Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T07:20:49.900Z Has data issue: false hasContentIssue false

Part IV - Understanding Others

Published online by Cambridge University Press:  27 October 2016

Sukhvinder S. Obhi
Affiliation:
McMaster University, Ontario
Emily S. Cross
Affiliation:
Bangor University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Shared Representations
Sensorimotor Foundations of Social Life
, pp. 311 - 436
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Bellebaum, C., Tettamanti, M., Marchetta, E., Della Rosa, P., Rizzo, G., et al. (2013). Neural representations of unfamiliar objects are modulated by sensorimotor experience. Cortex, 49, 11101125.CrossRefGoogle ScholarPubMed
Bourgeois, P., & Hess, U. (2008). The impact of social context on mimicry. Biological Psychology, 77, 343352.CrossRefGoogle ScholarPubMed
Brass, M., Bekkering, H., & Prinz, W. (2001). Movement observation affects movement execution in a simple response task. Acta Psychologica, 106, 322.CrossRefGoogle Scholar
Brincker, M. (2011). Moving beyond mirroring: A social affordance model of sensorimotor integration during action perception. PhD thesis, City University of New York.Google Scholar
Buccino, G., Binkofski, F., Fink, G.R., Fadiga, L., Fogassi, L., et al. (2001). Short communication action observation activates premotor and parietal areas in a somatotopic manner: An fMRI study. European Journal of Neuroscience, 13, 400404.CrossRefGoogle Scholar
Buccino, G., Lui, F., Canessa, N., Patteri, I., Lagravinese, G., et al. (2004a). Neural circuits involved in the recognition of actions performed by nonconspecifics: An FMRI study. Journal of Cognitive Neuroscience, 16, 114126.CrossRefGoogle ScholarPubMed
Buccino, G., Vogt, S., Ritzl, A., Fink, G. R., Zilles, K., et al. (2004b). Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron, 42, 323334.CrossRefGoogle ScholarPubMed
Buxbaum, L. J., Johnson-Frey, S. H., & Bartlett-Williams, M. (2005). Deficient internal models for planning hand–object interactions in apraxia. Neuropsychologia, 43, 917929.CrossRefGoogle ScholarPubMed
Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An FMRI study with expert dancers. Cerebral Cortex, 15, 12431249.CrossRefGoogle ScholarPubMed
Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50(3), 1148–1167.CrossRefGoogle ScholarPubMed
Catmur, C., Gillmeister, H., Bird, G., Liepelt, R., Brass, M., & Heyes, C. (2008). Through the looking glass: Counter-mirror activation following incompatible sensorimotor learning. European Journal of Neuroscience, 28, 12081215.CrossRefGoogle ScholarPubMed
Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269298.CrossRefGoogle ScholarPubMed
Conty, L., Dezecache, G., Hugueville, L., & Grèzes, J. (2012). Early binding of gaze, gesture, and emotion: Neural time course and correlates. Journal of Neuroscience, 32, 45314539.CrossRefGoogle ScholarPubMed
Cook, R., Bird, G., Catmur, C., Press, C., & Heyes, C. (2014). Mirror neurons: From origin to function. Behavioral and Brain Sciences, 37, 177192.CrossRefGoogle ScholarPubMed
Creem-Regehr, S. H., Dilda, V., Vicchrilli, A. E., Federer, F., & Lee, J. N. (2007). The influence of complex action knowledge on representations of novel graspable objects: Evidence from functional magnetic resonance imaging. Journal of the International Neuropsychological Society, 13, 10091020.CrossRefGoogle ScholarPubMed
Cross, E. S., Hamilton, A. F. de C., & Grafton, S. T. (2006). Building a motor simulation de novo: Observation of dance by dancers. NeuroImage, 31, 12571267.CrossRefGoogle ScholarPubMed
Cross, E. S., Hamilton, A. F. de C., Kraemer, D. J. M., Kelley, W. M., & Grafton, S. T. (2009). Dissociable substrates for body motion and physical experience in the human action observation network. European Journal of Neuroscience, 30, 13831392.CrossRefGoogle ScholarPubMed
Cross, E. S., Liepelt, R., Hamilton, A. F. de C., Parkinson, J., Ramsey, R., Stadler, W., & Prinz, W. (2012). Robotic movement preferentially engages the action observation network. Human Brain Mapping, 33, 22382254.CrossRefGoogle ScholarPubMed
Csibra, G. (2007). Action mirroring and action understanding: An alternative account. In Haggard, P., Rossetti, Y., & Kawato, M. (Eds.), Sensorimotor foundations of higher cognition. Oxford: Oxford University Press, 435459.Google Scholar
Dezecache, G., Conty, L., & Grèzes, J. (2013). Social affordances: Is the mirror neuron system involved? Behavioral and Brain Sciences, 36, 417418.CrossRefGoogle ScholarPubMed
Elk, M. van, Viswanathan, S., van Schie, H. T., Bekkering, H., & Grafton, S. T. (2012). Pouring or chilling a bottle of wine: an fMRI study on the prospective planning of object-directed actions. Experimental Brain Research, 218, 189200.CrossRefGoogle ScholarPubMed
Fabbri, S., Strnad, L., Caramazza, A., & Lingnau, A. (2014). Overlapping representations for grip type and reach direction. NeuroImage, 94, 138146.CrossRefGoogle ScholarPubMed
Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73, 26082611.CrossRefGoogle ScholarPubMed
Flanagan, J. R., & Johansson, R. S. (2003). Action plans used in action observation. Nature, 424, 769771.CrossRefGoogle ScholarPubMed
Friston, K. J., Mattout, J., & Kilner, J. M. (2011). Action understanding and active inference. Biological Cybernetics, 104, 137160.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 3, 593609.CrossRefGoogle Scholar
Gallese, V., Keysers, C., & Rizzolatti, G. (2004). A unifying view of the basis of social cognition. Trends in Cognitive Sciences, 8, 396403.CrossRefGoogle ScholarPubMed
Gallivan, J. P., Culham, J. C., & Cavina-Pratesi, C. (2009). Is that within reach? fMRI reveals that the human superior parieto-occipital cortex encodes objects reachable by the hand. Journal of Neuroscience, 29, 43814391.CrossRefGoogle ScholarPubMed
Gazzola, V., & Keysers, C. (2009). The observation and execution of actions share motor and somatosensory voxels in all tested subjects: Single-subject analyses of unsmoothed fMRI data. Cerebral Cortex, 19, 12391255.CrossRefGoogle ScholarPubMed
Gazzola, V., Rizzolatti, G., Wicker, B., & Keysers, C. (2007). The anthropomorphic brain: The mirror neuron system responds to human and robotic actions. NeuroImage, 35, 16741684.CrossRefGoogle ScholarPubMed
Gibson, J. J. (1977). The theory of affordances. In R. E. Shaw & J. Bransford (Eds.), Perceiving, acting, knowing: Toward an ecological psychology. Hillsdale, NJ: Lawrence Erlbaum, pp. 127–142.Google Scholar
Grafton, S. T., Fadiga, L., Arbib, M. A., & Rizzolatti, G. (1997). Premotor cortex activation during observation and naming of familiar tools. NeuroImage, 6, 231236.CrossRefGoogle ScholarPubMed
Grafton, S. T., Fagg, A. H., Woods, R. P., & Arbib, M. A. (1996). Functional anatomy of pointing and grasping in humans. Cerebral Cortex, 6, 226237.CrossRefGoogle ScholarPubMed
Grèzes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis. Human Brain Mapping, 12, 119.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Grèzes, J., (2002). Does visual perception of object afford action? Evidence from a neuroimaging study. Neuropsychologia, 40, 212222.CrossRefGoogle ScholarPubMed
Grèzes, J., Tucker, M., Armony, J. L., Ellis, R., & Passingham, R. E. (2003). Objects automatically potentiate action: An fMRI study of implicit processing. European Journal of Neuroscience, 17, 27352740.CrossRefGoogle ScholarPubMed
Hamilton, A. F. de C. (2013). The mirror neuron system contributes to social responding. Cortex, 49, 29572959.CrossRefGoogle ScholarPubMed
Hamilton, A. F. de C., & Grafton, S. T. (2006). Goal representation in human anterior intraparietal sulcus. Journal of Neuroscience, 26, 11331137.CrossRefGoogle ScholarPubMed
(2007). The motor hierarchy: From kinematics to goals and intentions. In Haggard, P., Rosetti, Y., & Kawato, M. (Eds.), Sensorimotor foundations of higher cognition: Attention and performance XXII. Oxford: Oxford University Press, 129.Google Scholar
Heyes, C. (2011). Automatic imitation. Psychological Bulletin, 137, 463483.CrossRefGoogle ScholarPubMed
Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 25262528.CrossRefGoogle Scholar
Jacob, P., & Jeannerod, M. (2005). The motor theory of social cognition: A critique. Trends in Cognitive Sciences, 9, 2125.CrossRefGoogle Scholar
Jastorff, J., Begliomini, C., Fabbri-Destro, M., Rizzolatti, G., & Orban, G. A. (2010). Coding observed motor acts: Different organizational principles in the parietal and premotor cortex of humans. Journal of Neurophysiology, 104, 128140.CrossRefGoogle ScholarPubMed
Johnson, S. H., Rotte, M., Grafton, S. T., Hinrichs, H., Gazzaniga, M. S., & Heinze, H. J. (2002). Selective activation of a parietofrontal circuit during implicitly imagined prehension. NeuroImage, 17, 16931704.CrossRefGoogle ScholarPubMed
Johnson-Frey, S. H., Newman-Norlund, R., & Grafton, S. T. (2005). A distributed left hemisphere network active during planning of everyday tool use skills. Cerebral Cortex, 15, 681695.CrossRefGoogle ScholarPubMed
Kellenbach, M. L., Brett, M., & Patterson, K. (2003). Actions speak louder than functions: The importance of manipulability and action in tool representation. Journal of Cognitive Neuroscience, 15, 3046.CrossRefGoogle ScholarPubMed
Kilner, J. M., Friston, K. J., & Frith, C. (2007). Predictive coding: An account of the mirror neuron system. Cognitive Processes, 8, 159166.CrossRefGoogle ScholarPubMed
Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J., & Frith, C. (2009). Evidence of mirror neurons in human inferior frontal gyrus. Journal of Neuroscience, 29, 1015310159.CrossRefGoogle ScholarPubMed
Kilner, J. M., Vargas, C., Duval, S., Blakemore, S.-J., & Sirigu, A. (2004). Motor activation prior to observation of a predicted movement. Nature Neuroscience, 7, 12991301.CrossRefGoogle ScholarPubMed
Króliczak, G., & Frey, S. H. (2009). A common network in the left cerebral hemisphere represents planning of tool use pantomimes and familiar intransitive gestures at the hand-independent level. Cerebral Cortex, 19, 23962410.CrossRefGoogle ScholarPubMed
Króliczak, G., McAdam, T. D., Quinlan, D. J., & Culham, J. C. (2008). The human dorsal stream adapts to real actions and 3D shape processing: A functional magnetic resonance imaging study. Journal of Neurophysiology, 100, 26272639.CrossRefGoogle ScholarPubMed
Landmann, C., Landi, S. M., Grafton, S. T., & Della-Maggiore, V. (2011). fMRI supports the sensorimotor theory of motor resonance. PLoS One, 6, e26859.CrossRefGoogle ScholarPubMed
Liepelt, R., Prinz, W., & Brass, M. (2010). When do we simulate non-human agents? Dissociating communicative and non-communicative actions. Cognition, 115, 426434.CrossRefGoogle ScholarPubMed
Masson, M. E. J., Bub, D. N., & Breuer, A. T. (2011). Priming of reach and grasp actions by handled objects. Journal of Experimental Psychology: Human Perception and Performance, 37, 14701484.Google ScholarPubMed
Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2009). Is the mirror neuron system involved in imitation? A short review and meta-analysis. Neuroscience & Biobehavioral Reviews, 33, 975980.CrossRefGoogle Scholar
Molenberghs, P., Cunnington, R., (2012). Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neuroscience & Biobehavioral Reviews, 36, 341349.CrossRefGoogle ScholarPubMed
Murata, A., Fadiga, L., Fogassi, L., Gallese, V., Raos, V., & Rizzolatti, G. (1997). Object representation in the ventral premotor cortex (area F5) of the monkey. Journal of Neurophysiology, 78, 22262230.CrossRefGoogle ScholarPubMed
Oosterhof, N. N., Wiggett, A. J., Diedrichsen, J., Tipper, S. P., & Downing, P. E. (2010). Surface-based information mapping reveals crossmodal vision: Action representations in human parietal and occipitotemporal cortex. Journal of Neurophysiology, 104, 10771089.CrossRefGoogle ScholarPubMed
Pellegrino, G. di, Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176180.CrossRefGoogle ScholarPubMed
Pfeiffer, U. J., Timmermans, B., Vogeley, K., Frith, C. D., & Schilbach, L. (2013a). Towards a neuroscience of social interaction. Frontiers in Human Neuroscience, 7, 22.CrossRefGoogle ScholarPubMed
Pfeiffer, U. J., Vogeley, K., & Schilbach, L. (2013b). From gaze cueing to dual eye-tracking: Novel approaches to investigate the neural correlates of gaze in social interaction. Neuroscience & Biobehavioral Reviews, 37, 25162528.CrossRefGoogle ScholarPubMed
Pobric, G., & Hamilton, A. F. de C. (2006). Action understanding requires the left inferior frontal cortex. Current Biology, 16, 524529.CrossRefGoogle ScholarPubMed
Press, C., Catmur, C., Cook, R., Widmann, H., Heyes, C., & Bird, G. (2012). fMRI evidence of ‘mirror’responses to geometric shapes. PloS One, 7(12), e51934.CrossRefGoogle ScholarPubMed
Ramachandran, V. S. (2000). Mirror neurons and imitation learning as the driving force behind ‘the great leap forward’ in human evolution. http://edge.org/3rd_culture/ramachandran/ramachandran_index.html.Google Scholar
