Skip to main content Accessibility help
×
Home
  • Print publication year: 2010
  • Online publication date: July 2011

References

Aida, M., Ishida, T., Fukaki, H., Fujisawa, H. and Tasaka, M. (1997). Genes involved in organ separation in Arabidopsis: an analysis of cup-shaped cotyledon mutant. Plant Cell 9, 841–57.
Akam, M. E. (1987). The molecular basis for metameric pattern in the Drosophila embryo. Development 101, 1–22.
Akam, M. E. (1989). Making stripes inelegantly. Nature 341, 282–3.
Alexandrov, T., Golyandina, N. and Spirov, A. V. (2008). Singular spectrum analysis of gene expression profiles of the early Drosophila embryo: exponential-in-distance patterns. Res. Lett. in Signal Processing, 12, n.p.
Amtmann, A., Klieber, H. G. and Gradmann, D. (1992). Cytoplasmic free Ca2+ in the marine alga Acetabularia: measurement with Ca2+-selective microelectrodes and kinetic analysis. J. Exp. Bot. 43, 875–85.
Angier, N. (2007). The Canon. Boston and New York: Houghton Mifflin.
Armstrong, J. B. (1989). A Turing model to explain heart development. Axolotl Newsletter 18, 23–5.
Armstrong, J. B. and Graveson, A. C. (1988). Progressive patterning precedes segmentation in the Mexican axolotl (Ambystoma mexicanum). Dev. Biol. 126, 1–6.
Armstrong, J. B. and Malacinski, G. M. (1989). Developmental Biology of the Axolotl. New York: Oxford University Press.
Baker, R. E., Schnell, S. and Maini, P. K. (2009). Waves and patterning in developmental biology: vertebrate segmentation and feather bud formation as case studies. Int. J. Dev. Biol. 53, 783–94.
Ball, P. (2009). Nature's Patterns: A Tapestry in Three Parts. Oxford: Oxford University Press.
Bar-Even, A., Paulsson, J., Maheshri, N., Carmi, M., O'Shea, E., Pilpel, Y. and Barkai, N. (2006). Noise in protein expression scales with natural protein abundance. Nat. Genetics 38, 636–43.
Barlow, P. W. (1984). Positional controls in root development. In Positional Controls in Plant Development, ed. Barlow, P. W. and Carr, D. J., pp. 281–318. Cambridge: Cambridge University Press.
Battey, N. H. and Blackbourn, H. D. (1993). The control of exocytosis in plant cells. New Phytol. 125, 307–38.
Belousov, B. P. (1959). A periodic reaction and its mechanism. In Collection of Short Papers on Radiation Medicine for 1958. Moscow: Med. Publ. Reprinted In Oscillations and Traveling Waves in Chemical Systems, eds R. J. Field and M. Burger. New York: Wiley, 1985.
Benková, E., Michniewicz, M., Sauer, M., Teichman, T., Seifertova, D., Jurgens, G. and Friml, J. (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602.
Berger, S. and Kaever, M. J. (1992). Dasycladales: An Illustrated Monograph of a Fascinating Algal Order. Stuttgart and New York: Thieme.
Bergmann, S., Sandler, O., Sberro, H., Schejter, E., Shilo, B.-Z. and Barkai, N. (2007). Pre steady-state decoding of the Bicoid morphogen gradient. PLoS Biology 5, e46.
Bernfield, M., Banerjee, S. D., Koda, J. E. and Rapraeger, A. C. (1984). Remodelling of the basement membrane as a mechanism of morphogenetic tissue interaction. In The Role of Extracellular Matrix in Development, ed. Trelstad, R. L., pp. 545–71. New York: Alan R. Liss.
Blake, W. J., Kærn, M., Cantor, C. R. and Collins, J. J. (2003). Noise in eukaryotic gene expression. Nature 422, 633–7.
Bohn, S., Andreotti, B., Douady, S., Munzinger, J. and Couder, Y. (2002). Constitutive property of the local organization of leaf venation networks. Phys. Rev. E65, 061914.
Bollenbach, T., Kruse, K., Pantazis, P., González-Gaitán, M. and Jüllicher, F. (2005). Robust formation of morphogen gradients. Phys. Rev. Lett. 94, 018103.
Bollenbach, T., Pantazis, P., Kicheva, A., Bokel, C., González-Gaitán, M. and Jüllicher, F. (2008). Precision of the Dpp gradient. Development 135, 1137–46.
Bonotto, S., and Berger, S. (1997). Proceeding/Symposium Ecology and Biology of Giant Unicellular Algae. Torino: Museo regionale di scienze naturali.
Borckmans, P., Dewel, G., Wit, A. and Walgraef, D. (1995). Turing bifurcations and pattern selection. In Chemical Waves and Patterns, eds. Kapral, R. and Showalter, K., pp. 323–63. Dordrecht: Kluwer.
Bornholdt, S. (2005). Less is more in modeling large genetic networks. Science 310, 449–51.
Braybrook, S. and Kuhlemeier, C. (2010). How a plant builds leaves. Plant Cell 22, (in press).
