage rate predict embryo implantation potential? Reprod. Biomed. Online, 2 (2001), 12–16.
59. U. Zollner, K. Zollner, G. Hartlet al., The use of a detailed zygote score after IVF/ICSI to obtain good quality blastocysts, the German experience. Hum. Reprod., 17 (2002), 1327–1333.
60. S. Kahraman, Y. Kumtepe, S. Sertyelet al., Pronuclear morphology scoring and chromosomal status of embryos in severe male factor infertility. Hum. Reprod., 17 (2002), 3193–3200.
61. C. Chen, G. Shen, S. Hornget al., The relationship of pronuclear stage morphology and chromosome status at cleavage stage. J. Assist. Reprod. Genet., 20 (2003), 413–420.
62. L. Gianaroli, M. Magli, A. Ferrarettiet al., Pronuclear morphology and chromosomal abnormalities as scoring criteria for embryo selection. Fertil. Steril., 80 (2003), 343–349.
63. W. Edirisinghe, R. Jemmott, C. Smithet al., Association of pronuclear Z score with rates of aneuploidy in in-vitro fertilised embryos. Reprod. Fertil. Dev., 17 (2005), 529–534.
64. J. Van Blerkom, P. Davis, J. Merriam and J. Sinclair, Nuclear and cytoplasmic dynamics of sperm penetration, pronuclear formation, and microtubule organization during fertilization and early preimplantation development in the human. Hum. Reprod. Update, 1 (1995), 429–461.
65. M. Alikani, J. Cohen, G. Tomkinet al., Human embryo fragmentation in vitro and its implications for pregnancy and implantation. Fertil. Steril., 71 (1999), 836–842.
66. M. Alikani, The origins and consequences of fragmentation in mammalian eggs and embryos. In K. Elder and J. Cohen, eds., Human Preimplantation Embryo Selection (London: Informa Press, 2007), pp. 51–77.
67. J. Van Blerkom, The enigma of fragmentaton in early human embryos: possible causes and clinical relevance. In J. Van Blerkom and L. Gregory, eds., Essential IVF: Basic Research and Clinical Applications (Boston: Kluwer Academic Publishers, 2004), pp. 377–421.
68. K. Hardy, Apotosis in the human embryo. Rev. Reprod., 4 (1999), 125–134.
69. A. Juriscova, S. Varmuza and R. Casper, Programmed cell death and human embryo fragmentation. Mol. Hum. Reprod., 2 (1996), 93–98.
70. J. Van Blerkom, P. Davis and S. Alexander, Human embryo fragmentation: A multifaceted microscopic, biochemical and experimental study of fragmentation in early human preimplantation stage embryosHum. Reprod., 16 (2001), 719–729.
71. A. Jurisicova and B. Acton, Deadly decisions: the role of genes regulating programmed cell death in human preimplantation embryo development. Reproduction, 128 (2004), 281–291.
72. J. Biggers, Fundamentals of the design of culture media that support human preimplantation development. In J. Van Blerkom and L. Gregory, eds., Essential IVF: Basic Research and Clinical Applications (Boston: Kluwer Academic Publishers, 2004), pp. 291–332.
73. J. Van Blerkom, Spontaneous and experimental translocation of the subplasmalemmal cytoplasm within and between blastomeres in early human embryos: possible effects on the redistribution and inheritance of regulatory domains. Reprod. Biomed. Online, 14 (2007), 191–200.
74. M. Antczak and J. Van Blerkom, Temporal and spatial aspects of fragmentation in early human embryos: possible effects on developmental competence and association with the differential elimination of; regulatory proteins from polarized domains. Hum. Reprod., 14 (1999), 429–447.
75. D. Gardner and M. Lane, Towards a single embryo transfer. Reprod. Biomed. Online, 6 (2003), 470–481.
76. L. Veeck and N. Zaninovic, An Atlas of Human Blastocysts. (Boca Raton: Parthenon Publishing Group, 2003).
77. K. Hardy, A. Handyside and R. Winston. The human blastocyst: cell number and allocation during late pre-implantation development in vitro. Development, 107 (1989), 597–604.