Ramsey, R., & Hamilton, A. F. de C. (2010). Triangles have goals too: Understanding action representation in left aIPS. Neuropsychologia, 48, 27732776.CrossRefGoogle ScholarPubMed
Richardson, M. J., Marsh, K. L., & Baron, R. M. (2007). Judging and actualizing intrapersonal and interpersonal affordances. Journal of Experimental Psychology: Human Perception and Performance, 33, 845859.Google ScholarPubMed
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11, 264274.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., & Matelli, M. (1988). Functional organization of inferior area 6 in the macaque monkey. I. Somatotopy and the control of proximal movements. Experimental Brain Research, 71, 475490.CrossRefGoogle Scholar
Sartori, L., Bucchioni, G., & Castiello, U. (2013). When emulation becomes reciprocity. Social Cognitive and Affective Neuroscience, 8, 662669.CrossRefGoogle ScholarPubMed
Schilbach, L., Timmermans, B., Reddy, V., Costall, A., Bente, G., et al. (2013). Toward a second-person neuroscience. Behavioral and Brain Sciences, 36, 393414.CrossRefGoogle Scholar
Southgate, V., Johnson, M. H., Osborne, T., & Csibra, G. (2009). Predictive motor activation during action observation in human infants. Biology Letters, 5, 769772.CrossRefGoogle ScholarPubMed
Tucker, M., & Ellis, R. (2004). Action priming by briefly presented objects. Acta Psychologica, 116, 185203.CrossRefGoogle ScholarPubMed
Valyear, K. F., Gallivan, J. P., McLean, D. A., & Culham, J. C. (2012). fMRI repetition suppression for familiar but not arbitrary actions with tools. Journal of Neuroscience, 32, 42474259.CrossRefGoogle Scholar
Wang, Y., & Hamilton, A. F. de C. (2012). Social top-down response modulation (STORM): A model of the control of mimicry in social interaction. Frontiers in Human Neuroscience, 6, 110.CrossRefGoogle Scholar
Wang, Y., (2013). Why does gaze enhance mimicry? Placing gaze-mimicry effects in relation to other gaze phenomena. Quarterly Journal of Experimental Psychology, 67(4), 747–762.Google ScholarPubMed
Wang, Y., Newport, R., & Hamilton, A. F. de C. (2011a). Eye contact enhances mimicry of intransitive hand movements. Biology Letters, 7, 710.CrossRefGoogle ScholarPubMed
Wang, Y., Ramsey, R., & Hamilton, A. F. de C. (2011b). The control of mimicry by eye contact is mediated by medial prefrontal cortex. Journal of Neuroscience, 31, 1200112010.CrossRefGoogle ScholarPubMed
Wiestler, T., & Diedrichsen, J. (2013). Skill learning strengthens cortical representations of motor sequences. Elife, 2, e00801.CrossRefGoogle ScholarPubMed
Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131, 460473.CrossRefGoogle ScholarPubMed
Zanon, M., Novembre, G., Zangrando, N., Chittaro, L., & Silani, G. (2014). Brain activity and prosocial behavior in a simulated life-threatening situation. NeuroImage, 98,134–146.CrossRefGoogle Scholar

References

Bird, G., Leighton, J., Press, C., & Heyes, C. (2007). Intact automatic imitation of human and robot actions in autism spectrum disorders. Proceedings of the Royal Society B: Biological Sciences, 274, 30273031. doi: 10.1098/rspb.2007.1019.CrossRefGoogle ScholarPubMed
Brass, M., Bekkering, H., & Prinz, W. (2001). Movement observation affects movement execution in a simple response task. Acta Psychologica, 106, 322. doi: 10.1016/S0001-6918(00)00024-X.CrossRefGoogle Scholar
Brass, M., Schmitt, R. M., Spengler, S., & Gergely, G. (2007). Investigating action understanding: Inferential processes versus action simulation. Current Biology, 17, 21172121. doi: 10.1016/j.cub.2007.11.057.CrossRefGoogle ScholarPubMed
Candidi, M., Urgesi, C., Ionta, S., & Aglioti, S. M. (2008). Virtual lesion of ventral premotor cortex impairs visual perception of biomechanically possible but not impossible actions. Society for Neuroscience, 3, 388400. doi: 10.1080/17470910701676269.CrossRefGoogle Scholar
Casile, A., Dayan, E., Caggiano, V., Hendler, T., Flash, T., & Giese, M. A. (2010). Neuronal encoding of human kinematic invariants during action observation. Cerebral Cortex, 20, 16471655. doi: 10.1093/cercor/bhp229.CrossRefGoogle ScholarPubMed
Catmur, C., Walsh, V., & Heyes, C. (2009). Associative sequence learning: The role of experience in the development of imitation and the mirror system. Proceedings of the Royal Society B: Biological Sciences, 364, 23692380. doi: 10.1098/rstb.2009.0048.Google ScholarPubMed
Chaminade, T., & Cheng, G. (2009). Social cognitive neuroscience and humanoid robotics. Journal of Physiology – Paris 103, 286295. doi: 10.1016/j.jphysparis.2009.08.011.CrossRefGoogle ScholarPubMed
Chaminade, T., Franklin, D. W., Oztop, E., & Cheng, G. (2005). Motor interference between humans and humanoid robots: Effect of biological and artificial motion. In Proceedings of the 4th International Conference on Development and Learning, 96–101. doi: 10.1109/DEVLRN.2005.1490951.CrossRefGoogle Scholar
Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology, 76, 893910. doi: 10.1037/0022-3514.76.6.893.CrossRefGoogle ScholarPubMed
Chong, T. T.-J., Cunnington, R., Williams, M. A., & Mattingley, J. B. (2009). The role of selective attention in matching observed and executed actions. Neuropsychologia, 47, 786795. doi:10.1016/j.neuropsychologia.2008.12.008CrossRefGoogle ScholarPubMed
Cisek, P., & Kalaska, J. F. (2004. Neural correlates of mental rehearsal in dorsal premotor cortex. Nature, 431, 993996. doi: 10.1038/nature03005.CrossRefGoogle ScholarPubMed
Coll, M. P., Bird, G., Catmur, C., & Press, C, (2015). Cross-modal repetition effects in the mu rhythm indicate tactile mirroring during action observation. Cortex, 63, 121131.CrossRefGoogle ScholarPubMed
Cook, J., Swapp, D., Pan, X., Bianchi-Berthouze, N., & Blakemore, S.-J. (2014). Atypical interference effect of action observation in autism spectrum conditions. Psychological Medicine, 44, 731740. doi: 10.1017/S0033291713001335.CrossRefGoogle ScholarPubMed
Cook, R., Bird, G., Catmur, C., Press, C., & Heyes, C. (2014). Mirror neurons: From origin to function. Behavioral and Brain Sciences, 37(02), 177192.CrossRefGoogle ScholarPubMed
Costantini, M., Galati, G., Ferretti, A., Caulo, M., Tartaro, A., et al. (2005). Neural systems underlying observation of humanly impossible movements: An fMRI study. Cerebral Cortex, 15, 17611767. doi: 10.1093/cercor/bhi053.CrossRefGoogle ScholarPubMed
Cross, E. S., Hamilton, A. F. de C., Kraemer, D. J. M., Kelley, W. M., & Grafton, S. T. (2009). Dissociable substrates for body motion and physical experience in the human action observation network. European Journal of Neuroscience, 30, 13831392. doi: 10.1111/j.1460-9568.2009.06941.x.CrossRefGoogle ScholarPubMed
Cross, E. S., Liepelt, R., Hamilton, A. F. de C., Parkinson, J., Ramsey, R., et al. (2012). Robotic movement preferentially engages the action observation network. Human Brain Mapping, 33, 22382254. doi: 10.1002/hbm.21361.CrossRefGoogle ScholarPubMed
Dayan, E., Casile, A., Levit-Binnun, N., Giese, M. A., Hendler, T., & Flash, T. (2007). Neural representations of kinematic laws of motion: Evidence for action–perception coupling. Proceedings of the National Academy of Sciences, 104, 2058220587. doi: 10.1073/pnas.0710033104.CrossRefGoogle ScholarPubMed
Di Dio, C., & Gallese, V. (2009). Neuroaesthetics: A review. Current Opinion in Neurobiology, 19, 682687.Google Scholar
Dushanova, J., & Donoghue, J. (2010). Neurons in primary motor cortex engaged during action observation. European Journal of Neuroscience, 31, 386398. doi: 10.1111/j.1460-9568.2009.07067.x.CrossRefGoogle ScholarPubMed
Engel, A., Burke, M., Fiehler, K., Bien, S., & Rösler, F. (2008. How moving objects become animated: The human mirror neuron system assimilates non-biological movement patterns. Society for Neuroscience, 3, 368387. doi: 10.1080/17470910701612793.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593609. doi: 10.1093/brain/119.2.593.CrossRefGoogle ScholarPubMed
Gallese, V., Gernsbacher, M.A., Heyes, C., Hickok, G., & Iacoboni, M. (2011). Mirror neuron forum. Perspectives on Psychological Science, 6, 369407. doi: 10.1177/1745691611413392.CrossRefGoogle ScholarPubMed
Gallese, V., & Sinigaglia, C. (2011). What is so special about embodied simulation? Trends in Cognitive Sciences, 15, 512–519. doi: 10.1016/j.tics.2011.09.003.Google Scholar
Gazzola, V., Rizzolatti, G., Wicker, B., & Keysers, C. (2007). The anthropomorphic brain: The mirror neuron system responds to human and robotic actions. NeuroImage, 35, 16741684. doi: 10.1016/j.neuroimage.2007.02.003.CrossRefGoogle ScholarPubMed
Gobbini, M. I., Gentili, C., Ricciardi, E., Bellucci, C., Salvini, P., et al. (2011). Distinct neural systems involved in agency and animacy detection. Journal of Cognitive Neuroscience, 23, 19111920. doi: 10.1162/jocn.2010.21574.CrossRefGoogle ScholarPubMed
Goldenberg, G., & Karnath, H.-O. (2006). The neural basis of imitation is body part specific. Journal of Neuroscience, 26, 62826287. doi: 10.1523/jneurosci.0638-06.2006.CrossRefGoogle ScholarPubMed
Gowen, E., Bradshaw, C., Galpin, A., Lawrence, A., & Poliakoff, E. (2010). Exploring visuomotor priming following biological and non-biological stimuli. Brain and Cognition, 74, 288297. doi: 10.1016/j.bandc.2010.08.010.CrossRefGoogle ScholarPubMed
Gowen, E., Stanley, J., & Miall, R. C. (2008). Movement interference in autism-spectrum disorder. Neuropsychologia, 46, 10601068. doi: 10.1016/j.neuropsychologia.2007.11.004.CrossRefGoogle ScholarPubMed
Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10, 1423. doi: 10.1016/j.tics.2005.11.006.CrossRefGoogle ScholarPubMed
Heiser, M., Iacoboni, M., Maeda, F., Marcus, J., & Mazziotta, J.C. (2003). The essential role of Broca’s area in imitation. European Journal of Neuroscience, 17, 11231128. doi: 10.1046/j.1460-9568.2003.02530.x.CrossRefGoogle ScholarPubMed
Heyes, C. M. (1993). Imitation, culture and cognition. Animal Behaviour, 46, 999–1010. doi: 10.1006/anbe.1993.1281.CrossRefGoogle Scholar
Hogan, N. (1984). An organizing principle for a class of voluntary movements. Journal of Neuroscience, 4, 27452754.CrossRefGoogle ScholarPubMed
Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology, 3, e79. doi: 10.1371/journal.pbio.0030079.CrossRefGoogle ScholarPubMed
Kilner, J., Hamilton, A. F. de C., & Blakemore, S.-J. (2007). Interference effect of observed human movement on action is due to velocity profile of biological motion. Society for Neuroscience, 2, 158166. doi: 10.1080/17470910701428190.CrossRefGoogle ScholarPubMed
Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J., & Frith, C. D. (2009). Evidence of mirror neurons in human inferior frontal gyrus. Journal of Neuroscience, 29, 1015310159. doi: 10.1523/JNEUROSCI.2668-09.2009.CrossRefGoogle ScholarPubMed
Kilner, J. M., Paulignan, Y., & Blakemore, S. (2003). An interference effect of observed biological movement on action. Current Biology, 13, 522525. doi: 10.1016/S0960-9822(03)00165-9.CrossRefGoogle ScholarPubMed
Klapper, A., Ramsey, R., Wigboldus, D., & Cross, E. S. (2014). The control of automatic imitation based on bottom-up and top-down cues to animacy: Insights from brain and behavior. Journal of Cognitive Neuroscience, 111. doi: 10.1162/jocn_a_00651.Google ScholarPubMed
Kupferberg, A., Huber, M., Helfer, B., Lenz, C., Knoll, A., & Glasauer, S. (2012). Moving just like you: Motor interference depends on similar motility of agent and observer. PLoS One, 7, e39637. doi: 10.1371/journal.pone.0039637.CrossRefGoogle ScholarPubMed
Lacquaniti, F., Terzuolo, C., & Viviani, P. (1983). The law relating the kinematic and figural aspects of drawing movements. Acta Psychologica, 54, 115130. doi: 10.1016/0001-6918(83)90027-6.CrossRefGoogle ScholarPubMed
Lange, F. P. de, Spronk, M., Willems, R. M., Toni, I., & Bekkering, H. (2008). Complementary systems for understanding action intentions. Current Biology, 18, 454457. doi: 10.1016/j.cub.2008.02.057.CrossRefGoogle ScholarPubMed
Lhermitte, F., Pillon, B., & Serdaru, M. (1986). Human autonomy and the frontal lobes. Part I: Imitation and utilization behavior: A neuropsychological study of 75 patients. Annals of Neurology, 19, 326334. doi: 10.1002/ana.410190404.CrossRefGoogle ScholarPubMed
Liepelt, R., & Brass, M. (2010). Top-down modulation of motor priming by belief about animacy. Journal of Experimental Psychology: Human Perception and Performance, 57, 221227. doi: 10.1027/1618–3169/a000028.CrossRefGoogle ScholarPubMed
Lingnau, A., Gesierich, B., & Caramazza, A. (2009). Asymmetric fMRI adaptation reveals no evidence for mirror neurons in humans. Proceedings of the National Academy of Sciences, 106, 99259930. doi: 10.1073/pnas.0902262106.CrossRefGoogle ScholarPubMed
Longo, M. R., & Bertenthal, B. I. (2009). Attention modulates the specificity of automatic imitation to human actors. Experimental Brain Research, 192, 739744. doi: 10.1007/s00221-008-1649-5.CrossRefGoogle ScholarPubMed