Brière, C. and Goodwin, , B. C. (1988). Geometry and dynamics of tip morphogenesis in Acetabularia. J. Theor. Biol. 131, 461–75.
Briscoe, J., Lawrence, P. A., and Vincent, J-P., eds. (2010). Generation and Interpretation of Morphogen Gradients. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
Byrne, G. and Cox, E. C. (1986). Spatial patterning in Polysphondylium: monoclonal antibodies specific for whorl prepatterns. Dev. Biol. 117, 442–55.
Byrne, G. and Cox, E. C. (1987). Genesis of a spatial pattern in the cellular slime mold Polysphondylium pallidum. Proc. Nat. Acad. Sci. USA 84, 4140–4.
Cahn, J. W. (1965). Phase separation by spinodal decomposition in isotropic systems. J. Chem. Phys. 42, 93–9.
Cahn, J. W. and Hilliard, J. E. (1958). Free energy of a nonuniform system: I. Interfacial energy. J. Chem. Phys 28, 258–67.
Castets, V., Dulos, E., Boissonade, J. and Kepper, P. (1990). Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953–6.
Chadefaud, M. (1952). La leçon des algues: comment elles ont évolué; comment leur évolution peut éclairer celle des plantes supérieures. L'Année Biologique 28, C9–C25.
Chevaillier, P. (1970). Le noyau du spermatozöide et son évolution au cours de la spermiogenèse. In Comparative Spermatology, Vol. 5, ed. Baccetti, B., pp. 499–514. New York: Academic Press.
Church, A. H. (1895). The structure of the thallus of Neomeris dumetosa, Lamour. Ann. Bot. 9, 581–608.
Church, A. H. (1919). Thalassiophyta and the subaerial transmigration. Botanical Memoirs 3, 1–95.
Claxton, J. H. (1964). The determination of patterns with special reference to that of the central primary skin follicles in sheep. J. Theor. Biol. 7, 302–17.
Clyde, D., Corado, M., Wu, X., Pare, A., Papatsenko, D. and Small, S. (2003). A self-organizing system of repressor gradients establishes segmental complexity in Drosophila. Nature 426, 849–53.
Colman-Lerner, A., Gordon, A., Serra, E., Chin, T., Resnekov, O., Endy, D., Pesce, C. G. and Brent, R. (2005). Regulated cell-to-cell variation in a cell-fate decision system. Nature 437, 699–706.
Coppey, M., Berezhovskii, A. M., Kim, Y., Boettiger, A. N. and Shvartsman, S. Y. (2007). Modeling the bicoid gradient: diffusion and reversible nuclear trapping of a stable protein. Dev. Biol. 312, 623–30.
Coppey, M., Boettiger, A. N., Berezhovskii, A. M. and Shvartsman, S. Y. (2008). Nuclear trapping shapes the terminal gradient in the Drosophila embryo. Curr. Biol. 18, 915–19.
Couté, A. and Tell, G. (1981). Ultrastructure de la paroi cellulaire des Desmidiacees au microscope electronique a balayage. Vaduz: J. Cramer.
Crampin, E. J., Hackborn, W. W. and Maini, P. K. (2002). Pattern formation in reaction–diffusion models with nonuniform domain growth. Bull. Math. Biol. 64, 747–69.
Crauk, O. and Dostatni, N. (2005). Bicoid determines sharp and precise target gene expression in the Drosophila embryo. Curr. Biol. 15, 1888–98.
Crombie, A. C. (1959). Medieval and Early Modern Science, 2nd ed., 2 vols. Garden City, N Y: Doubleday.
Damen, W. G. M. (2007). Evolutionary conservation and divergence of the segmentation process in arthropods. Dev. Dyn. 236, 1379–91.
Davis, G. K. and Patel, N. H. (1999). The origin and evolution of segmentation. Trends Genet. 15, M68–M72.
Davis, G. K., Jaramillo, C. A. and Patel, N. H. (2001). Pax group III genes and the evolution of insect pair-rule patterning. Development 128, 3445–58.
Degn, H. (1972). Oscillating chemical reactions in homogeneous phase. J. Chem. Ed. 49, 302–7.
Reuille, P. B., Bohn-Courseau, I., Ljung, K., et al. (2006). Computer simulations reveal properties of the cell–cell signalling network at the shoot apex in Arabidopsis. Proc. Nat. Acad. Sci. USA 103, 1627–32.
Robertis, E. M. (2008). The molecular ancestry of segmentation mechanisms. Proc. Nat. Acad. Sci. USA 105, 16411–12.
Digiuni, S., Schellmann, S., Geier, F., et al. (2008). A competitive complex formation mechanism underlies trichome patterning on Arabidopsis leaves. Mol. Sys. Biol. 4, 217.
Douady, S. and Couder, Y. (1996). Phyllotaxis as a dynamical self organizing process. I, II, III. J. Theor. Biol. 178, 255–312.
Driever, W. and Nüsslein-Volhard, C. (1988). A gradient of bicoid protein in Drosophila embryos: the bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54, 83–93, 95–104.
Dumais, J. and Harrison, L. G. (2000). Whorl morphogenesis in the dasycladalean algae: the pattern formation viewpoint. Phil. Trans. R. Soc. Lond. B 355, 281–305.