78. N. Winston, P. Braude, S. Pickeringet al., The incidence of abnormal morphology and nucleo-cytoplasmic ratio in 2, 3- and 5-day human pre-embryos. Hum. Reprod., 6 (1991), 17–24.
79. J. Van Blerkom, Development of human embryos to the hatched blastocyst stage in the presence and absence of a monolayer of VERO cells. Hum. Reprod., 8 (1993), 1525–1539.
80. C. Racowsky, K. Jackson, N. Cekleniaket al., The number of eight-cell embryos is a key determinant for selecting day 3 or day 5 transfer. Fertil. Steril., 73 (2000), 558–564.
81. J. Gerris, D. De Neubourg, K. Mangelschotset al., Elective single day 3 embryo transfer halves the twinning rate without decrease in the ongoing pregnancy rate of an IVF/ICSI programme. Hum. Reprod., 16 (2002), 626–631.
82. M. Sandalinas, S. Sadowy, M. Alikaniet al., Developmental ability of chromosomally abnormal human embryos to develop to the blastocyst stage. Hum. Reprod., 16 (2001), 1954–1958.
83. J. Derhaag, E. Coonen, M. Braset al., Chromosomally abnormal cells are not selected for extra-embryonic compartment of the human preimplantation embryo at the blastocyst stage. Hum. Reprod., 18 (2003), 2565–2574.
84. S. Evsikov and Y. Verlinsky, Mosaicism in the inner cell mass of human blastocysts. Hum. Reprod., 13 (1998), 3151–3155.
85. B. Behr, Blastocyst culture and transfer. Hum. Reprod., 14 (1999), 5–6.
86. R. Edwards and H. Beard, Is the success of human IVF more a matter of genetics and evolution than growing blastocyst? Hum. Reprod., 14 (1999), 1–4.
87. S. Keay, C. Harlow, P. Woodet al., Higher cortisol:cortisone ratios in the preovulatory follicle of unstimulated IVF cycles indicates oocytes with increased pregnancy potential. Hum. Reprod., 17 (2002), 2003–2008.
88. A. Michael, Do biochemical predictors of IVF outcome exist? In J. Van Blerkom and L. Gregory, eds., Essential IVF: Basic Research and Clinical Applications (Boston: Kluwer Academic Publishers, 2004), pp. 81–109.
89. J. Van Blerkom and S. Trout, Oocyte selection in contemporary clinical IVF: do follicular markers of oocyte competence exist? In K. Elder and J. Cohen, eds., Human Preimplantation Embryo Selection (London: Informa Press, 2007), pp. 301–323.
90. M. Antczak, The synthetic and secretory behaviors (nonsteroidal) of ovarian follicular granulosa cells: parallels to cells of the endothelial cell lineage. In J. Van Blerkom and L. Gregory, eds., Essential IVF: Basic Research and Clinical Applications (Boston: Kluwer Academic Publishers, 2004).
91. A. Malamitsi-Puchner, Novel follicular fluid factors influencing oocyte developmental potential in IVF: a review. Reprod. Biomed. Online, 12 (2006), 500–506.
92. S. Hirobe, W. He, M. Gustafsonet al., Mullerian inhibiting substance gene expression in the cycling rat ovary correlates with recruited or Graafian follicle selection. Biol. Reprod., 50 (1994), 1238–1243.
93. I. van Rooij, F. Broekmans, E. te Veldeet al., Serum anti-Mullerian hormone levels: a novel measure of ovarian reserve. Hum. Reprod., 17 (2002), 3065–3071.
94. T. Silberstein, D. MacLaughlin, I. Shaiet al., Mullerian inhibiting substance levels at the time of HCG administration in IVF cycles predicts both ovarian reserve and embryo morphology. Hum. Reprod., 21 (2006), 159–163.