Marin, L., Issartel, J., & Chaminade, T. (2009). Interpersonal motor coordination: From human–human to human–robot interactions. Interaction Studies, 10, 479504. doi: 10.1075/is.10.3.09mar.CrossRefGoogle Scholar
Miura, N., Sugiura, M., Takahashi, M., Sassa, Y., Miyamoto, A., et al. (2010). Effect of motion smoothness on brain activity while observing a dance: An fMRI study using a humanoid robot. Society for Neuroscience, 5, 4058. doi: 10.1080/17470910903083256.CrossRefGoogle ScholarPubMed
Newman-Norlund, R. D., Ondobaka, S., van Schie, H. T., van Elswijk, G., & Bekkering, H. (2010). Virtual lesions of the IFG abolish response facilitation for biological and non-biological cues. Frontiers in Behavioral Neuroscience, 4, 5. doi: 10.3389/neuro.08.005.2010.Google Scholar
Oberman, L. M., McCleery, J. P., Ramachandran, V. S., & Pineda, J. A. (2007). EEG evidence for mirror neuron activity during the observation of human and robot actions: Toward an analysis of the human qualities of interactive robots. Neurocomputing, 70, 21942203. doi: 10.1016/j.neucom.2006.02.024.CrossRefGoogle Scholar
Oosterhof, N. N., Tipper, S. P., & Downing, P. E. (2013). Crossmodal and action-specific: Neuroimaging the human mirror neuron system. Trends in Cognitive Sciences, 17, 311318. doi: 10.1016/j.tics.2013.04.012.CrossRefGoogle ScholarPubMed
Pearce, J. M. (1987. A model for stimulus generalization in Pavlovian conditioning. Psychological Review, 94, 6173. doi: 10.1037/0033-295X.94.1.61.CrossRefGoogle Scholar
Pellegrino, G. di, Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176180. doi: 10.1007/BF00230027.CrossRefGoogle ScholarPubMed
Press, C. (2011). Action observation and robotic agents: Learning and anthropomorphism. Neuroscience & Biobehavioral Reviews, 35, 14101418.CrossRefGoogle ScholarPubMed
Press, C., Bird, G., Flach, R., & Heyes, C. (2005). Robotic movement elicits automatic imitation. Cognitive Brain Research, 25, 632640. doi: 10.1016/j.cogbrainres.2005.08.020.CrossRefGoogle ScholarPubMed
Press, C., Catmur, C., Cook, R., Widmann, H., Heyes, C., & Bird, G. (2012a). fMRI evidence of ‘mirror’ responses to geometric shapes. PLoS One, 7, e51934. doi: 10.1371/journal.pone.0051934.CrossRefGoogle ScholarPubMed
Press, C., Cook, J., Blakemore, S.-J., & Kilner, J. (2011). Dynamic modulation of human motor activity when observing actions. Journal of Neuroscience, 31, 27922800. doi: 10.1523/JNEUROSCI.1595-10.2011.CrossRefGoogle ScholarPubMed
Press, C., Gillmeister, H., & Heyes, C. (2006). Bottom-up, not top-down, modulation of imitation by human and robotic models. European Journal of Neuroscience, 24, 24152419. doi: 10.1111/j.1460-9568.2006.05115.x.CrossRefGoogle Scholar
Press, C., Gillmeister, H., (2007). Sensorimotor experience enhances automatic imitation of robotic action. Proceedings of the Royal Society B: Biological Sciences, 274, 25092514. doi: 10.1098/rspb.2007.0774.CrossRefGoogle ScholarPubMed
Press, C., Weiskopf, N., & Kilner, J. M. (2012b). Dissociable roles of human inferior frontal gyrus during action execution and observation. NeuroImage, 60, 16711677. doi: 10.1016/j.neuroimage.2012.01.118.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192. doi: 10.1146/annurev.neuro.27.070203.144230.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Fadiga, L. (1998). Grasping objects and grasping action meanings: The dual role of monkey rostroventral premotor cortex (area F5). Novartis Foundation Symposium, 218, 8195.Google ScholarPubMed
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3, 131141. doi: 10.1016/0926-6410(95)00038-0.CrossRefGoogle ScholarPubMed
Saygin, A. P., Wilson, S. M., Hagler, D. J., Bates, E., & Sereno, M. I. (2004). Point-light biological motion perception activates human premotor cortex. Journal of Neuroscience, 24, 61816188. doi: 10.1523/jneurosci.0504-04.2004.CrossRefGoogle ScholarPubMed
Shimada, S. (2010). Deactivation in the sensorimotor area during observation of a human agent performing robotic actions. Brain and Cognition, 72, 394399. doi: 10.1016/j.bandc.2009.11.005.CrossRefGoogle ScholarPubMed
Stanley, J., Gowen, E., & Miall, R. C. (2007). Effects of agency on movement interference during observation of a moving dot stimulus. Journal of Experimental Psychology: Human Perception and Performance, 33, 915926. doi: 10.1037/0096-1523.33.4.915.Google Scholar
Stanley, J., Gowen, E., (2010). How instructions modify perception: An fMRI study investigating brain areas involved in attributing human agency. NeuroImage, 52, 389400. doi: 10.1016/j.neuroimage.2010.04.025.CrossRefGoogle ScholarPubMed
Stevens, J. A., Fonlupt, P., Shiffrar, M., & Decety, J. (2000). New aspects of motion perception: Selective neural encoding of apparent human movements. Neuroreport, 11, 109115.CrossRefGoogle ScholarPubMed
Tai, Y. F., Scherfler, C., Brooks, D. J., Sawamoto, N., & Castiello, U. (2004). The human premotor cortex is ‘mirror’ only for biological actions. Current Biology, 14, 117120. doi: 10.1016/j.cub.2004.01.005.CrossRefGoogle ScholarPubMed
Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24, 830846. doi: 10.1037/0096-1523.24.3.830.Google ScholarPubMed

References

Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11(9), 11091116.CrossRefGoogle ScholarPubMed
Assal, F., Schwartz, S., & Vuilleumier, P. (2007). Moving with or without will: Functional neural correlates of alien hand syndrome. Annals of Neurology, 62(3), 301306.CrossRefGoogle ScholarPubMed
Banissy, M. J., Cohen Kadosh, R., Maus, G. W., Walsh, V., & Ward, J. (2009). Prevalence, characteristics and a neurocognitive model of mirror-touch synaesthesia. Experimental Brain Research, 198(2–3), 261272.CrossRefGoogle Scholar
Behmer, L. P. J., & Jantzen, K. J. (2011). Reading sheet music facilitates sensorimotor mu-desynchronization in musicians. Clinical Neurophysiology, 122(7), 13421347.CrossRefGoogle ScholarPubMed
Bisiach, E., Rusconi, M. L., & Vallar, G. (1991). Remission of somatoparaphrenic delusion through vestibular stimulation. Neuropsychologia, 29(10), 10291031.CrossRefGoogle ScholarPubMed
Blaesi, S., & Wilson, M. (2010). The mirror reflects both ways: Action influences perception of others. Brain and Cognition, 72(2), 306309.CrossRefGoogle ScholarPubMed
Blakemore, S., Wolpert, D., & Frith, C. (2002). Abnormalities in the awareness of action. Trends in Cognitive Sciences, 6(6), 237242.CrossRefGoogle ScholarPubMed
Blakemore, S. J., Wolpert, D. M., & Frith, C. D. (1998). Central cancellation of self-produced tickle sensation. Nature Neuroscience, 1(7), 635640.CrossRefGoogle ScholarPubMed
Botvinick, M., & Cohen, J. (1998). Rubber hands ‘feel’ touch that eyes see. Nature, 391(6669), 756756.CrossRefGoogle ScholarPubMed
Buccino, G., Lui, F., Canessa, N., Patteri, I., Lagravinese, G., Benuzzi, F., Porro, C. A., & Rizzolatti, G. (2004). Neural circuits involved in the recognition of actions performed by nonconspecifics: An fMRI Study. Journal of Cognitive Neuroscience, 16(1), 114126.CrossRefGoogle ScholarPubMed
Buehner, M. J. (2012). Understanding the past, predicting the future: Causation, not intentional action, is the root of temporal binding. Psychological Science, 23(12), 14901497.CrossRefGoogle Scholar
Cardellicchio, P., Sinigaglia, C., & Costantini, M. (2012). Grasping affordances with the other’s hand: A TMS study. Social Cognitive and Affective Neuroscience, 8(4), 455459.CrossRefGoogle Scholar
Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Current Biology, 16(1), 69–74.CrossRefGoogle ScholarPubMed
Chaminade, T., & Decety, J. (2002). Leader or follower? Involvement of the inferior parietal lobule in agency. Neuroreport, 13(15), 19751978.CrossRefGoogle ScholarPubMed
Claxton, G. (1975). Why can’t we tickle ourselves? Perceptual and Motor Skills, 41, 335338.CrossRefGoogle ScholarPubMed
Costantini, M., Ambrosini, E., Sinigaglia, C., & Gallese, V. (2011a). Tool-use observation makes far objects ready-to-hand. Neuropsychologia, 49(9), 26582663.CrossRefGoogle ScholarPubMed
Costantini, M., Committeri, G., & Sinigaglia, C. (2011b). Ready both to your and to my hands: Mapping the action space of others. PLoS One, 6(4), e17923.CrossRefGoogle Scholar
Cravo, A., Claessens, P. E., & Baldo, M. C. (2009). Voluntary action and causality in temporal binding. Experimental Brain Research, 199(1), 9599.CrossRefGoogle ScholarPubMed
D’Alonzo, M., & Cipriani, C. (2012). Vibrotactile sensory substitution elicits feeling of ownership of an alien hand. PLoS One, 7(11), e50756.CrossRefGoogle ScholarPubMed
Daprati, E., Wriessnegger, S., & Lacquaniti, F. (2007). Kinematic cues and recognition of self-generated actions. Experimental Brain Research, 177(1), 3144.CrossRefGoogle ScholarPubMed
Davis, T. J., Riley, M. A., Shockley, K., & Cummins-Sebree, S. (2010). Perceiving affordances for joint actions. Perception, 39(12), 16241644.CrossRefGoogle ScholarPubMed
Della Sala, S., Marchetti, C., & Spinnler, H. (1991). Right-sided anarchic (alien) hand: A longitudinal study. Neuropsychologia, 29(11), 11131127.CrossRefGoogle ScholarPubMed
Desantis, A., Weiss, C., Schütz-Bosbach, S., & Waszak, F. (2012a). Believing and perceiving: Authorship belief modulates sensory attenuation. PLoS One, 7(5), e37959.CrossRefGoogle ScholarPubMed
Desantis, A., Weiss, C., & Waszak, F. (2012b). Believing and perceiving: Authorship belief modulates sensory attenuation. PLoS One, 7(5), e37959.CrossRefGoogle ScholarPubMed
Dewey, J. A., & Carr, T. H. (2013a). Predictable and self-initiated visual motion is judged to be slower than computer generated motion. Consciousness and Cognition, 22(3), 987995.CrossRefGoogle ScholarPubMed
Dewey, J. A., (2013b). When dyads act in parallel, a sense of agency for the auditory consequences depends on the order of the actions. Consciousness and Cognition, 22(1), 155166.CrossRefGoogle ScholarPubMed
Dewey, J. A., Seiffert, A. E., & Carr, T. H. (2010). Taking credit for success: The phenomenology of control in a goal-directed task. Consciousness and Cognition, 19(1), 4862.CrossRefGoogle Scholar
Diersch, N., Cross, E., Stadler, W., Schütz-Bosbach, S., & Rieger, M. (2012). Representing others’ actions: The role of expertise in the aging mind. Psychological Research, 76(4), 525541.CrossRefGoogle ScholarPubMed
Ebert, J. P., & Wegner, D. M. (2010). Time warp: Authorship shapes the perceived timing of actions and events. Consciousness and Cognition, 19(1), 481489.CrossRefGoogle ScholarPubMed
Ehrsson, H. H. (2007). The experimental induction of out-of-body experiences. Science, 317(5841), 1048.CrossRefGoogle ScholarPubMed
Ehrsson, H. H., Spence, C., & Passingham, R. E. (2004). That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science, 305(5685), 875877.CrossRefGoogle ScholarPubMed
Einhorn, H. J., & Hogarth, R. M. (1978). Confidence in judgment: Persistence of the illusion of validity. Psychological Review, 85(5), 395416.CrossRefGoogle Scholar
Elsner, B., & Hommel, B. (2001). Effect anticipation and action control. Journal of Experimental Psychology. Human Perception and Performance, 27(1), 229240.CrossRefGoogle ScholarPubMed
Engbert, K., Wohlschläger, A., & Haggard, P. (2008). Who is causing what? The sense of agency is relational and efferent-triggered. Cognition, 107(2), 693704.CrossRefGoogle ScholarPubMed
Engel, A., & Keller, P. E. (2011). The perception of musical spontaneity in improvised and imitated jazz performances. Frontiers in Psychology, 2, 83.CrossRefGoogle ScholarPubMed
Farrer, C., Bouchereau, M., Jeannerod, M., & Franck, N. (2008a). Effect of distorted visual feedback on the sense of agency. Behavioural Neurology, 19(12), 5357.CrossRefGoogle ScholarPubMed
Farrer, C., Frey, S., Van Horn, J., Tunik, E., Turk, D., et al. (2008b). The angular gyrus computes action awareness representations. Cerebral Cortex, 18(2), 254261.CrossRefGoogle ScholarPubMed
Feinberg, I. (1978). Efference copy and corollary discharge: Implications for thinking and its disorders. Schizophrenia Bulletin, 4(4), 636640.CrossRefGoogle ScholarPubMed
Festinger, L., & Canon, L. K. (1965). Information about spatial location based on knowledge about efference. Psychological Review, 72(5), 378384.CrossRefGoogle ScholarPubMed
Fink, G. R., Marshall, J. C., Halligan, P. W., Frith, C. D., Driver, J., et al. (1999). The neural consequences of conflict between intention and the senses. Brain, 122(3), 497512.CrossRefGoogle ScholarPubMed
Frith, C. (2005). The self in action: Lessons from delusions of control. Consciousness and Cognition, 14(4), 752770.CrossRefGoogle ScholarPubMed
Frith, C., & Done, J. (1989). Experiences of alien control in schizophrenia reflect a disorder in the central monitoring of action. Psychological Medicine, 19, 359363.CrossRefGoogle ScholarPubMed
Gallagher, S. (2000). Philosophical conceptions of the self: Implications for cognitive science. Trends in Cognitive Sciences, 4(1), 1421.CrossRefGoogle ScholarPubMed
Gallagher, S. (2003). Sense of agency and higher-order cognition: Levels of explanation for schizophrenia. Cognitive Semiotics. http://kfil.upol.cz/hpo2003/gall03.html.Google Scholar