Dumais, J. and Steele, C. (2000). New evidence for the role of mechanical forces in the shoot apical meristem. J. Plant Growth Regulation 19, 7–18.
Dumais, J., Long, S. R. and Shaw, S. L. (2004). The mechanics of surface expansion anisotropy in Medicago truncatula root hairs. Plant Physiol. 136, 3266–75.
Dumais, J., Shaw, S. L., Steele, C. R., Long, S. R. and Ray, P. M. (2006). An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth. Int. J. Dev. Biol. 50, 209–22.
Easton, H. S., Armstrong, J. B. and Smith, S. C. (1994). Heart specification in the Mexican axolotl (Ambystoma mexicanum). Dev. Dyn. 200, 313–20.
Edelstein-Keshet, L. (1988). Mathematical Models in Biology. New York: Random House.
Eldar, A., Rosin, D., Shilo, B.-Z. and Barkai, N. (2003). Self-enhanced ligand degradation underlies robustness of morphogen gradients. Dev. Cell 5, 635–46.
Elowitz, M. B. and Leibler, S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–8.
Elowitz, M. B., Levine, A. J., Siggia, E. D. and Swain, P. S. (2002). Stochastic gene expression in a single cell. Science 297, 1183–6.
Emberger, L. (1968). Les plantes fossiles dans leurs rapports avec les végétaux vivants. Paris: Masson.
Ermentrout, B. (1991). Stripes or spots? Nonlinear effects in bifurcation of reaction–diffusion equations on the square. Proc. R. Soc. Lond. A 434, 413–17.
Field, R. J., Körös, E. and Noyes, R. M. (1972). Oscillations in chemical systems: II. Thorough analysis of temporal oscillations in the bromate–cerium–malonate system. J. Am. Chem. Soc. 94, 8649–64.
Forgacs, G. and Newman, S. A. (2005). Biological Physics of the Developing Embryo. Cambridge: Cambridge University Press.
Foty, R. A. and Steinberg, M. S. (2005). The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278, 255–63.
Foty, R. A., Pfleger, C. M., Forgacs, G. and Steinberg, M. S. (1996). Surface tensions of embryonic cells predict their mutual envelopment behavior. Development 122, 1611–20.
Fowlkes, C. C., Luengo Hendriks, C. L., Keränen, S. V. E., et al. (2008). A quantitative spatio-temporal atlas of gene expression in the Drosophila blastoderm. Cell 133, 364–74.
Frank, F. C. (1953). On spontaneous asymmetric synthesis. Biochim. Biophys. Acta 11, 459–63.
Frankel, J. (1989). Pattern Formation: Ciliate Studies and Models. Oxford: Oxford University Press.
Frasch, M., Hoey, T., Rushlow, C., Doyle, H. and Levine, M. (1987). Characterization and localization of the even-skipped protein of Drosophila. EMBO J. 6, 749–59.
Fraser, H. B., Hirsh, A. E., Giaever, G., Kumm, J. and Eisen, M. B. (2004). Noise minimization in eukaryotic gene expression. PLoS Biology 2, 834–838.
French, V., Bryant, P. J. and Bryant, S. V. (1976). Pattern regulation in epimorphic fields. Science 193, 969–81.
Gardner, M. (1982). The Ambidextrous Universe, 2nd ed. Harmondsworth: Penguin Books.
Gibor, A. (1966). Acetabularia: a useful giant cell. Sci. Am. 215, 118–24.
Giddings, T. H., Brower, D. L. and Staehelin, L. A. (1980). Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J. Cell Biol. 84, 327–39.
Gierer, A. and Meinhardt, , H. (1972). A theory of biological pattern formation. Kybernetik 12, 30–9.
Gilbert, S. F. (2006). Developmental Biology, 8th ed. Sunderland, MA: Sinauer Associates.
Gilbert, S. F. and Sarkar, S. (2000). Embracing complexity: organicism for the twenty-first century. Dev. Dyn. 219, 1–9.
Glansdorff, P. and Prigogine, , I. (1971). Thermodynamic Theory of Structure, Stability, and Fluctuations. New York: Wiley-Interscience.
Glazier, J. A. and Graner, F. (1993). Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E 47, 2128–54.
Goel, N. S. and Rogers, G. (1978). Computer simulations of engulfment and other movements of embryonic tissues. J. Theor. Biol. 71, 103–40.
Goodwin, B. C. and Trainor, L. E. H. (1985). Tip and whorl morphogenesis in Acetabularia by calcium-regulated strain fields. J. Theor. Biol. 117, 79–106.
Goriely, A. and Tabor, M. (2003). Biomechanical models of hyphal growth in actinomycetes. J. Theor. Biol. 222, 211–18.
Graner, F. and Glazier, J. A. (1992). Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69, 2013–16.
Gratzl, M. (1980). Transport of membranes and vesicle contents during exocytosis. In Biological Chemistry of Organelle Formation, eds Bücher, T., Seebald, W., and Weiss, H., pp. 165–74. Berlin, Heidelberg and New York: Springer.