95. M. Falla, Y. Siow, M. Marraet al., Mullerian-inhibiting substance in follicular fluid and serum: a comparison of patients with tubal factor infertility, polycystic ovary syndrome, and endometriosis. Fertil. Steril., 67 (1997), 962–965.
96. A. Hazout, P. Bouchard, D. Seiferet al. Serum antimullerian hormone/mullerian-inhibiting substance appears to be a more discriminatory marker of assisted reproductive technology outcome than follicle-stimulating hormone, inhibin B, or estradiol. Fertil. Steril., 82 (2004), 1323–29.
97. J. Van Blerkom, Follicular influences on oocyte and embryo competence. In C. De Jonnge and C. Barrat, eds., Assisted Reproductive Technology: Accomplishments and New Horizons (Cambridge:Cambridge University Press, 2002), pp. 81–105.
98. L. Gregory, Peri-follicular vascularity: a marker of follicular heterogeneity and oocyte competence and a predictor of implantation in assisted conception cycles. In J. Van Blerkom and L. Gregory, eds., Essential IVF: Basic Research and Clinical Applications (Boston: Kluwer Academic Publishers, 2004), pp. 59–79.
99. J. Van Blerkom, M. Antczak and R. Schrader, The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Hum. Reprod., 12 (1997), 1947–1955.
100. P. Bahl, N. Pugh, D. Chuiet al., The use of transvaginal power Doppler ultrasonography to evaluate the relationship between perifollicular vascularity and outcome in in-vitro fertilization treatment cycles. Hum. Reprod., 14 (1999), 939–945.
101. C. Coulam, C. Goodman and J. Rinehart, Color Doppler indices of follicular blood flow as predictors of pregnancy after in-vitro fertilization and embryo transfer. Hum. Reprod., 14 (1999), 1979–1982.
102. G. Semenza, Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu. Rev. Cell Dev. Biol., 15 (1999), 551–578.
103. H.-A. Pan, M.-H. Wu, Y.-C. Cheng, L. H. Wu and F. M. Chang, Quantification of ovarian stromal Doppler signals in poor responders undergoing in vitro fertilization with three-dimensional power Doppler ultrasonography. Am. J. Obstet. Gynecol., 190 (2004), 338–344.
104. S. Palomba, T. Russo, A. Falboet al., Clinical use of the perifollicular vascularity assessment in IVF cycles: a pilot study. Hum. Reprod., 21 (2006), 1055–1061.
105. S. Shrestha, M. Costello, P. Sjoblomet al., Power Doppler ultrasound assessment of follicular vascularity in the early follicular phase and its relationship with outcome in in vitro fertilization. J. Assist. Reprod. Genet., 23 (2006), 161–169.
106. K. Kim, D. Oh, J. Jeonget al., Follicular blood flow is a better predictor of the outcome of in vitro fertilization-embryo transfer than follicular fluid vascular endothelial growth factor and nitric oxide concentrations. Fertil. Steril., 82 (2004), 586–592.
107. L. Merce, S. Bau, M. Barcoet al., Assessment of the ovarian volume, number and volume of follicles and ovarian vascularity by three-dimensional ultrasono- graphy and power Doppler angiography on the HCG day to predict outcome in IVF/ICSI cycles. Hum. Reprod., 21 (2006), 1218–1226.
108. M. Collier, C. O’Neil, A. Ammit and D. Saunders, Measurements of human embryo-derived platelet-activating factor (PAF) using a quantitative bioassay of platelet aggregation. Hum. Reprod., 5 (1990), 323–328.