Gibson, J. J. (1977). The theory of affordances. In Shaw, R. E. & Bransford, J. (Eds.), Perceiving, acting, and knowing: Toward an ecological psychology. Hillsdale, NJ: Lawrence Erlbaum, pp. 127–142.Google Scholar
Graziano, M., Yap, G., & Gross, C. (1994). Coding of visual space by premotor neurons. Science, 266(5187), 10541057.CrossRefGoogle ScholarPubMed
Haggard, P., Clark, S., & Kalogeras, J. (2002). Voluntary action and conscious awareness. Nature Neuroscience, 5(4), 382385.CrossRefGoogle ScholarPubMed
Holst, E. von. (1954). Relations between the central nervous system and the peripheral organs. British Journal of Animal Behavior, 2, 8994.CrossRefGoogle Scholar
Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24(05), 849878.CrossRefGoogle ScholarPubMed
Iriki, A., Tanaka, M., & Iwamura, Y. (1996). Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport, 7(14), 23252330.Google ScholarPubMed
Isenhower, R. W., Richardson, M. J., Carello, C., Baron, R. M., & Marsh, K. L. (2010). Affording cooperation: Embodied constraints, dynamics, and action-scaled invariance in joint lifting. Psychonomic Bulletin & Review, 17(3), 342347.CrossRefGoogle ScholarPubMed
Ishibashi, H., Hihara, S., & Iriki, A. (2000). Acquisition and development of monkey tool-use: Behavioral and kinematic analyses. Canadian Journal of Physiology and Pharmacology, 78(11), 958966.CrossRefGoogle ScholarPubMed
Jeannerod, M. (2003). The mechanism of self-recognition in humans. Behavioural Brain Research, 142(1–2), 115.CrossRefGoogle ScholarPubMed
Jeannerod, M., & Pacherie, E. (2004). Agency, simulation, and self-identification. Mind and Language, 19(2), 113146.CrossRefGoogle Scholar
Jones, S. S. (2009). The development of imitation in infancy. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1528), 23252335. doi: 10.1098/rstb.2009.0045.CrossRefGoogle ScholarPubMed
Keller, P., Knoblich, G., & Repp, B. (2007). Pianists duet better when they play with themselves: On the possible role of action simulation in synchronization. Consciousness and Cognition, 16(1), 102111.CrossRefGoogle ScholarPubMed
Khemlani, S. S., & Oppenheimer, D. M. (2011). When one model casts doubt on another: A levels-of-analysis approach to causal discounting. Psychological Bulletin, 137(2), 195210.CrossRefGoogle ScholarPubMed
Knoblich, G., & Flach, R. (2001). Predicting the effects of actions: Interactions of perception and action. Psychological Science, 12(6), 467472.CrossRefGoogle ScholarPubMed
Knoblich, G., & Kircher, T. (2004). Deceiving oneself about being in control: Conscious detection of changes in visuomotor coupling. Journal of Experimental Psychology: Human Perception and Performance, 30(4), 657666.Google ScholarPubMed
Kumar, D., & Srinivasan, N. (2013). Hierarchical control and sense of agency: Differential effects on control on implicit and explicit measure of agency. In Proceedings of the 35th Annual Meeting of the Cognitive Science Society, Berlin.Google Scholar
Kumar, D., (2014). Naturalizing sense of agency with a hierarchical event-control approach. PLoS One, 9(3), e92431.Google ScholarPubMed
Lahav, A., Saltzman, E., & Schlaug, G. (2007). Action representation of sound: Audiomotor recognition network while listening to newly acquired actions. Journal of Neuroscience, 27(2), 308314.CrossRefGoogle ScholarPubMed
Langer, E. J. (1975). The illusion of control. Journal of Personality and Social Psychology, 32(2), 311328.CrossRefGoogle Scholar
Langer, E. J., & Roth, J. (1975). Heads I win, tails it’s chance: The illusion of control as a function of the sequence of outcomes in a purely chance task. Journal of Personality and Social Psychology, 34, 191198.CrossRefGoogle Scholar
Leube, D., Knoblich, G., Erb, M., Grodd, W., Bartels, M., & Kircher, T. (2003). The neural correlates of perceiving one’s own movements. NeuroImage, 20(4), 20842090.CrossRefGoogle ScholarPubMed
Maister, L., Banissy, M. J., & Tsakiris, M. (2013). Mirror-touch synaesthesia changes representations of self-identity. Neuropsychologia, 51(5), 802808.CrossRefGoogle ScholarPubMed
Meltzoff, A. N., & Moore, M. K. (1983). Newborn infants imitate adult facial gestures. Child Development, 54(3), 702709.CrossRefGoogle ScholarPubMed
Metcalfe, J., & Greene, M. (2007). Metacognition of agency. Journal of Experimental Psychology: General, 136(2), 184199.CrossRefGoogle ScholarPubMed
Metcalfe, J.,Metcalfe, J., Van Snellenberg, J. X., DeRosse, P., Balsam, P., & Malhotra, A. K. (2012). Judgements of agency in schizophrenia: An impairment in autonoetic metacognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1594), 13911400.CrossRefGoogle ScholarPubMed
Michotte, A. (1963). The perception of causality (T. R. Miles & E. Miles, Trans.). New York: Basic Books.Google Scholar
Mitchell, P., Currie, G., & Ziegler, F. (2009). Two routes to perspective: Simulation and rule-use as approaches to mentalizing. British Journal of Developmental Psychology, 27(3), 513543.CrossRefGoogle ScholarPubMed
Molnar-Szakacs, I., & Overy, K. (2006). Music and mirror neurons: From motion to ‘e’motion. Social Cognitive and Affective Neuroscience, 1(3), 235241.CrossRefGoogle ScholarPubMed
Moore, J. W., & Haggard, P. (2008). Awareness of action: Inference and prediction. Consciousness and Cognition, 17(1), 136144.CrossRefGoogle ScholarPubMed
Moore, J. W., & Obhi, S. S. (2012). Intentional binding and the sense of agency: A review. Consciousness and Cognition, 21(1), 546561.CrossRefGoogle ScholarPubMed
Moore, J. W., Wegner, D. M., & Haggard, P. (2009). Modulating the sense of agency with external cues. Consciousness and Cognition, 18(4), 10561064.CrossRefGoogle ScholarPubMed
Münsterberg, H. (1888). Die Willenshandlung [The Voluntary Action]. Freiburg: Mohr.Google Scholar
Obhi, S. S., & Hall, P. (2011). Sense of agency and intentional binding in joint action. Experimental Brain Research, 211(34), 655662.CrossRefGoogle ScholarPubMed
Pacherie, E. (2008). The phenomenology of action: A conceptual framework. Cognition, 107(1), 179217.CrossRefGoogle ScholarPubMed
Pezzulo, G., Barca, L., Bocconi, A. L., & Borghi, A. M. (2010). When affordances climb into your mind: Advantages of motor simulation in a memory task performed by novice and expert rock climbers. Brain and Cognition, 73(1), 6873.CrossRefGoogle Scholar
Pezzulo, G., Iodice, P., Ferraina, S., & Kessler, K. (2013). Shared action spaces: A basis function framework for social re-calibration of sensorimotor representations supporting joint action. Frontiers in Human Neuroscience, 7, 800.CrossRefGoogle ScholarPubMed
Poonian, S. K., & Cunningham, R. (2013). Intentional binding in self-made and observed actions. Experimental Brain Research, 229(3), 419427.CrossRefGoogle ScholarPubMed
Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129154.CrossRefGoogle Scholar
Ramenzoni, V. C., Riley, M. A., Shockley, K., & Davis, T. (2008). An information-based approach to action understanding. Cognition, 106(2), 10591070.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11(4), 264274. doi: 10.1038/nrn2805.CrossRefGoogle ScholarPubMed
Sato, A. (2008). Action observation modulates auditory perception of the consequences of others’ actions. Consciousness and Cognition, 17(4), 12191227.CrossRefGoogle ScholarPubMed
Sato, A., & Yasuda, A. (2005). Illusion of sense of self-agency: Discrepancy between the predicted and actual sensory consequences of actions modulates the sense of self-agency, but not the sense of self-ownership. Cognition, 94(3), 241255.CrossRefGoogle Scholar
Schnell, K., Heekeren, K., Schnitker, R., Daumann, J., Weber, J., et al. (2007). An fMRI approach to particularize the frontoparietal network for visuomotor action monitoring: Detection of incongruence between test subjects’ actions and resulting perceptions. NeuroImage, 34(1), 332341.CrossRefGoogle Scholar
Sforza, A., Bufalari, I., Haggard, P., & Aglioti, S. M. (2010). My face in yours: Visuo-tactile facial stimulation influences sense of identity. Social Neuroscience, 5(2), 148162.CrossRefGoogle ScholarPubMed
Shergill, S. S., Bays, P. M., Frith, C. D., & Wolpert, D. M. (2003). Two eyes for an eye: The neuroscience of force escalation. Science, 301(5630), 187.CrossRefGoogle ScholarPubMed
Skerry, A. E., Carey, S. E., & Spelke, E. S. (2013). First-person action experience reveals sensitivity to action efficiency in prereaching infants. Proceedings of the National Academy of Sciences, 110(46), 1872818733.CrossRefGoogle ScholarPubMed
Skinner, B. F. (1948). ‘Superstition’ in the pigeon. Journal of Experimental Psychology, 38, 168172.CrossRefGoogle ScholarPubMed
Sommerville, J. A., & Woodward, A. L. (2005). Pulling out the intentional structure of action: The relation between action processing and action production in infancy. Cognition, 95(1), 130.CrossRefGoogle ScholarPubMed
Sommerville, J. A., Woodward, A. L., & Needham, A. (2005). Action experience alters 3-month-old infants’ perception of others’ actions. Cognition, 96(1), B1–B11.CrossRefGoogle ScholarPubMed
Spengler, S., von Cramon, D. Y., & Brass, M. (2009). Was it me or was it you? How the sense of agency originates from ideomotor learning revealed by fMRI. NeuroImage, 46(1), 290298.CrossRefGoogle ScholarPubMed
Sperry, R. W. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion. Journal of Comparative and Physiological Psychology, 43(6), 482489.CrossRefGoogle ScholarPubMed
Strother, L, House, K. A., & Obhi, S. S. (2010). Subjective agency and awareness of shared actions. Consciousness and Cognition, 19(1), 1220.CrossRefGoogle ScholarPubMed
Synofzik, M., Vosgerau, G., & Newen, A. (2008). Beyond the comparator model: A multifactorial two-step account of agency. Consciousness and Cognition, 17(1), 219239.CrossRefGoogle Scholar
Synofzik, M., Vosgerau, G., & Voss, M. (2013). The experience of agency: An interplay between prediction and postdiction. Frontiers in Psychology, 4. doi.org/10.3389/fpsyg.2013.00127.CrossRefGoogle ScholarPubMed
Tsakiris, M. (2008). Looking for myself: Current multisensory input alters self-face recognition. PLoS One, 3(12), e4040.CrossRefGoogle ScholarPubMed
Tsakiris, M., Schütz-Bosbach, S., & Gallagher, S. (2007). On agency and body-ownership: Phenomenological and neurocognitive reflections. Consciousness and Cognition, 16(3), 645660.CrossRefGoogle Scholar
Tsakiris, M., Tajadura-Jiménez, A., & Costantini, M. (2011). Just a heartbeat away from one’s body: Interoceptive sensitivity predicts malleability of body-representations. Proceedings of the Royal Society B: Biological Sciences, 278(1717), 24702476.CrossRefGoogle ScholarPubMed
Vallar, G., & Ronchi, R. (2009). Somatoparaphrenia: A body delusion. A review of the neuropsychological literature. Experimental Brain Research, 192(3), 533551.CrossRefGoogle ScholarPubMed
Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. NeuroImage, 48(3), 564584.CrossRefGoogle ScholarPubMed
Voss, M., Ingram, J. N., Haggard, P., & Wolpert, D. M. (2005). Sensorimotor attenuation by central motor command signals in the absence of movement. Nature Neuroscience, 9(1), 2627.CrossRefGoogle ScholarPubMed
Wegner, D., Sparrow, B., & Winerman, L. (2004). Vicarious agency: Experiencing control over the movements of others. Journal of Personality and Social Psychology, 86(6), 838848.CrossRefGoogle ScholarPubMed
Wegner, D., & Wheatley, T. (1999). Apparent mental causation. Sources of the experience of will. American Psychologist, 54(7), 480492.CrossRefGoogle ScholarPubMed
Weiss, C., Herwig, A., & Schütz-Bosbach, S. (2011). The self in action effects: Selective attenuation of self-generated sounds. Cognition, 121(2), 207218.CrossRefGoogle ScholarPubMed
Weiss, C., & Schütz-Bosbach, S. (2012). Vicarious action preparation does not result in sensory attenuation of auditory action effects. Consciousness and Cognition, 21(4), 16541661.CrossRefGoogle Scholar
Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131(3), 460473.CrossRefGoogle ScholarPubMed
Witt, J. K., Proffitt, D. R., & Epstein, W. (2005). Tool use affects perceived distance, but only when you intend to use it. Journal of Experimental Psychology: Human Perception and Performance, 31(5), 880888.Google ScholarPubMed
Wohlschläger, A., Haggard, P., Gesierich, B., & Prinz, W. (2003). The perceived onset time of self- and other-generated actions. Psychological Science, 14(6), 586591.CrossRefGoogle ScholarPubMed

References

Abernethy, B., & Russell, D. G. (1987). The relationship between expertise and visual search strategy in a racquet sport. Human Movement Science, 6, 283319.CrossRefGoogle Scholar
Abernethy, B., & Zawi, K. (2007). Pickup of essential kinematics underpins expert perception of movement patterns. Journal of Motor Behavior, 39, 353367.CrossRefGoogle ScholarPubMed
Abernethy, B., Zawi, K., & Jackson, R. C. (2008). Expertise and attunement to kinematic constraints. Perception, 37, 931948.CrossRefGoogle ScholarPubMed