Green, P. B. (1999). Expression of pattern in plants: combining molecular and calculus-based biophysical paradigms. Am. J. Bot. 86, 1059–76.
Green, P. B. and King, A. (1966). A mechanism for the origin of specifically oriented textures in development with special reference to Nitella wall texture. Aust. J. Biol. Sci. 19, 421–37.
Green, P. B. and Linstead, P. (1990). A procedure for SEM of complex shoot structures applied to the inflorescence of snapdragon (Antirrhinum). Protoplasma 158, 33–8.
Green, P. B., Steele, C. R. and Rennich, S. C. (1996). Phyllotactic patterns: a biophysical mechanism for their origin. Ann. Bot. 77, 515–27.
Gregor, T., Bialek, W., Steveninck, R. R. R., Tank, D. W. and Wieschaus, E. F. (2005). Diffusion and scaling during early embryonic pattern formation. Proc. Nat. Acad. Sci. USA 102, 18403–7.
Gregor, T., McGregor, A. P. and Wieschaus, E. W. (2008). Shape and function of the bicoid morphogen gradient in dipteran species with different sized embryos. Dev. Biol. 316, 350–8.
Gregor, T., Tank, D. W., Wieschaus, E. F. and Bialek, W. (2007a). Probing the limits to positional information. Cell 130, 153–64.
Gregor, T., Wieschaus, E. F., McGregor, A. P., Bialek, W. and Tank, D. W. (2007b). Stability and nuclear dynamics of the bicoid morphogen gradient. Cell 130, 141–52.
Grieneisen, V. A., Xu, J., Maree, A. F. M., Hogeweg, P. and Scheres, B. (2007). Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449, 1008–13.
Gross, J. D., Peacey, M. J. and Strandmann, R. P. (1988). Plasma membrane proton pump inhibition and stalk cell differentiation in Dictyostelium discoideum. Differentiation 38, 91–8.
Guidi, G. M. and Goldbeter, A. (2000). Oscillations and bistability predicted by a model for a cyclical bienzymatic system involving the regulated isocitrate dehydrogenase reaction. Biophys. Chem. 83, 153–70.
Gunning, B. E. S. (1981). Microtubules and cytomorphogenesis in a developing organ: the root primordium of Azolla pinnata. In Cytomorphogenesis in Plants, ed. Kiermayer, O., pp. 301–26. Vienna: Springer-Verlag.
Gunning, B. E. S. (1982). The root of the water fern Azolla: cellular basis of development and multiple roles for cortical microtubules. In Developmental Order: Its Origin and Regulation, ed. Subtelny, S. and Green, P. B., pp. 379–421. New York: Alan R. Liss.
Gursky, V. V., Kozlov, K. N., Samsonov, A. M. and Reinitz, J. (2006). Cell divisions as a mechanism for selection in stable steady states of multi-stationary gene circuits. Physica D 218, 70–6.
Hafen, E., Kuroiwa, A. and Gehring, W. J. (1984). Spatial distribution of transcripts from the segmentation gene fushi tarazu during Drosophila embryonic development. Cell 37, 833–41.
Hagemann, W. (1992). The relationship of anatomy to morphology in plants: a new theoretical perspective. Int. J. Plant Sci. 153, S38–S48.
Hamant, O., Heisler, M. G., Jönsson, H., et al. (2008). Developmental patterning by mechanical signals in Arabidopsis. Science 322, 1650–5.
Hardway, H., Mukjopadhyay, B., Burke, T., Hichman, T. J. and Forman, R. (2008). Modeling the precision and robustness of the Hunchback boundary during Drosophila embryonic development. J. Theor. Biol. 254, 390–9.
Harrison, L. G. (1973). Evolution of biochemical systems with specific chirality: a model involving territorial behaviour. J. Theor. Biol. 39, 333–41.
Harrison, L. G. (1974). The possibility of spontaneous resolution of enantiomers on a catalyst surface. J. Mol. Evol. 4, 99–111.
Harrison, L. G. (1979). Molecular asymmetry and morphology: big hands from little hands. In Origins of Optical Activity in Nature, ed. Walker, D. C., pp. 125–40. Amsterdam: Elsevier.
Harrison, L. G. (1981). Physical chemistry of biological morphogenesis. Chem. Soc. Rev. 10, 491–528.
Harrison, L. G. (1982). An overview of kinetic theory in developmental modelling. In Developmental Order: Its Origin and Regulation, ed. Subtelny, S. and Green, P. B., pp. 3–33. New York: Alan R. Liss.
Harrison, L. G. (1992). Reaction–diffusion theory and intracellular differentiation. Int. J. Plant Sci.153, S76–S85.
Harrison, L. G. (1993). Kinetic Theory of Living Pattern. Cambridge: Cambridge University Press.
Harrison, L. G. (1994). Kinetic theory of living pattern. Endeavour 18, 130–6.
Harrison, L. G. and Hillier, N. A. (1985). Quantitative control of Acetabularia morphogenesis by extracellular calcium: a test of kinetic theory. J. Theor. Biol. 114, 177–92.