109. A. Lopata and K. Oliva, Chorionic gonadotrophin secretion by human blastocysts. Hum. Reprod., 8 (1993), 932–938.
110. G. Benagiano and L. Gianaroli. The new Italian IVF legislation. Reprod. Biomed. Online, 9 (2004), 117–125.
111. G. Sher, L. Keskintepe, M. Nourianiet al., Expression of sHLA-G in supernatants of individually cultured 46-h embryos: a potentially valuable indicator of ‘embryo competency’ and IVF outcome. Reprod. Biomed. Online, 9 (2004), 74–78.
112. T. Hviid, HLA-G in human reproduction: aspects of genetics, function and pregnancy complications. Hum. Reprod. Update, 12 (2004), 209–232.
113. Y. Yao, D. Barlow and I. Sargent, Differential expression of alternatively spliced transcripts of HLA-G in human preimplantation embryos and inner cell masses. J. Immunol., 175 (2005), 8379–8385.
114. I. Noci, B. Fuzzi, R. Rizzoet al., Embryonic soluble HLA-G as a marker of developmental potential in embryos. Hum. Reprod., 20 (2005), 138–146.
115. S. Yie, H. Balakier, G. Motamedi and C. Librach, Secretion of human leukocyte antigen G by human embryos is associated with a higher in vitro fertilization pregnancy rate. Fertil. Steril., 83 (2005), 30–36.
116. L. Sargent, Does ‘soluble’ HLA-G really exist? Another twist to the tale. Mol. Hum. Reprod., 11 (2005), 695–698.
117. M. van Lieropl, Y. Ijnands, P. Lokeet al., Detection of HLA-G by a specific sandwich ELISA using monoclonal antibodies G233 and 56B. Mol. Hum. Reprod., 8 (2002), 776–784.
118. C. Warner, M. Comiskey, P. Clisham and C. Brenner, Soluble HLA-G (sHLA-G) a predictor of IVF outcome? J. Assist. Reprod. Genet., 21 (2004), 315–316.
119. A. Blaschitz, H. Juch, A. Volzet al., The soluble pool of HLA-G produced by human trophoblast does not include detectable levels of the intron 4-containing HLA-G5 and HLA-G6 isoforms. Mol. Hum. Reprod., 11 (2005), 699–710.
120. Y. Menezo, K. Elder and S. Viville, Soluble HLA-G release by the human embryo: an interesting artefact? Reprod. Biomed. Online, 13 (2006), 763–764.
121. G. Sher, L. Keskintepe and M. Ginsburg, sHLA-G expression, is it really worth measuring? Reprod. Biomed. Online, 14 (2007), 9–10.
122. G. Porcu-Buisson, M. Lambert, L. Lyonnetet al., Soluble MHC class I chain-related molecule serum levels are predictive markers of implantation failure and successful term pregnancies following IVF. Hum. Reprod., 22 (2007), 2261–2266.
123. L. Mincheva-Nilsson, O. Nagaeva, T. Chenet al., Placenta-derived soluble MHC class I chain-related molecules down-regulate NKG2D receptor on peripheral blood mononuclear cells during human pregnancy: a possible novel immune escape mechanism for fetal survival. J. Immunol., 176 (2006), 3585–3592.
124. J. Hanna, D. Goldman-Wohl, Y. Hamaniet al., Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat. Med., 12 (2006), 1065–1074.
125. L. McKenzie, S. Pangas, A. Carsonet al., Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum. Reprod., 19 (2004), 2869–2874.
126. F. Cillo, A. Tiziana, L. Breviniet al., Association between human oocyte developmental competence and expression levels of some cumulus genes. Reproduction, 134 (2007), 645–650.
127. Y. Menezo and P. Guerin. Preimplantation embryo metabolism and embryo interaction with the in vitro environment. In K. Elder and J. Cohen, eds., Human Preimplantation Embryo Selection (London: Informa Press, 2007), pp. 191–200.
128. L. Gregory, A. Booth, C. Wells and S. Walker, A study of the cumulus-corona cell complex in in-vitro fertilization and embryo transfer: a prognostic indicator of the failure of implantation. Hum. Reprod., 9 (1994), 1308–1317.