Ansuini, C., Cavallo, A., Bertone, C., & Becchio, C. (2014). Prior-intention in the brain: The unveiling of Mister Hyde. The Neuroscientist, 21(2), 126–135.Google Scholar
Ansuini, C., Giosa, L., Turella, L., Altoè, G. M., & Castiello, U. (2008). An object for an action, the same object for other actions: Effects on hand shaping. Experimental Brain Research, 185, 111119.CrossRefGoogle ScholarPubMed
Ansuini, C., Santello, M., Massaccesi, S., & Castiello, U. (2006). Effects of end-goal on hand shaping. Journal of Neurophysiology, 95, 24562465.CrossRefGoogle ScholarPubMed
Armbrüster, C., & Spijkers, W. (2006). Movement planning in prehension: Do intended actions influence the initial reach and grasp movement? Motor Control, 10, 311329.CrossRefGoogle ScholarPubMed
Baldwin, D. A., & Baird, J. A. (2001). Discerning intentions in dynamic human action. Trends in Cognitive Sciences, 5, 171178.CrossRefGoogle ScholarPubMed
Becchio, C., Cavallo, A., Begliomini, C., Sartori, L., Feltrin, G., & Castiello, U. (2012). Social grasping: From mirroring to mentalizing. NeuroImage, 61, 240248.CrossRefGoogle ScholarPubMed
Becchio, C., Sartori, L., Bulgheroni, M., & Castiello, U. (2008a). Both your intention and mine are reflected in the kinematics of my reach to grasp movement. Cognition, 106, 894912.CrossRefGoogle ScholarPubMed
Becchio, C., Sartori, L., Bulgheroni, M., (2008b). The case of Dr. Jekyll and Mr. Hyde: A kinematic study on social intention. Consciousness and Cognition, 17, 557564.CrossRefGoogle Scholar
Becchio, C., Sartori, L., & Castiello, U. (2010). Toward you: The social side of actions. Current Directions in Psychological Science, 19, 183188.CrossRefGoogle Scholar
Bonini, L., Ferrari, P. F., & Fogassi, L. (2013). Neurophysiological bases underlying the organization of intentional actions and the understanding of others’ intention. Consciousness and Cognition, 22, 1095–104.CrossRefGoogle ScholarPubMed
Bonini, L., Rozzi, S., Serventi, F. U., Simone, L., Ferrari, P. F., & Fogassi, L. (2010). Ventral premotor and inferior parietal cortices make distinct contribution to action organization and intention understanding. Cerebral Cortex, 20,13721385.CrossRefGoogle ScholarPubMed
Boria, S., Fabbri-Destro, M., Cattaneo, L., Sparaci, L., Sinigaglia, C., et al. (2009). Intention understanding in autism. PLoS One, 4, e5596.CrossRefGoogle ScholarPubMed
Buxbaum, L. J., Kyle, K. M., & Menon, R. (2005). On beyond mirror neurons: Internal representations subserving imitation and recognition of skilled object-related actions in humans. Cognitive Brain Research, 25, 226239.CrossRefGoogle ScholarPubMed
Casanova, M. F., van Kooten, I. A., Switala, A. E., van Engeland, H., Heinsen, H., et al. (2006). Minicolumnar abnormalities in autism. Acta Neuropathologica, 112, 287303.CrossRefGoogle ScholarPubMed
Cattaneo, L., Fabbri-Destro, M., Boria, S., Pieraccini, C., Monti, A., et al. (2007). Impairment of action chains in autism and its possible role in intention understanding. Proceedings of the National Academy of Sciences, 104, 1782517830.CrossRefGoogle ScholarPubMed
Crajé, C., Lukos, J. R., Ansuini, C., Gordon, A. M., & Santello, M. (2011). The effects of task and content on digit placement on a bottle. Experimental Brain Research, 212, 119124.CrossRefGoogle ScholarPubMed
Farrow, D., Abernethy, B., & Jackson, R. C. (2005). Probing expert anticipation with the temporal occlusion paradigm: Experimental investigations of some methodological issues. Motor Control, 9, 332351.CrossRefGoogle ScholarPubMed
Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308: 662667.CrossRefGoogle ScholarPubMed
Gallagher, S. (2008). Direct perception in the intersubjective context. Consciousness and Cognition, 17, 535543.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593609.CrossRefGoogle ScholarPubMed
Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2, 493501.CrossRefGoogle ScholarPubMed
Georgiou, I., Becchio, C., Glover, S., & Castiello, U. (2007). Different action patterns for cooperative and competitive behavior. Cognition, 102, 415433.CrossRefGoogle Scholar
Hadjikhani, N., Joseph, R. M., Snyder, J., & Tager-Flusberg, H. (2006). Anatomical differences in the mirror neuron system and social cognition network in autism. Cerebral Cortex, 16, 12761282.CrossRefGoogle ScholarPubMed
Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience, 7, 942951.CrossRefGoogle ScholarPubMed
Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217250.Google Scholar
Kaplan, J. T., & Iacoboni, M. (2006). Getting a grip on other minds: Mirror neurons, intention understanding, and cognitive empathy. Social Neuroscience, 1, 175183.CrossRefGoogle ScholarPubMed
Kilner, J. M. (2011). More than one pathway to action understanding. Trends in Cognitive Science, 15, 352357.CrossRefGoogle ScholarPubMed
Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: An account of the mirror neuron system. Cognitive Processing, 8, 159166.CrossRefGoogle ScholarPubMed
Manera, V., Becchio, C., Cavallo, A., Sartori, L., & Castiello, U. (2011). Cooperation or competition? Discriminating between social intentions by observing prehensile movements. Experimental Brain Research, 211, 547556.CrossRefGoogle ScholarPubMed
Marteniuk, R. G., MacKenzie, C. L., Jeannerod, M., Athenes, S., & Dugas, C. (1987). Constraints on human arm movement trajectories. Canadian Journal of Psychology, 41, 365378.CrossRefGoogle ScholarPubMed
Martineau, J., Andersson, F., Barthélémy, C., Cottier, J. P., & Destrieux, C. (2010). Atypical activation of the mirror neuron system during perception of hand motion in autism. Brain Research, 1320, 168175.CrossRefGoogle ScholarPubMed
Martineau, J., Cochin, S., Magne, R., & Barthelemy, C. (2008). Impaired cortical activation in autistic children: Is the mirror neuron system involved? International Journal of Psychophysiology, 68, 3540.CrossRefGoogle ScholarPubMed
Minshew, N. J., & Williams, D. L. (2007). The new neurobiology of autism: Cortex, connectivity, and neuronal organization. Archives of Neurology, 64, 945950.CrossRefGoogle ScholarPubMed
Naish, K. R., Reader, A. T., Houston-Price, C., Bremner, A. J., & Holmes, N. P. (2013). To eat or not to eat? Kinematics and muscle activity of reach-to-grasp movements are influenced by the action goal, but observers do not detect these differences. Experimental Brain Research, 225, 261275.CrossRefGoogle Scholar
Nishitani, N., Avikainen, S., & Hari, R. (2004). Abnormal imitation-related cortical activation sequences in Asperger’s syndrome. Annals of Neurology, 55, 558562.CrossRefGoogle ScholarPubMed
Oberman, L. M., Hubbard, E. M., McCleery, J. P., Altschuler, E. L., Ramachandran, V. S., & Pineda, J. A. (2005). EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cognitive Brain Research, 24, 190198.CrossRefGoogle ScholarPubMed
Oberman, L. M., Ramachandran, V. S., & Pineda, J. A. (2008). Modulation of mu suppression in children with autism spectrum disorders in response to familiar or unfamiliar stimuli: The mirror neuron hypothesis. Neuropsychologia, 46, 15581565.CrossRefGoogle ScholarPubMed
Pazzaglia, M., Smania, N., Corato, E., & Aglioti, S. M. (2008). Neural underpinnings of gesture discrimination in patients with limb apraxia. Journal of Neuroscience, 28, 30303041.CrossRefGoogle ScholarPubMed
Pellegrino, G. di, Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176180.CrossRefGoogle ScholarPubMed
Quesque, F., Lewkowicz, D., Delevoye-Turrell, Y. N., & Coello, Y. (2013). Effects of social intention on movement kinematics in cooperative actions. Frontiers in Neurorobotics, 7, 14.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11, 264274.CrossRefGoogle ScholarPubMed
Runeson, S., & Frykholm, G. (1983). Kinematic specification of dynamics as an informational basis for person-and-action perception: Expectation, gender recognition, and deceptive intention. Journal of Experimental Psychology: General, 112, 585615.CrossRefGoogle Scholar
Sartori, L., Becchio, C., Bara, B. G., & Castiello, U. (2009). Does the intention to communicate affect action kinematics? Consciousness and Cognition, 18, 766772.CrossRefGoogle ScholarPubMed
Sartori, L., Becchio, C., & Castiello, U. (2011a). Cues to intention: The role of movement information. Cognition, 119, 242252.CrossRefGoogle ScholarPubMed
Sartori, L., Straulino, E., & Castiello, U. (2011b). How objects are grasped: The interplay between affordances and end-goals. PloS One, 6, e25203.CrossRefGoogle ScholarPubMed
Schilbach, L., Timmermans, B., Reddy, V., Costall, A., Bente, G., et al. (2013). Toward a second-person neuroscience. Behavioral and Brain Sciences, 36, 393414.CrossRefGoogle Scholar
Schuboe, A., Maldonado, A., Stork, S., & Beetz, M. (2008). Subsequent actions influence motor control parameters of a current grasping action. In Robot and Human Interactive Communication, RO-MAN. Presented at the 17th IEEE International Symposium, Yokohama, Japan, 389394.Google Scholar
Sebanz, N., & Shiffrar, M. (2009). Detecting deception in a bluffing body: The role of expertise. Psychonomic Bulletin & Review, 16, 170175.CrossRefGoogle Scholar
Sherrington, C. S. (1947). The integrative action of the nervous system. New Haven, CT: Yale University Press.Google Scholar
Tunik, E., Rice, N. J., Hamilton, A., & Grafton, S. T. (2007). Beyond grasping: Representation of action in human anterior intraparietal sulcus. NeuroImage, 36, T77T86.CrossRefGoogle ScholarPubMed
Vanrie, J., & Verfaillie, K. (2004). Perception of biological motion: A stimulus set of human point-light actions. Behavior Research Methods, Instruments, & Computers, 36, 625629.CrossRefGoogle Scholar
Vingerhoets, G., Honoré, P., Vandekerckhove, E., Nys, J., Vandemaele, P., & Achten, E. (2010). Multifocal intraparietal activation during discrimination of action intention in observed tool grasping. Neuroscience, 169, 11581167.CrossRefGoogle ScholarPubMed
Weiss, P. (1941). Autonomous versus reflexogenous activity of the central nervous system. Proceedings of the American Philosophical Society, 84, 5364.Google Scholar
Williams, J. H., Waiter, G. D., Gilchrist, A., Perrett, D. I., Murray, A. D., & Whiten, A. (2006). Neural mechanisms of imitation and ‘mirror neuron’ functioning in autistic spectrum disorder. Neuropsychologia, 44, 610621.CrossRefGoogle ScholarPubMed

References

Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11, 11091116.CrossRefGoogle ScholarPubMed
Aglioti, S. M., & Pazzaglia, M. (2011). Sounds and scents in (social) action. Trends in Cognitive Sciences, 15 (2011), 4755.CrossRefGoogle ScholarPubMed
Avenanti, A. & Urgesi, C. (2011). Understanding ‘what’ others do: Mirror mechanisms play a crucial role in action perception. Social Cognitive and Affective Neuroscience, 6, 257259.CrossRefGoogle ScholarPubMed
Becchio, C., Cavallo, A., Begliomini, C., Sartori, L., Feltrin, G., & Castiello, U. (2012b). Social grasping: From mirroring to mentalizing. NeuroImage, 61, 240248.CrossRefGoogle ScholarPubMed
Becchio, C., Manera, V., Sartori, L., Cavallo, A., & Castiello, U. (2012a). Grasping intentions: From thought experiments to empirical evidence. Frontiers in Human Neuroscience, 6, 16.CrossRefGoogle ScholarPubMed
Becchio, C., Sartori, L., Bulgheroni, M., & Castiello, U. (2008a). The case of Dr. Jekyll and Mr. Hyde: A kinematic study on social intention. Consciousness and Cognition, 17, 557564.CrossRefGoogle Scholar
Becchio, C., Sartori, L., Bulgheroni, M., (2008b). Both your intention and mine are reflected in the kinematics of my reach to grasp movement. Cognition, 106, 894912.CrossRefGoogle ScholarPubMed
Becchio, C., Sartori, L., & Castiello, U. (2010). Towards you: The social side of actions. Current Directions in Psychological Science, 19, 183188.CrossRefGoogle Scholar
Bekkering, H., de Bruijn, E., Cuijpers, R., Newman-Norlund, R., van Schie, H., & Meulenbroek, R. (2009). Joint action: Neurocognitive mechanisms supporting human interaction. Topics in Cognitive Science, 1, 340352.CrossRefGoogle ScholarPubMed
Blakemore, S. J., & Frith, C. (2005). The role of motor contagion in the prediction of action. Neuropsychologia, 43, 260267.CrossRefGoogle ScholarPubMed
Brass, M., Derrfuss, J., & von Cramon, D. Y. (2005). The inhibition of imitative and overlearned responses: A functional double dissociation. Neuropsychologia, 43, 8998.CrossRefGoogle ScholarPubMed
Brass, M., Zysset, S., & von Cramon, D. Y. (2001). The inhibition of imitative response tendencies. NeuroImage, 14, 14161423.CrossRefGoogle ScholarPubMed
Bratman, M. E. (1992). Shared cooperative activity. Philosophical Review, 101, 327341.CrossRefGoogle Scholar
Bruin, L. de, & Gallagher, S. (2012). Embodied simulation, an unproductive explanation: Comment on Gallese and Sinigaglia. Trends in Cognitive Sciences, 16, 9899.CrossRefGoogle ScholarPubMed
Castiello, U., Becchio, C., Zoia, S., Nelini, C., Sartori, L., et al. (2010). Wired to be social: The ontogeny of human interaction. PLoS One, 5, e13199.CrossRefGoogle ScholarPubMed