Harrison, L. G. and Kolář, M. (1988). Coupling between reaction–diffusion prepattern and expressed morphogenesis. J. Theor. Biol. 130, 493–515.
Harrison, L. G. and Lacalli, T. C. (1978). Hyperchirality: a mathematically convenient and biochemically possible model for the kinetics of morphogenesis. Proc. R. Soc. Lond. B202, 361–97.
Harrison, L. G. and Tan, K. Y. (1988). Where may reaction–diffusion mechanisms be operating in metameric patterning of Drosophila embryos?BioEssays 8, 118–24.
Harrison, L. G. and Aderkas, P. (2004). Spatially quantitative control of the number of cotyledons in a clonal population of somatic embryo of hybrid larch Larix X leptoeuropaea. Ann. Bot. 93, 423–34.
Harrison, L. G., Graham, K. T. and Lakowski, B. C. (1988). Calcium localization during Acetabularia whorl formation: evidence supporting a two-stage hierarchical mechanism. Development 104, 255–62.
Harrison, L. G., Holloway, D. M. and Orchard, J. J. (1996). Hearts and somites: problems of pattern formation in vertebrate embryology modelled by reaction–diffusion. Dev. Biol. 175, 73.
Harrison, L. G., Wehner, S. and Holloway, D. M. (2001). Complex morphogenesis of surfaces: theory and experiment on coupling of reaction–diffusion to growth. Faraday Disc. 120, 277–94.
Harrison, L. G., Kasinsky, H. E., Ribes, E. and Chiva, M. (2005). Possible mechanisms for early and intermediate stages of sperm chromatin condensation patterning involving phase separation dynamics. J. Exp. Zool. 303A, 76–92.
Harrison, L. G., Snell, J., Verdi, R., Vogt, D. E., Zeiss, G. D. and Green, , B. R. (1981). Hair morphogenesis in Acetabularia mediterranea: temperature-dependent spacing and models of morphogen waves. Protoplasma 106, 211–21.
Harrison, L. G., Donaldson, G., Lau, W., et al. (1997). CaEGTA uncompetitively inhibits calcium activation of whorl morphogenesis in Acetabularia. Protoplasma 196, 190–6.
Hartmann, C., Taubert, H., Jäckle, H. and Pankratz, M. J. (1994). A 2-step mode of stripe formation in the Drosophila blastoderm requires interactions among primary pair-rule genes. Mech. of Dev. 45, 3–13.
He, F., Wen, Y., Lin, X., et al. (2008). Probing intrinsic properties of a robust morphogen gradient in Drosophila. Dev. Cell 15, 558–67.
Herschkowitz-Kaufman, M. (1975). Bifurcation analysis of nonlinear reaction–diffusion equations: II. Steady-state solutions and comparison with numerical simulations. Bull. Math. Biol. 37, 589–636.
Holloway, D. M. (1995). Reaction–Diffusion Theory of Localized Structures with Application to Vertebrate Organogenesis. PhD thesis, University of British Columbia, Canada.
Holloway, D. M. (2010). The role of chemical dynamics in plant morphogenesis. Bioch. Soc. Trans. 38, 645–50.
Holloway, D. M. and Harrison, L. G. (1995). Order and localization in reaction–diffusion pattern. Physica A 222, 210–33.
Holloway, D. M. and Harrison, L. G. (1999a). Algal morphogenesis: modelling interspecific variation in Micrasterias with reaction–diffusion patterned catalysis of cell surface growth. Phil. Trans. R. Soc. Lond. B 354, 417–33.
Holloway, D. M. and Harrison, L. G. (1999b). Suppression of positional errors in biological development. Math. Biosc. 156, 271–90.
Holloway, D. M. and Harrison, L. G. (2008). Pattern selection in plants: coupling chemical dynamics to surface growth in three dimensions. Ann. Bot. 101, 361–74.
Holloway, D. M., Harrison, L. G. and Armstrong, J. B. (1994). Computations of post-inductive dynamics in axolotl heart formation. Dev. Dyn. 200, 242–56.
Holloway, D. M., Harrison, L. G. and Spirov, A. V. (2003). Noise in the segmentation gene network of Drosophila, with implications for mechanisms of body axis specification. Proc. SPIE 5110, 180–91.
Holloway, D. M., Harrison, L. G., Kosman, D., Vanario-Alonso, C. E. and Spirov, A. V. (2006). Analysis of pattern precision shows that Drosophila segmentation develops substantial independence from gradients of maternal gene products. Dev. Dyn. 235, 2949–60.
Holzinger, A., Callaham, D. A., Hepler, P. K. and Meindl, U. (1995). Free calcium in Micrasterias: local gradients are not detected in growing lobes. Eur. J. Cell Biol. 67, 363–71.
Houchmandzadeh, B., Wieschaus, E. and Leibler, S. (2002). Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 415, 798–802.
Houchmandzadeh, B., Wieschaus, E. and Leibler, S. (2005). Precise domain specification in the developing Drosophila embryo. Phys. Rev. E 72, 061920.
Howard, M. and Kruse, K. (2005). Cellular organization by self-organization: mechanisms and models for Min protein dynamics. J. Cell Biol. 168, 533–6.