129. J. Van Blerkom, Epigenetic influences on oocyte developmental competence. Follicular oxygenation and perifollicular vascularity. J. Assist. Reprod. Genet., 15 (1998), 226–234.
130. F. Diaz, K. Wigglesworth and J. Eppig, Oocytes determine cumulus cell lineage in mouse ovarian follicles. J. Cell Sci., 120 (2007), 1330–1340.
131. S. Gasca, F. Pellestor, S. Assouet al., Identifying new human oocyte marker genes: a microarray approach. Reprod. Biomed. Online, 14 (2007), 175–183.
132. G. Giritharan, S. Talbi, A. Donjacouret al., Effect of in vitro fertilization on gene expression and development of mouse preimplantation embryos. Reproduction, 134 (2007), 63–72.
133. P. Lonergan, T. Fair, D. Corcoran and A. Evans, Effect of culture environment on gene expression and developmental characteristics of IVF-derived embryos. Theriogenology, 65 (2006), 137–152.
134. A. Harvey, K. Kind, M. Pantaleonet al., Oxygen-regulated gene expression in bovine blastocysts. Biol. Reprod., 71 (2004), 1108–1119.
135. C. Magnusson, T. Hillensjo, L. Hamberger and L. Nilsson, Oxygen consumption by human oocytes and blastocysts grown in vitro. Hum. Reprod., 1 (1986), 183–184.
136. D. Gardner, T. Pool and M. Lane, Embryo nutrition and energy metabolism and its relationship to embryo growth, differentiation, and viability. Semin. Reprod. Med., 18 (2000), 205–218.
137. H, Leese, What does an embryo need? Hum. Fertil., 6 (2003), 180–185.
138. F. Houghton, J. Hawkhead, P. Humphersonet al., Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum. Reprod., 17 (2002), 999–1005.
139. D. Brison, F. Houghton, D. Falconeret al., Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum. Reprod., 19 (2004), 2319–2324.
140. A. Lopes, L. Larsen, N. Ramsinget al., Respiration rates of individual bovine in vitro-produced embryos measured with a novel, non-invasive and highly sensitive microsensor system. Reproduction, 130 (2005), 669–679.
141. J. Van Blerkom, The role of mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction, 128 (2004), 269–280.
142. C. Brenner, What is the role of mitochondria in embryo competence? In J. Van Blerkom and L. Gregory, eds., Essential IVF: Basic Research and Clinical Applications (Boston: Kluwer Academic Publishers, 2004), pp. 273–290.
143. P. May-Panloup, M. Chretien, Y. Malthiery and P. Reynier, Mitochondrial DNA in the oocyte and the developing embryo. Curr. Top. Dev. Biol., 77 (2007), 51–83.
144. J. Van Blerkom, P. Davis and J. Lee, ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum. Reprod., 10 (1995), 415–424.
145. J. Van Blerkom, P. Davis and S. Alexander, Differential mitochondrial distribution in human pronuclear embryos leads to disproportionate inheritance between blastomeres: relationship to microtubular organization. ATP content and competence. Hum. Reprod., 15 (2000), 2621–2633.
146. P. Reynier, P. May-Panloup, M. Chretienet al., Mitochondrial DNA content effects the fertilizability of human oocytes. Mol. Hum. Reprod., 7 (2001), 425–429.
147. E. Shoubridge and T. Wai, Mitochondrial DNA and the mammalian oocyte. Curr. Top. Dev. Biol., 77 (2007), 87–111.
148. J. Van Blerkom, Mitochondria as regulatory forces in oocytes, preimplantation embryos and stem cells. Reprod. Biomed. Online, 16 (2008), 553–569.
149. R. Jansen, Germline passage of mitochondria: quantitative considerations and possible embryological sequelae. Hum. Reprod., 15 (Suppl 2) (2000), 112–128.