Cavallo, A., Becchio, C., Sartori, L., Bucchioni, G., & Castiello, U. (2012). Grasping with tools: Corticospinal excitability reflects observed hand movements. Cerebral Cortex, 22, 710716.CrossRefGoogle ScholarPubMed
Cavallo, A., Sartori, L., & Castiello, U. (2011). Corticospinal excitability modulation to hand muscles during the observation of appropriate versus inappropriate actions. Cognitive Neuroscience, 2, 8390.CrossRefGoogle ScholarPubMed
Chemero, A. (2003). An outline of a theory of affordances. Ecological Psychology, 15, 181195.CrossRefGoogle Scholar
Chinellato, E., & del Pobil, A. P. (2009). The neuroscience of vision-based grasping: A functional review for computational modeling and bio-inspired robotics. Journal of Integrative Neuroscience, 8, 223254.CrossRefGoogle ScholarPubMed
Chinellato, E., Ognibene, D., Sartori, L., & Demiris, Y. (2013). Time to change: Deciding when to switch action plans during a social interaction. In Lepora, N. F., Mura, A., Krapp, H. G., Verschure, P. F. M. J., & Prescott, T. J. (Eds.), Biomimetic and biohybrid systems. London: Springer, 4758.CrossRefGoogle Scholar
Costantini, M., Ambrosini, E., Scorolli, C., & Borghi, A. M. (2011a). When objects are close to me: Affordances in the peripersonal space. Psychonomic Bulletin and Review, 18, 302308.CrossRefGoogle ScholarPubMed
Costantini, M., Ambrosini, E., Tieri, G., Sinigaglia, C., & Committeri, G. (2010). Where does an object trigger an action? An investigation about affordances in space. Experimental Brain Research, 207, 95103.CrossRefGoogle ScholarPubMed
Costantini, M., Committeri, G., & Sinigaglia, C. (2011b). Ready both to your and to my hands: Mapping the action space of others. PLoS One, 6, e17923.CrossRefGoogle Scholar
Craighero, L., Fadiga, L., Rizzolatti, G., & Umilta, C. (1998). Visuomotor priming. Visual Cognition, 5, 109125.CrossRefGoogle Scholar
De Stefani, D., Innocenti, A., De Marco, D., Busiello, M., Ferri, F., et al. (2014). The spatial alignment effect in near and far space: A kinematic study. Experimental Brain Research, 18.Google ScholarPubMed
Dezecache, G., Conty, L., & Grèzes, J. (2013). Social affordances: Is the mirror neuron system involved? Behavioral and Brain Sciences, 36, 417418.CrossRefGoogle ScholarPubMed
Di Paolo, E., & De Jaegher, H. (2012). The interactive brain hypothesis. Frontiers in Human Neuroscience, 6, 116.CrossRefGoogle ScholarPubMed
Erlhagen, W., Mukovskiy, A., Bicho, E., Panin, G., Kiss, A., et al. (2006). Goal-directed imitation for robots: A bio-inspired approach to action understanding and skill learning. Robotics and Autonomous Systems, 54, 353360.CrossRefGoogle Scholar
Etzel, J. A., Gazzola, V., & Keysers, C. (2008). Testing simulations theory with cross-model multivariate classification of fMRI data. PLoS One, 3, 16.CrossRefGoogle Scholar
Fabbri-Destro, M., & Rizzolatti, G. (2008). Mirror neurons and mirror systems in monkeys and humans. Physiology, 23, 171179.CrossRefGoogle ScholarPubMed
Fadiga, L., Craighero, L., & Olivier, E. (2005). Human motor cortex excitability during the perception of others’ action. Current Opinion in Neurobiology, 15, 213218.CrossRefGoogle ScholarPubMed
Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73, 26082611.CrossRefGoogle ScholarPubMed
Fogassi, L., & Gallese, V. (2002). The neural correlates of action understanding in non-human primates. Advances in Consciousness Research, 42, 1336.CrossRefGoogle Scholar
Gallagher, H. L., & Frith, C. D. (2004). Dissociable neural pathways for the perception and recognition of expressive and instrumental gestures. Neuropsychologia, 42, 17251736.CrossRefGoogle ScholarPubMed
Gallese, , V. (2001). The shared manifold hypothesis. From mirror neurons to empathy. Journal of Consciousness Studies, 8, 57.Google Scholar
Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2, 493501.CrossRefGoogle ScholarPubMed
Gallese, V., & Sinigaglia, C. (2011). What is so special about embodied simulation? Trends in Cognitive Sciences, 15, 512519.CrossRefGoogle ScholarPubMed
Gangopadhyay, N., & Schilbach, L. (2012). Seeing minds: A neurophilosophical investigation of the role of perception–action coupling in social perception. Social Neuroscience, 7, 410423.CrossRefGoogle ScholarPubMed
Gazzola, V., van der Worp, H., Mulder, T., Wicker, B., Rizzolatti, G., & Keysers, C. (2007). Aplasics born without hands mirror the goal of hand actions with their feet. Current Biology, 17, 12351240.CrossRefGoogle ScholarPubMed
Gentilucci, M., Castiello, U., Corradini, M. L., Scarpa, M., Umiltà, C., & Rizzolatti, G. (1991). Influence of different types of grasping on the transport component of prehension movements. Neuropsychologia, 29, 361378.CrossRefGoogle ScholarPubMed
Georgiou, I., Becchio, C., Glover, S., & Castiello, U. (2007). Different action patterns for cooperative and competitive behaviour. Cognition, 102, 415433.CrossRefGoogle ScholarPubMed
Gibson, E. (2000). The dependency locality theory: A distance-based theory of linguistic complexity. In Miyashita, Y., Marantz, A., & O’Niel, W. (Eds.), Image, language, brain. Cambridge, MA: MIT Press, 95126.Google Scholar
Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin.Google Scholar
Giorello, G., & Sinigaglia, C. (2007). Perception in action. Acta Biomedica, 78, 4957.Google ScholarPubMed
Graf, M., Schütz-Bosbach, S., & Prinz, W. (2009). Motor involvement in action and object perception: Similarity and complementarity. New York: Psychology Press.Google Scholar
Heyes, , C. (2011). Automatic imitation. Psychological Bulletin, 137, 463483.CrossRefGoogle ScholarPubMed
Jeannerod, , M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral Brain Sciences, 17, 187245.CrossRefGoogle Scholar
Keysers, C. (2009). Mirror neurons. Current Biology, 19, R971R973.CrossRefGoogle ScholarPubMed
Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: An account of the mirror neuron system. Cognitive Processes, 8, 159166.CrossRefGoogle ScholarPubMed
Kilner, J. M., Vargas, C., Duval, S., Blakemore, S. J., & Sirigu, A. (2004). Motor activation prior to observation of a predicted movement. Nature Neuroscience, 7, 12991301.CrossRefGoogle ScholarPubMed
Knoblich, G., Butterfill, S., & Sebanz, N. (2011). Psychological research on joint action: Theory and data. In Ross, B. (Ed.), The psychology of learning and motivation. Burlington, VT: Academic Press, 59–101.Google Scholar
Knoblich, G., & Flach, R. (2001). Predicting the effects of actions: Interactions of perception and action. Psychological Science, 2, 467472.CrossRefGoogle Scholar
Kohler, E., Keysers, C., Umiltà, M. A., Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). Hearing sounds, understanding actions: Action representation in mirror neurons. Science, 297, 846848.CrossRefGoogle ScholarPubMed
Kokal, I., Gazzola, V., & Keysers, C. (2009). Acting together in and beyond the mirror neuron system. NeuroImage, 47, 20462056.CrossRefGoogle ScholarPubMed
Kokal, I., & Keysers, C. (2010). Granger causality mapping during joint actions reveals evidence for forward models that could overcome sensory-motor delays. PLoS One, 5, e13507.CrossRefGoogle ScholarPubMed
Longo, M. R., Kosobud, A., & Bertenthal, B. I. (2008). Automatic imitation of biomechanically possible and impossible actions: Effects of priming movements versus goals. Journal of Experimental Psychology: Human Perception and Performance, 34, 489501.Google ScholarPubMed
Manera, V., Becchio, C., Cavallo, A., Sartori, L., & Castiello, U. (2011). Cooperation or competition? Discriminating between social intentions by observing prehensile movements. Experimental Brain Research, 211, 547556.CrossRefGoogle ScholarPubMed
Meltzoff, A. N. (2005). Imitation and other minds: The ‘like me’ hypothesis. In Hurley, S. & Chater, N. (Eds.), Perspectives on imitation: From cognitive neuroscience to social science, Volume 2. Cambridge, MA: MIT Press, 5577.Google Scholar
Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2012). Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neuroscience and Biobehavioral Reviews, 36, 341349.CrossRefGoogle ScholarPubMed
Murata, A., Fadiga, L., Fogassi, L., Gallese, V., Raos, V., & Rizzolatti, G. (1997). Object representation in the ventral premotor cortex (area F5) of the monkey. Journal of Neurophysiology, 78, 22262230.CrossRefGoogle ScholarPubMed
Napier, J. R. (1956). The prehensile movements of the human hand. Journal of Bone and Joint Surgery, 38, 902913.CrossRefGoogle ScholarPubMed
Newman-Norlund, R. D., Bosga, J., Meulenbroek, R. G., & Bekkering, H. (2008). Anatomical substrates of cooperative joint-action in a continuous motor task: Virtual lifting and balancing. NeuroImage, 41, 169177.CrossRefGoogle Scholar
Newman-Norlund, R. D., Noordzij, M. L., Meulenbroek, R. G., & Bekkering, H. (2007a). Exploring the brain basis of joint action: Co-ordination of actions, goals and intentions. Social Neuroscience, 2, 4865.CrossRefGoogle ScholarPubMed
Newman-Nordlund, R. D., van Schie, H. T., van Zuijlen, A. M., & Bekkering, H. (2007b). The mirror neuron system is more activated during complementary compared with imitative action. Nature Neuroscience, 10, 817818.CrossRefGoogle Scholar
Ocampo, B., & Kritikos, A. (2010). Placing actions in context: Motor facilitation following observation of identical and non-identical manual acts. Experimental Brain Research, 201, 743751.CrossRefGoogle ScholarPubMed
Ocampo, B., Kritikos, A., & Cunnington, R. (2011). How frontoparietal brain regions mediate imitative and complementary actions: An fMRI study. PLoS One, 6, e26945.CrossRefGoogle ScholarPubMed
Pellegrino, G. di, Fadiga, L. Fogassi, L., Gallese, , & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176180.CrossRefGoogle ScholarPubMed
Poljac, E., van Schie, H. T., & Bekkering, H. (2009). Understanding the flexibility of action–perception coupling. Psychological Research, 73, 578586.CrossRefGoogle ScholarPubMed
Prinz, , W. (2006). What re-enactment earns us. Cortex, 42, 515517.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Cattaneo, L., Fabbri-Destro, M., & Rozzi, S. (2014). Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding. Physiological Reviews, 94, 655706.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Review Neuroscience, 2, 661670.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11, 264274.CrossRefGoogle ScholarPubMed
Sacheli, L. M., Tidoni, E., Pavone, E. F., Aglioti, S. M., & Candidi, M. (2013). Kinematic fingerprints of leader and follower role-taking during cooperative joint actions. Experimental Brain Research, 226, 473486.CrossRefGoogle ScholarPubMed
Sartori, L., & Castiello, U. (2013). Shadows in the mirror. Neuroreport, 24, 6367.CrossRefGoogle ScholarPubMed
Sartori, L., Becchio, C., Bara, B. G., & Castiello, U. (2009a). Does the intention to communicate affect action kinematics? Consciousness and Cognition, 18, 766772.CrossRefGoogle ScholarPubMed
Sartori, L., Becchio, C., Bulgheroni, M., & Castiello, U. (2009b). Modulation of the action control system by social intention: Unexpected social requests override preplanned action. Journal of Experimental Psychology: Human Perception and Performance, 35, 14901500.Google ScholarPubMed
Sartori, L., Becchio, C., & Castiello, U. (2011a). Cues to intention: The role of movement information. Cognition, 119, 242252.CrossRefGoogle ScholarPubMed
Sartori, L., Begliomini, C., & Castiello, U. (2013a). Motor resonance in left- and right-handers: Evidence for effector-independent motor representations. Frontiers in Human Neuroscience, 13, 733.Google Scholar
Sartori, L., Begliomini, C., Panozzo, C., Garolla, A., & Castiello, U. (2014). The left side of motor resonance. Frontiers in Human Neuroscience, 8, 702.CrossRefGoogle ScholarPubMed
Sartori, L., Betti, S., & Castiello, U. (2013b). When mirroring is not enough: That is, when only a complementary action will do (the trick). Neuroreport, 24, 601604.CrossRefGoogle ScholarPubMed
Sartori, L., Betti, S., (2013c). Corticospinal excitability modulation during action observation. Journal of Visualized Experiments, 82, e51001.Google Scholar
Sartori, L., Betti, B., Chinellato, E., & Castiello, U. (2015a). The multiform motor cortical output: Kinematic, predictive and response coding. Cortex, 70, 169178.CrossRefGoogle ScholarPubMed
Sartori, L., Bucchioni, G., & Castiello, U. (2012a). Motor cortex excitability is tightly coupled to observed movements. Neuropsychologia, 50, 23412347.CrossRefGoogle ScholarPubMed
Sartori, L., Bucchioni, G., (2013d). When emulation becomes reciprocity. Social Cognitive and Affective Neuroscience, 8, 662669.CrossRefGoogle ScholarPubMed
Sartori, L., Bulgheroni, M., Tizzi, R., & Castiello, U. (2015b). A kinematic study on (un)intentional imitation in bottlenose dolphins. Frontiers in Human Neuroscience, 5(9), 446.Google Scholar
Sartori, L., Cavallo, A., Bucchioni, G., & Castiello, U. (2011b). Corticospinal excitability is specifically modulated by the social dimension of observed actions. Experimental Brain Research, 211, 557568.CrossRefGoogle ScholarPubMed