Howard, M. and Rein ten Wolde, P. (2005). Finding the center reliably: robust patterns of developmental gene expression. Phys. Rev. Lett. 95, 208103.
Howard, M., Rutenberg, A. D. and Vet, S. (2001). Dynamic compartmentalization of bacteria: accurate division in E. coli. Phys. Rev. Lett. 87, 278102.
Humphrey, R. R. (1972). Genetic and experimental studies on a mutant (c) determining absence of heart action in embryos of the Mexican axolotl (Ambystoma mexicanum). Dev. Biol. 27, 365–75.
Hunding, A. (1989). Turing patterns of the second kind simulated on supercomputers in three curvilinear coordinates and time. In Cell to Cell Signalling: From Experiments to Theoretical Models, ed. Goldbeter, A., pp. 229–36. London: Academic Press.
Hunding, A. (1993). Supercomputer simulation of Turing structures in Drosophila morphogenesis. In Experimental and Theoretical Advances in Biological Pattern Formation, eds. Othmer, H. G., Maini, P. K., and Murray, J. D., pp. 149–59. New York: Plenum Press.
Hunding, A. (2004). Microtubule dynamics may embody a stationary bipolarity forming mechanism related to the prokaryotic division site mechanism (pole-to-pole oscillations). J. Biol. Phys. 30, 325–44.
Ingram, G. C., Goodrich, J., Wilkinson, M. D., Simon, R., Haughn, G. W. and Coen, E. S. (1995). Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum. Plant Cell 7, 1501–10.
Irish, V., Lehmann, R. and Akam, M. (1989). The Drosophila posterior-group gene nanos functions by repressing hunchback activity. Nature 338, 646–8.
Isaacs, F. J, Blake, W. J. and Collins, J. J. (2005). Signal processing in single cells. Science 307, 1886–88.
Isalan, M. (2009). Gene networks and liar paradoxes. BioEssays 31, 1110–15.
Jacobson, A. G. (1960). Influences of ectoderm and endoderm on heart differentiation in the newt. Dev. Biol. 2, 138–54.
Jacobson, A. G. and Duncan, J. T. (1968). Heart induction in salamanders. J. Exp. Zool. 167, 79–103.
Jaeger, J. (2009). Modelling the Drosophila embryo. Mol. BioSyst. 5, 1549–68.
Jaeger, J. and Goodwin, , B. C. (2001). A cellular oscillator model for periodic pattern formation. J. Theor. Biol. 213, 171–81.
Jaeger, J., Blagov, M., Kosman, D., et al. (2004a). Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melanogaster. Genetics 167, 1721–37.
Jaeger, J., Surkova, S., Blagov, M., et al. (2004b). Dynamic control of positional information in the early Drosophila embryo. Nature 430, 368–71.
Jiang, T. X., Jung, H. S., Widelitz, R. B. and Chuong, C. M. (1999). Self-organization of periodic patterns by dissociated feather mesenchymal cells and the regulation of size, number and spacing of primordia. Development 126, 4997–5009.
Jönsson, H., Heisler, M. G., Shapiro, B. E., Mjolsness, E. and Meyerowitz, E. M. (2006). An auxin-driven polarized transport model for phyllotaxis. Proc. Nat. Acad. Sci. USA 103, 1633–8.
Jung, H. S., Francis-West, P. H., Widelitz, R. B., et al. (1998). Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning. Dev. Biol. 196, 11–23.
Kaandorp, J. A. (1994). Fractal Modelling. Berlin: Springer.
Kaern, M., Menzinger, M. and Hunding, A. (2000). Segmentation and somitogenesis derived from phase dynamics in growing oscillatory media. J. Theor. Biol. 207, 473–93.
Kaern, M., Elston, T. C., Blake, W. J. and Collins, J. J. (2005). Stochasticity in gene expression: from theories to phenotypes. Nature Rev. Genet. 6, 451–64.
Kaern, M., Menzinger, M., Satnoianu, R. and Hunding, A. (2001). Chemical waves in open flows of active media: their relevance to axial segmentation in biology. Faraday Disc. 120, 295–312.
Käfer, J., Hogeweg, P. and Marée, A. F. M. (2006). Moving forward moving backward: directional sorting of chemotactic cells due to size and adhesion differences. PLoS Comput. Biol. 2, e56.
Kaplan, D. R. (1992). The relationship of cells to organisms in plants: problem and implications of an organismal perspective. Int. J. Plant Sci. 153, S28–S37.
Kauffman, S. A., Shymko, R. M. and Trabert, K. (1978). Control of sequential compartment formation in Drosophila. Science 199, 259–70.
Kauzmann, W. (1957). Quantum Chemistry. New York: Academic Press.
Kent, L. J. and Knight, E. C., eds. (1969). Selected Writings of E. T. A. Hoffmann, 2 vols. Chicago and London: University of Chicago Press.
Kerszberg, M. and Wolpert, L. (2007). Specifying positional information in the embryo: looking beyond morphogens. Cell 130, 205–9.
Kiermayer, O. (1964). Untersuchungen über die Morphogenese und Zellwandbildung bei Micrasterias denticulata Bréb. Protoplasma 59, 382–420.