150. T. Santos, S. El Shourbagy and J. St John, Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil. Steril., 85 (2006), 584–591.
151. M. Katayama, Z. Zhong, L. Laiet al., Mitochondrial distribution and microtubule organization in fertilized and cloned porcine embryos: implications for developmental potential. Developmental Biology, 299 (2006), 206–220.
152. S. H. El Shourbagy, E. C. Spikings, M. Freitas and J. C. St. John, Mitochondria directly influence fertilisation outcome in the pig. Reproduction, 131 (2006), 233–245.
153. J. Squirrell, R. Schramm, A. Paprocki, D. L. Wokosin and B. D. Bavister, Imaging mitochondrial organization in living primate oocytes and embryos using multiphoton microscopy. Microsc. Microanal., 9 (2003), 190–201.
154. J. Van Blerkom and P. Davis, Mitochondrial signaling and fertilization. Mol. Hum. Reprod., 13 (2007), 759–777.
155. P. Hockachka, The metabolic implications of intracellular circulation. Proc. Natl. Acad. Sci. USA, 96 (1999), 12233–12239.
156. T. Misgeld, M. Kerschensteiner, F. Mareyreet al., Imaging axonal transport of mitochondria in vivo. Nat. Methods, 4 (2007), 559–561.
157. J. Van Blerkom, Microtubule mediation of cytoplasmic and nuclear maturation during the early stages of resumed meiosis in cultured mouse oocytes. Proc. Natl. Acad. Sci. USA, 88 (1991), 5031–5035.
158. D. Barnett, J. Kimua and B. Bavister, Translocation of active mitochondria during hamster preimplantation embryo development studied by confocal laser scanning microscopy. Dev. Dyn., 205 (1996), 64–72.
159. M. Katayama, Z. Zhong, L. Laiet al., Mitochondrial distribution and microtubule organization in fertilized and cloned porcine embryos: implications for developmental potential. Dev. Biol., 299 (2006), 206–220.
160. T.-Y. Aw, Intracellular compartmentalization of organelles and gradients of low molecular weight species. Int. Rev. Cytol., 192 (2000), 223–253.
161. J. Van Blerkom, P. Davis, V. Mathwig and S. Alexander, Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos. Hum. Reprod., 17 (2000), 393–406.
162. J. Van Blerkom and P. Davis, High-polarized (ΔΨmHIGH) mitochondria are spatially polarized in human oocytes and early embryos in stable subplasmalemmal domains: developmental significance and the concept of vanguard mitochondria. Reprod. Biomed. Online, 13 (2006), 246–254.
163. J. Van Blerkom, P. Davis and S. Alexander, Inner mitochondrial membrane potential (ΔΨm), cytoplasmic ATP content and free Ca2+ levels in metaphase II mouse oocytes. Hum. Reprod., 18 (2003), 2429–2440.
164. A. Jones, J. Van Blerkom, P. Davis and A. Toledo, Cryopreservation of metaphase II human oocytes effects mitochondrial membrane potential: implications for developmental competence. Hum. Reprod., 19 (2004), 1861–1866.
165. R. Dumollard, K. Hammar, M. Porterfieldet al., Mitochondrial respiration and Ca2+ waves are linked during fertilisation and meiosis completion. Development, 130 (2003), 683–692.
166. R. Dumollard, M. Duchen and J. Carroll, The role of mitochondrial function in the oocyte and embryo. Curr. Top. Dev. Biol., 77 (2007), 21–49.
167. J. Arce, S. Ziebe, K. Lundinet al., Interobserver agreement and intraobserver reproducibility of embryo quality assessments. Hum. Reprod., 21 (2006), 2141–2148.
168. C. Hnida and S. Ziebe, Morphometric analysis of human embryos. In K. Elder and J. Cohen, eds., Human Preimplantation Embryo Selection (London: Informa Press, 2007), pp. 89–99.