Sartori, L., Cavallo, A., Bucchioni, B., & Castiello, U. (2012b). From simulation to reciprocity: The case of complementary actions. Social Neuroscience, 7, 146158.CrossRefGoogle ScholarPubMed
Sartori, L., Xompero, F., Bucchioni, G., & Castiello, U. (2012c). The transfer of motor functional strategies via action observation. Biology Letters, 8, 193196.CrossRefGoogle ScholarPubMed
Schütz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: Action-induced modulation of perception. Trends in Cognitive Sciences, 11, 349355.CrossRefGoogle ScholarPubMed
Sebanz, N., Bekkering, H., & Knoblich, G. (2006). Joint action: Bodies and minds moving together. Trends in Cognitive Sciences, 10, 7076.CrossRefGoogle ScholarPubMed
Shibata, H., Inui, T., & Ogawa, K. (2011). Understanding interpersonal action coordination: An fMRI study. Experimental Brain Research, 211, 569579.CrossRefGoogle ScholarPubMed
Schie, H. T. van, Koelewijn, T., Jensen, O., Oostenveld, R., Maris, E., & Bekkering, H. (2008a). Evidence for fast, low-level motor resonance to action observation: An MEG study. Social Neuroscience, 3, 213228.CrossRefGoogle ScholarPubMed
Schie, H. T. van, Waterschoot, B. M., & Bekkering, H. (2008b). Understanding action beyond imitation: Reversed compatibility effects of action observation in imitation and joint action. Journal of Experimental Psychology: Human Perception and Performance, 34, 14931500.Google ScholarPubMed
Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24, 830846.Google ScholarPubMed
Turella, L., Tubaldi, F., Erb, M., Grodd, W., & Castiello, U. (2012). Object presence modulates activity within the somatosensory component of the action observation network. Cerebral Cortex, 22, 668679.CrossRefGoogle ScholarPubMed
Urgesi, C., Candidi, M., Fabbro, F., Romani, M., & Aglioti, S. M. (2006). Motor facilitation during action observation: Topographic mapping of the target muscle and influence of the onlooker’s posture. European Journal of Neuroscience, 23, 25222530.CrossRefGoogle ScholarPubMed
Wilson, W., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131, 460473.CrossRefGoogle ScholarPubMed
Wolpert, D. M. & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11, R729R732.CrossRefGoogle ScholarPubMed

References

Adams, R. B. Jr, & Kleck, R. E. (2003). Perceived gaze direction and the processing of facial displays of emotion. Psychological Science, 14(6), 644647.CrossRefGoogle ScholarPubMed
Adams, R. B. (2005). Effects of direct and averted gaze on the perception of facially communicated emotion. Emotion, 5(1), 311.CrossRefGoogle ScholarPubMed
Adolphs, R. (2010). What does the amygdala contribute to social cognition? Annals of the New York Academy of Sciences, 1191, 4261.CrossRefGoogle ScholarPubMed
Ahs, F., Pissiota, A., Michelgard, A., Frans, O., Furmark, T., et al. (2009). Disentangling the web of fear: Amygdala reactivity and functional connectivity in spider and snake phobia. Psychiatry Research: Neuroimaging, 172, 103108.CrossRefGoogle ScholarPubMed
Aronfreed, J. (1970). The socialization of altruistic and sympathetic behavior: Some theoretical and experimental analyses. In J. Macaulay & L. Berkowitz (Eds.), Altruism and Helping Behavior. New York: Academic Press, pp. 103126.Google Scholar
Balconi, M., & Bortolotti, A. (2013). Emotional face recognition, empathic trait (BEES), and cortical contribution in response to positive and negative cues. The effect of rTMS on dorsal medial prefrontal cortex. Cognitive Neurodynamics, 7(1), 1321. doi: 10.1007/s11571-012-9210-4.CrossRefGoogle Scholar
Bandura, A. (1969). Principles of behavior modification. http://psycnet.apa.org/psycinfo/1971-10097-000.Google Scholar
Bargh, J. A., & Chartrand, T. L. (1999). The unbearable automaticity of being. American Psychologist, 54(7), 462.CrossRefGoogle Scholar
Bargh, J. A., & Williams, E. L. (2006). The automaticity of social life. Current Directions in Psychological Science, 15(1), 14.CrossRefGoogle ScholarPubMed
Bartal, I. B.-A., Decety, J., & Mason, P. (2011). Empathy and pro-social behavior in rats. Science, 334(6061), 14271430.CrossRefGoogle Scholar
Baumgartner, T., Matthias, W., & Lutz, J. (2007). Modulation of corticospinal activity by strong emotions evoked by pictures and classical music: A transcranial magnetic stimulation study. NeuroReport, 18, 261265.CrossRefGoogle ScholarPubMed
Bernieri, F. J. (1988). Coordinated movement and rapport in teacher–student interactions. Journal of Nonverbal Behavior, 12(2), 120138.CrossRefGoogle Scholar
Bernieri, F. J., & Rosenthal, R. (1991). Interpersonal coordination: Behavior matching and interactional synchrony. Fundamentals of Nonverbal Behavior, 401.Google Scholar
Brown, R. W. (1954). Mass phenomena. Handbook of Social Psychology, 2, 833876.Google Scholar
Bush, L. K., Barr, C. L., McHugo, G. J., & Lanzetta, J. T. (1989). The effects of facial control and facial mimicry on subjective reactions to comedy routines. Motivation and Emotion, 13(1), 3152.CrossRefGoogle Scholar
Calder, A. J., Keane, J., Cole, J., Campbell, R., & Young, A. W. (2000). Facial expression recognition by people with Möbius syndrome. Cognitive Neuropsychology, 17(1–3), 7387.CrossRefGoogle ScholarPubMed
Cappella, J. N. (1981). Mutual influence in expressive behavior: Adult–adult and infant–adult dyadic interaction. Psychological Bulletin, 89(1), 101.CrossRefGoogle ScholarPubMed
Cappella, J. N. (1997). Behavioral and judged coordination in adult informal social interactions: Vocal and kinesic indicators. Journal of Personality and Social Psychology, 72(1), 119.CrossRefGoogle Scholar
Carr, L., Iacoboni, M., Dubeau, M. C., Mazziotta, J. C., & Lenzi, G. L. (2003). Neural mechanisms of empathy in humans: A relay from neural systems for imitation to limbic areas. Proceedings of the National Academy of Sciences of the USA, 100, 5497–502.CrossRefGoogle ScholarPubMed
Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology, 76(6), 893.CrossRefGoogle ScholarPubMed
Chovil, N. (1991). Social determinants of facial displays. Journal of Nonverbal Behavior, 15(3), 141154. doi: 10.1007/BF01672216.CrossRefGoogle Scholar
Chovil, N. (1997). Facing others: A social communicative perspective on facial displays. Psychology of Facial Expression, 25, 321.CrossRefGoogle Scholar
Coelho, C. M., Lipp, O. V., Marinovic, W., Wallis, G., & Riek, S. (2010). Increased corticospinal excitability induced by unpleasant visual stimuli. Neuroscience Letters, 481, 135138.CrossRefGoogle ScholarPubMed
Coombes, S. A., Tandonnet, C., Fujiyama, H., Janelle, C. M., Cauraugh, J. H., & Summers, J. J. (2009). Emotion and motor preparation: A transcranial magnetic stimulation study of corticospinal motor tract excitability. Cognitive, Affective and Behavioral Neuroscience, 9, 380388.CrossRefGoogle ScholarPubMed
Conty, L., Dezecache, G., Hugueville, L., & Grèzes, J. (2012). Early binding of gaze, gesture, and emotion: Neural time course and correlates. Journal of Neuroscience, 32(13), 45314539.CrossRefGoogle ScholarPubMed
Coviello, L., Sohn, Y., Kramer, A. D. I., Marlow, C., Franceschetti, M., et al. (2014). Detecting emotional contagion in massive social networks. PLoS One, 9(3), e90315. doi: 10.1371/journal.pone.0090315.CrossRefGoogle ScholarPubMed
Cristinzio, C., N’Diaye, K., Seeck, M., Vuilleumier, P., & Sander, D. (2010). Integration of gaze direction and facial expression in patients with unilateral amygdala damage. Brain, 133(Pt 1), 248261.CrossRefGoogle ScholarPubMed
Decety, J., & Chaminade, T. (2003). When the self represents the other: A new cognitive neuroscience view on psychological identification. Consciousness and Cognition, 12, 577596.CrossRefGoogle Scholar
Decety, J., & Jackson, P. L. (2006). A social-neuroscience perspective on empathy. Current Directions in Psychological Science, 15(2), 5458. doi: 10.1111/j.0963-7214.2006.00406.x.CrossRefGoogle Scholar
Derks, D., Fischer, A. H., & Bos, A. E. (2008). The role of emotion in computer-mediated communication: A review. Computers in Human Behavior, 24(3), 766785.CrossRefGoogle Scholar
Dezecache, G., Conty, L., Chadwick, M., Philip, L., Soussignan, R., et al. (2013a). Evidence for unintentional emotional contagion beyond dyads. PLoS One, 8(6), e67371. doi: 10.1371/journal.pone.0067371.CrossRefGoogle ScholarPubMed
Dezecache, G., Jacob, P., & Grèzes, J. (2015). Emotional contagion: its scope and limits. Trends in Cognitive Sciences, 19(6), 297299. http://doi.org/10.1016/j.tics.2015.03.011.Google Scholar
Dezecache, G., Mercier, H., & Scott-Phillips, T. C. (2013b). An evolutionary approach to emotional communication. Journal of Pragmatics, 59, 221233.CrossRefGoogle Scholar
Dimberg, U. (1982). Facial reactions to facial expressions. Psychophysiology, 19(6), 643647.CrossRefGoogle ScholarPubMed
Dimberg, U., Hansson, G. Ö., & Thunberg, M. (1998). Fear of snakes and facial reactions: A case of rapid emotional responding. Scandinavian Journal of Psychology, 39(2), 7580.CrossRefGoogle Scholar
Dimberg, U., & Thunberg, M. (1998). Rapid facial reactions to emotional facial expressions. Scandinavian Journal of Psychology, 39(1), 3945. doi: 10.1111/1467–9450.00054.CrossRefGoogle ScholarPubMed
Dimberg, U., Thunberg, M., & Elmehed, K. (2000). Unconscious facial reactions to emotional facial expressions. Psychological Science, 11(1), 8689. doi: 10.1111/1467–9280.00221.CrossRefGoogle ScholarPubMed
Dondi, M., Simion, F., & Caltran, G. (1999). Can newborns discriminate between their own cry and the cry of another newborn infant? Developmental Psychology, 35(2), 418426.CrossRefGoogle ScholarPubMed
Duclos, S. E., Laird, J. D., Schneider, E., Sexter, M., Stern, L., & Van Lighten, O. (1989). Emotion-specific effects of facial expressions and postures on emotional experience. Journal of Personality and Social Psychology, 57(1), 100.CrossRefGoogle Scholar
Ekman, P. E., & Davidson, R. J. (1994). The nature of emotion: Fundamental questions. Oxford: Oxford University Press.Google Scholar
Fowler, J. H., & Christakis, N. A. (2008). Dynamic spread of happiness in a large social network: Longitudinal analysis over 20 years in the Framingham Heart Study. British Medical Journal, 337. doi: 10.1136/bmj.a2338.CrossRefGoogle Scholar
Fridlund, A. J. (1994). Human facial expression: An evolutionary view (Vol. 38). San Diego, CA: Academic Press.Google Scholar
Gallup, A. C., Hale, J. J., Sumpter, D. J. T., Garnier, S., Kacelnik, A., et al. (2012). Visual attention and the acquisition of information in human crowds. Proceedings of the National Academy of Sciences, 109(19), 72457250. doi: 10.1073/pnas.1116141109.CrossRefGoogle ScholarPubMed
Gelder, B. de. (2006). Towards the neurobiology of emotional body language. Nature Reviews Neuroscience, 7(3), 242249. doi: 10.1038/nrn1872.CrossRefGoogle ScholarPubMed
Gelder, B. de, Snyder, J., Greve, D., Gerard, G., & Hadjikhani, N. (2004). Fear fosters flight: A mechanism for fear contagion when perceiving emotion expressed by a whole body. Proceedings of the National Academy of Sciences of the United States of America, 101(47), 1670116706.CrossRefGoogle ScholarPubMed
Grèzes, J., Adenis, M. S., Pouga, L., & Armony, J. L. (2012). Self-relevance modulates brain responses to angry body expressions. Cortex, 49(8), 22102220.CrossRefGoogle ScholarPubMed
Grèzes, J., & Dezecache, G. (2014). How do shared-representations and emotional processes cooperate in response to social threat signals? Neuropsychologia, 55, 105114. doi: 10.1016/j.neuropsychologia.2013.09.019.CrossRefGoogle ScholarPubMed
Grèzes, J., Philip, L., Chadwick, M., Dezecache, G., Soussignan, R., & Conty, L. (2013). Self-relevance appraisal influences facial reactions to emotional body expressions. PLoS One, 8(2), e55885. doi: 10.1371/journal.pone.0055885.CrossRefGoogle ScholarPubMed
Grèzes, J., Pichon, S., & de Gelder, B. (2007). Perceiving fear in dynamic body expressions. NeuroImage, 35(2), 959967. doi: 10.1016/j.neuroimage.2006.11.030.CrossRefGoogle ScholarPubMed
Grèzes, J., Wicker, B., Berthoz, S., & de Gelder, B. (2009). A failure to grasp the affective meaning of actions in autism spectrum disorder subjects. Neuropsychologia, 47, 18161825.CrossRefGoogle ScholarPubMed
Grosbras, M. H., & Paus, T. (2006). Brain networks involved in viewing angry hands or faces. Cerebral Cortex, 16, 10871096.CrossRefGoogle ScholarPubMed
Hadjikhani, N., Hoge, R., Snyder, J., & de Gelder, B. (2008). Pointing with the eyes: The role of gaze in communicating danger. Brain and Cognition, 68, 18.CrossRefGoogle ScholarPubMed
Hatfield, E., Cacioppo, J. T., & Rapson, R. L. (1994). Emotional contagion. Cambridge: Cambridge University Press.Google Scholar
Hatfield, E., & Hsee, C. K. (1995). The impact of vocal feedback on emotional experience and expression. Journal of Social Behavior and Personality, 10, 293313.Google Scholar