Kiermayer, O. (1967). Das Septum-Initialmuster von Micrasterias denticulata und seine Bildung. Protoplasma 64, 481–4.
Kiermayer, O. (1968). Hemmung der Kern- und Chloroplasten-migration von Micrasterias durch Colchicin. Naturwissenschaften 55, 299–300.
Kiermayer, O. (1970). Causal aspects of cytomorphogenesis in Micrasterias. Ann. NY Acad. Sci. 175, 686–701.
Kiermayer, O. (1981). Cytoplasmic basis of morphogenesis in Micrasterias. In Cytomorphogenesis in Plants, ed. Kiermayer, O.. Wien and New York: Springer.
Knight, J. (2003). Scientific literacy: clear as mud. Nature 423, 376–8.
Ko, M. S. H. (1991). A stochastic model for gene induction. J. Theor. Biol. 153, 181.
Ko, M. S. H. (1992). Induction mechanism of a single gene molecule: stochastic or deterministic?BioEssays 14, 341–6.
Kondo, S. and Asai, R. (1995). A reaction–diffusion wave on the skin of the marine angelfish Pomocanthus. Nature 376, 765–8.
Kondratiev, V. N. (1969). The Theory of Kinetics. New York: Elsevier.
Kosman, D., Reinitz, J. and Sharp, D. H. (1997). Automated assay of gene expression at cellular resolution. In Proceedings of the 1998 Pacific Symposium on Biocomputing, eds Altman, R., Dunker, K., Hunter, L. and Klein, T., pp. 6–17. Singapore: World Scientific Press.
Kosman, D., Small, S. and Reinitz, J. (1998). Rapid preparation of a panel of polyclonal antibodies to Drosophila segmentation proteins. Dev. Genes Evol. 208, 290–4.
Kuhn, T. S. (1962). The Structure of Scientific Revolutions. Chicago: University of Chicago Press.
Kuijt, J. (1967). On the structure and origin of the seedling of Psittacanthus schiedeanus (Loranthaceae). Can. J. Bot. 45, 1497–506.
Kwiatkowska, D. and Dumais, J. (2003). Growth and morphogenesis at the vegetative shoot apex of Anagallis arvensis L. J. Exp. Bot. 54, 1585–95.
Lacalli, T. C. (1973a). Morphogenesis in Micrasterias. PhD thesis, University of British Columbia, Canada.
Lacalli, T. C. (1973b). Cytokinesis in Micrasterias rotata. Protoplasma 78, 433–42.
Lacalli, T. C. (1975). Morphogenesis in Micrasterias. I: Tip growth. II: Patterns of morphogenesis. J. Embryol. Exp. Morphol. 33, 95–116, 117–27.
Lacalli, T. C. (1981). Dissipative structures and morphogenetic pattern in unicellular algae. Phil. Trans. R. Soc. Lond. B 294, 547–88.
Lacalli, T. C. (1990). Modeling the Drosophila pair-rule pattern by reaction–diffusion: gap input and pattern control in a 4-morphogen system. J. Theor. Biol. 144, 171–94.
Lacalli, T. C. and Harrison, L. G. (1978a). The regulatory capacity of Turing's model for morphogenesis, with application to slime moulds. J. Theor. Biol. 70, 273–95.
Lacalli, T. C. and Harrison, L. G. (1978b). Development of ordered arrays of cell wall pores in Desmids: a nucleation model. J. Theor. Biol. 74, 109–38.
Lacalli, T. C. and Harrison, L. G. (1991). From gradients to segments: models for pattern formation in early Drosophila embryogenesis. Sem. Dev. Biol. 2, 107–17.
Lacalli, T. C., Wilkinson, D. A. and Harrison, L. G. (1988). Theoretical aspects of stripe formation in relation to Drosophila segmentation. Development 104, 105–13.
Lander, A. D. (2007). Morpheus unbound: reimagining the morphogen gradient. Cell 128, 245–56.
Lander, A. D., Nie, Q. and Wan, F. Y. (2002). Do morphogen gradients arise by diffusion?Dev. Cell 2, 785–96.
Lander, A. D., Lo, W.-C., Nie, Q. and Wan, F. Y. M. (2009). The measure of success: constraints, objectives, and tradeoffs in morphogen-mediated patterning. Cold Spring Harb. Perspect. Biol. 1, a002022.
Laskowski, M., Grieneisen, V. A., Hofhuis, H., et al. (2008). Root system architecture from coupling cell shape to auxin transport. PLoS Biol. 6, e307.
Lengyel, I. and Epstein, I. R. (1991). Modeling of Turing structures in the chlorite–iodide–malonic acid–starch reaction system. Science 251, 650–2.
Li, R. and Bowerman, B., eds. (2010). Symmetry Breaking in Biology. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
Lisman, J. E. (1985). A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. Proc. Nat. Acad. Sci. USA 82, 3055–7.
Lopes, F. J. P., Vieira, F. M. C., Holloway, D. M., Bisch, P. M. and Spirov, A. V. (2008). Spatial bistability generates hunchback expression sharpness in the Drosophila embryo. PLoS Comp. Biol. 4, e1000184.