Hennenlotter, A., Dresel, C., Castrop, F., Ceballos-Baumann, A. O., Wohlschläger, A. M., & Haslinger, B. (2009). The link between facial feedback and neural activity within central circuitries of emotion: New insights from Botulinum toxin-induced denervation of frown muscles. Cerebral Cortex, 19(3), 537542.CrossRefGoogle ScholarPubMed
Hess, U., Adams, R., & Kleck, R. (2007). Looking at you or looking elsewhere: The influence of head orientation on the signal value of emotional facial expressions. Motivation & Emotion, 31(2), 137144.CrossRefGoogle Scholar
Hess, U., & Fischer, A. (2013). Emotional mimicry as social regulation. Personality and Social Psychology Review. doi: 10.1177/1088868312472607.CrossRefGoogle ScholarPubMed
Hietanen, J. K., Surakka, V., & Linnankoski, I. (1998). Facial electromyographic responses to vocal affect expressions. Psychophysiology, 35(5), 530536. doi: 10.1017/S0048577298970445.CrossRefGoogle ScholarPubMed
Hill, A. L., Rand, D. G., Nowak, M. A., & Christakis, N. A. (2010). Emotions as infectious diseases in a large social network: The SISa model. Proceedings of the Royal Society B: Biological Sciences. doi: 10.1098/rspb.2010.1217.CrossRefGoogle Scholar
Hoffman, K. L., Gothard, K. M., Schmid, M. C., & Logothetis, N. K. (2007). Facial-expression and gaze-selective responses in the monkey amygdala. Current Biology, 17(9), 766772.CrossRefGoogle ScholarPubMed
Hsee, C. K., Hatfield, E., & Chemtob, C. (1992). Assessments of the emotional states of others: Conscious judgments versus emotional contagion. Journal of Social and Clinical Psychology, 11(2), 119128. doi: 10.1521/jscp.1992.11.2.119.CrossRefGoogle Scholar
Isenberg, N., Silbersweig, D., Engelien, A., Emmerich, S., Malavade, K., et al. (1999). Linguistic threat activates the human amygdala. Proceedings of the National Academy of Sciences, 96, 1045610459.CrossRefGoogle ScholarPubMed
Jeannerod, M. (2006). Motor cognition: What actions tell the self. Oxford: Oxford University Press.CrossRefGoogle Scholar
Kilner, J., Friston, K., & Frith, C. (2007). Predictive coding: An account of the mirror neuron system, Cognitive Processes, 8(3), 159166.CrossRefGoogle ScholarPubMed
Laird, J. D. (1984). The real role of facial response in the experience of emotion: A reply to Tourangeau and Ellsworth, and others. http://psycnet.apa.org/journals/psp/47/4/909/.Google Scholar
Langford, D. J., Crager, S. E., Shehzad, Z., Smith, S. B., Sotocinal, S. G., et al. (2006). Social modulation of pain as evidence for empathy in mice. Science, 312(5782), 19671970.CrossRefGoogle Scholar
Lanzetta, J. T., & Englis, B. G. (1989). Expectations of cooperation and competition and their effects on observers’ vicarious emotional responses. Journal of Personality and Social Psychology, 56(4), 543.CrossRefGoogle Scholar
Lanzetta, J. T., & Orr, S. P. (1980). Influence of facial expressions on the classical conditioning of fear. Journal of Personality and Social Psychology, 39(6), 1081.CrossRefGoogle ScholarPubMed
Le Bon, G. (1896). Psychologie des foules. London: Macmillan.Google Scholar
LeDoux, J. E. (1995). Emotion: Clues from the brain. Annual Review of Psychology, 46, 209235.CrossRefGoogle ScholarPubMed
Lee, D. H., Susskind, J. M., & Anderson, A. K. (2013). Social transmission of the sensory benefits of eye widening in fear expressions. Psychological Science. doi: 10.1177/0956797612464500.CrossRefGoogle ScholarPubMed
Likowski, K. U., Mühlberger, A., Seibt, B., Pauli, P., & Weyers, P. (2008). Modulation of facial mimicry by attitudes. Journal of Experimental Social Psychology, 44(4), 10651072. doi: 10.1016/j.jesp.2007.10.007.CrossRefGoogle Scholar
Magnée, M. J. C. M., Stekelenburg, J. J., Kemner, C., & de Gelder, B. (2007). Similar facial electromyographic responses to faces, voices, and body expressions. Neuroreport, 18(4), 369372.CrossRefGoogle ScholarPubMed
Miller, R. E., Banks, J. H. Jr, & Ogawa, N. (1963). Role of facial expression in ‘cooperative-avoidance conditioning’ in monkeys. Journal of Abnormal and Social Psychology, 67(1), 24.CrossRefGoogle Scholar
Moody, E. J., McIntosh, D. N., Mann, L. J., & Weisser, K. R. (2007). More than mere mimicry? The influence of emotion on rapid facial reactions to faces. Emotion, 7(2), 447457. doi: 10.1037/1528-3542.7.2.447.CrossRefGoogle ScholarPubMed
Mujica-Parodi, L. R., Strey, H. H., Frederick, B., Savoy, R., Cox, D., et al. (2009). Chemosensory cues to conspecific emotional stress activate amygdala in humans. PLoS One, 4(7), e6415. doi: 10.1371/journal.pone.0006415.CrossRefGoogle ScholarPubMed
N’Diaye, K., Sander, D., & Vuilleumier, P. (2009). Self-relevance processing in the human amygdala: Gaze direction, facial expression, and emotion intensity. Emotion, 9(6), 798806.CrossRefGoogle ScholarPubMed
Nicol, J. R., Perrotta, S., Caliciuri, S., & Wachowiak, M. P. (2013). Emotion-specific modulation of early visual perception. Cognition & Emotion, 27(8), 14781485. doi: 10.1080/02699931.2013.793654.CrossRefGoogle ScholarPubMed
Oberman, L. M., Winkielman, P., & Ramachandran, V. S. (2007). Face to face: Blocking facial mimicry can selectively impair recognition of emotional expressions. Social Neuroscience, 2(3–4), 167178.CrossRefGoogle ScholarPubMed
Oliveri, M., Babiloni, C., Filippi, M. M., Caltagirone, C., Babiloni, F., et al. (2003). Influence of the supplementary motor area on primary motor cortex excitability during movements triggered by neutral or emotionally unpleasant visual cues. Experimental Brain Research, 149, 214221.CrossRefGoogle ScholarPubMed
Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Reviews Neuroscience, 9(2), 148–158. doi: 10.1038/nrn2317.CrossRefGoogle ScholarPubMed
Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48(2), 175187.CrossRefGoogle ScholarPubMed
Phelps, E. A., Ling, S., & Carrasco, M. (2006). Emotion facilitates perception and potentiates the perceptual benefits of attention. Psychological Science, 17(4), 292299. doi: 10.1111/j.1467-9280.2006.01701.x.CrossRefGoogle ScholarPubMed
Pichon, S., de Gelder, B., & Grèzes, J. (2008). Emotional modulation of visual and motor areas by dynamic body expressions of anger. Social Neuroscience, 3, 199212.CrossRefGoogle ScholarPubMed
Pichon, S., de Gelder, B., (2009). Two different faces of threat: Comparing the neural systems for recognizing fear and anger in dynamic body expressions. NeuroImage, 47, 18731883.CrossRefGoogle ScholarPubMed
Pichon, S., de Gelder, B., (2012). Threat prompts defensive brain responses independently of attentional control. Cerebral Cortex, 22, 274285.CrossRefGoogle ScholarPubMed
Pouga, L., Berthoz, S., de Gelder, B., & Grèzes, J. (2010). Individual differences in socioaffective skills influence the neural bases of fear processing: The case of alexithymia. Human Brain Mapping, 31, 14691481.CrossRefGoogle ScholarPubMed
Prehn-Kristensen, A., Wiesner, C., Bergmann, T. O., Wolff, S., Jansen, O., et al. (2009). Induction of empathy by the smell of anxiety. PLoS One, 4(6), e5987.CrossRefGoogle ScholarPubMed
Provine, R. R. (2001). Laughter: A scientific investigation. London: Penguin.Google Scholar
Provine, R. R. (2005). Yawning: The yawn is primal, unstoppable and contagious, revealing the evolutionary and neural basis of empathy and unconscious behavior. American Scientist, 93(6), 532539.CrossRefGoogle Scholar
Qin, S., Young, C. B., Supekar, K., Uddin, L. Q., & Menon, V. (2012). Immature integration and segregation of emotion-related brain circuitry in young children. Proceedings of the National Academy of Sciences, 109, 79417946.CrossRefGoogle ScholarPubMed
Rietveld, E., De Haans, S., & Denys, D. (2013). Social affordances in context: What is it that we are bodily responsive to? Behavioral and Brain Sciences, 36(4), 436.Google Scholar
Roy, A. K., Shehzad, Z., Margulies, D. S., Kelly, A. M. C., Uddin, L. Q., et al. (2009). Functional connectivity of the human amygdala using resting state fMRI. NeuroImage, 45, 614626.CrossRefGoogle ScholarPubMed
Sander, D., Grandjean, D., Kaiser, S., Wehrle, T., & Scherer, K. R. (2007). Interaction effects of perceived gaze direction and dynamic facial expression: Evidence for appraisal theories of emotion. European Journal of Cognitive Psychology, 19, 470480.CrossRefGoogle Scholar
Sato, W., Kochiyama, T., Yoshikawa, S., Naito, E., & Matsumura, M. (2004). Enhanced neural activity in response to dynamic facial expressions of emotion: An fMRI study. Brain Research, 20, 8191.Google ScholarPubMed
Schnall, S., & Laird, J. D. (2007). Facing fear: Expression of fear facilitates processing of emotional information. Social Behavior & Personality: An International Journal, 35(4), 513–524.CrossRefGoogle Scholar
Schutter, D. J. L. G., Hofman, D., & van Honk, J. (2008). Fearful faces selectively increase corticospinal motor tract excitability: A transcranial magnetic stimulation study. Psychophysiology, 45, 345348.CrossRefGoogle ScholarPubMed
Sighele, S. (1901). La foule criminelle: Essai de psychologie collective. F. Alcan.Google Scholar
Simner, M. L. (1971). Newborn’s response to the cry of another infant. Developmental Psychology, 5(1), 136150. doi: 10.1037/h0031066.CrossRefGoogle Scholar
Smith, A. (1759 [2010]). The theory of moral sentiments. London: Penguin.CrossRefGoogle Scholar
Soussignan, R. (2002). Duchenne smile, emotional experience, and autonomic reactivity: A test of the facial feedback hypothesis. Emotion, 2(1), 52.CrossRefGoogle ScholarPubMed
Soussignan, R., Chadwick, M., Philip, L., Conty, L., Dezecache, G., & Grèzes, J. (2013). Self-relevance appraisal of gaze direction and dynamic facial expressions: Effects on facial electromyographic and autonomic reactions. Emotion, 13(2), 330337. doi: 10.1037/a0029892.CrossRefGoogle ScholarPubMed
Spengler, S., von Cramon, D. Y., & Brass, M. (2010). Resisting motor mimicry: Control of imitation involves processes central to social cognition in patients with frontal and temporo-parietal lesions. Social Neuroscience, 4, 401416.CrossRefGoogle Scholar
Stepper, S., & Strack, F. (1993). Proprioceptive determinants of emotional and nonemotional feelings. Journal of Personality and Social Psychology, 64(2), 211220. doi: 10.1037/0022-3514.64.2.211.CrossRefGoogle Scholar
Strack, F., Martin, L. L., & Stepper, S. (1988). Inhibiting and facilitating conditions of the human smile: A nonobtrusive test of the facial feedback hypothesis. Journal of Personality and Social Psychology, 54(5), 768.CrossRefGoogle ScholarPubMed
Susskind, J. M., Lee, D. H., Cusi, A., Feiman, R., Grabski, W., & Anderson, A. K. (2008). Expressing fear enhances sensory acquisition. Nature Neuroscience, 11(7), 843850.CrossRefGoogle ScholarPubMed
Tamietto, M., Castelli, L., Vighetti, S., Perozzo, P., Geminiani, G., et al. (2009). Unseen facial and bodily expressions trigger fast emotional reactions. Proceedings of the National Academy of Sciences, 106(42), 1766117666.CrossRefGoogle ScholarPubMed
Tarde, G. (1890). Les lois de l’imitation: étude sociologique. Félix Alcan.Google Scholar
Uchino, B., Hsee, C. K., Hatfield, E., Carlson, J. G., & Chemtob, C. (1991). The effect of expectations on susceptibility to emotional contagion. Unpublished manuscript, University of Hawaii, Hawaii. www2.hawaii.edu/~elaineh/83.pdf.Google Scholar
Van den Stock, J., Tamietto, M., Sorger, B., Pichon, S., Grèzes, J., & de Gelder, B. (2011). Cortico-subcortical visual, somatosensory, and motor activations for perceiving dynamic whole-body emotional expressions with and without striate cortex (V1). Proceedings of the National Academy of Sciences of the USA, 108, 1618816193.CrossRefGoogle ScholarPubMed
Vermeulen, N., Godefroid, J., & Mermillod, M. (2009). Emotional modulation of attention: Fear increases but disgust reduces the attentional blink. PLoS One, 4(11), e7924. doi: 10.1371/journal.pone.0007924.CrossRefGoogle ScholarPubMed
Vignemont, F. de, & Jacob, P. (2012). What is it like to feel another’s pain? Philosophy of Science, 79(2), 295316.CrossRefGoogle Scholar
Voon, V., Brezing, C., Gallea, C., Ameli, R., Roelofs, K., et al. (2010). Emotional stimuli and motor conversion disorder. Brain, 133, 15261536.CrossRefGoogle ScholarPubMed
Vuilleumier, P., Richardson, M. P., Armony, J. L., Driver, J., & Dolan, R. J. (2004) Distant influences of amygdala lesion on visual cortical activation during emotional face processing. Nature Neuroscience, 7(11), 12711278.CrossRefGoogle ScholarPubMed
Warren, J. E., Sauter, D. A., Eisner, F., Wiland, J., Dresner, M. A., et al. (2006). Positive emotions preferentially engage an auditory-motor mirror system. Journal of Neuroscience, 26, 1306713075.CrossRefGoogle ScholarPubMed
Whalen, P. J., Rauch, S. L., Etcoff, N. L., McInerney, S. C., Lee, M. B., & Jenike, M. A. (1998). Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. Journal of Neuroscience, 18(1), 411118.CrossRefGoogle ScholarPubMed
Whalen, P. J., Shin, L. M., McInerney, S. C., Fischer, H., Wright, C. I., & Rauch, S. L. (2001). A functional MRI study of human amygdala responses to facial expressions of fear versus anger. Emotion, 1, 7083.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×