Lott, S. E., Kreitman, M., Palsson, A., Alekseeva, E. and Ludwig, M. Z. (2007). Canalization of segmentation and its evolution in Drosophila. Proc. Nat. Acad. Sci. USA 104, 10926–31.
Lucchetta, E. M., Vincent, M. E. and Ismagilov, R. F. (2008). A precise Bicoid gradient is nonessential during cycles 11–13 for precise patterning in the Drosophila blastoderm. PLoS ONE 3, e3651.
Lucchetta, E. M., Lee, J. H., Fu, L. A., Patel, N. H. and Ismagilov, R. F. (2005). Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434, 1134–8.
Lyons, M. J. and Harrison, L. G. (1991). A class of reaction–diffusion mechanisms which preferentially select striped patterns. Chem. Phys. Lett. 183, 158–64.
Lyons, M. J. and Harrison, L. G. (1992a). Stripe selection: an intrinsic property of some pattern-forming models with nonlinear dynamics. Dev. Dyn. 195, 201–15.
Lyons, M. J. and Harrison, L. G. (1992b). Non-linear analysis of models for biological pattern formation: application to ocular dominance stripes. In Analysis and Modeling of Neural Systems II, ed. Eeckman, F. H.. Norwell, MD: Kluwer Academic.
Lyons, M. J., Harrison, L. G., Lakowski, B. C. and Lacalli, T. C. (1990). Reaction–diffusion modelling of biological pattern formation: application to the embryogenesis of Drosophila melanogaster. Can. J. Phys. 68, 772–7.
Maini, P. K., Baker, R. E. and Chuong, C. M. (2006). The Turing model comes of molecular age. Science 314, 1397–8.
Mandoli, D. F. (1998). Elaboration of body plan and phase change during development of Acetabularia: how is the complex architecture of a giant unicell built?A. Rev. Plant Physiol. Plant Mol. Biol. 49, 173–98.
Manu, Surkova S., Spirov, A. V., Gursky, V. V., et al. (2009a). Canalization of gene expression in the Drosophila blastoderm by gap gene cross regulation. PLoS Biology 7, e1000049.
Manu, Surkova S., Spirov, A. V., Gursky, V. V., et al. (2009b). Canalization of gene expression and domain shifts in the Drosophila blastoderm by dynamical attractors,PLoS Comp. Biol. 5, e1000303.
Marée, A. F. M. and Hogeweg, P. (2001). How amoeboids self-organize into a fruiting body: multicellular coordination in Dictyostelium discoideum. Proc. Nat. Acad. Sci. USA. 98, 3879–83.
Marée, A. F. M. and Hogeweg, P. (2002). Modelling Dictyostelium discoideum morphogenesis: the culmination. Bull. Math. Biol. 64, 327–53.
Marée, S. (2000). From Pattern Formation to Morphogenesis: Multicellular Coordination in Dictyostelium discoideum. PhD thesis. University of Utrecht, Netherlands.
Martens, G., Humphrey, E. C., Harrison, L. G., et al. (2009). High-pressure freezing of spermiogenic nuclei supports a dynamic chromatin model for the histone-to-protamine transition. J. Cell. Biochem. 108, 1399–409.
Matela, R. J. and Fletterick, R. J. (1980). Computer simulation of cellular self-sorting: a topological exchange model. J. Theor. Biol. 84, 673–90.
McNally, J. G. and Cox, E. C. (1989). Spots and stripes: the patterning spectrum in the cellular slime mould Polysphondylium pallidum. Development 105, 323–33.
Meindl, U. (1982). Local accumulations of membrane associated calcium according to cell pattern formation in Micrasterias denticulata, visualized by chlorotetracycline fluorescence. Protoplasma 110, 143–6.
Meinhardt, H. (1982). Models of Biological Pattern Formation. London: Academic Press.
Meinhardt, H. (1984). Models of pattern formation and their application to plant development. In Positional Controls in Plant Development, ed. Barlow, P. W. and Carr, D. J., pp. 1–32. Cambridge: Cambridge University Press.
Meinhardt, H. (1995). The Algorithmic Beauty of Seashells. 1st edn, Berlin, Heidelberg and New York:Springer-Verlag. (2nd edn 1998; 3rd edn, 2003).
Meinhardt, H. (2001). Organizer and axes formation as a self-organizing process. Int. J. Dev. Biol. 45, 177–88.
Meinhardt, H. and Boer, P. A. J. (2001). Pattern formation in Esherichia coli: a model for pole-to-pole oscillations of min proteins and the localization of the division site. Proc. Nat. Acad. Sci. USA 98, 14202–7.
Mills, W. H. (1932). Stereochemistry and catalysis. Chem. Ind., 750–9.
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D. and Alon, U. (2002). Network motifs: simple building blocks of complex networks. Science 298, 824–7.
Mitchison, G. J. (1980). A model for vein formation in higher plants. Proc. R. Soc. Lond. B 207, 79–109.
Mitchison, G. J. (1981). The polar transport of auxin and vein patterns in plants. Phil. Trans. R. Soc. Lond. B 295, 461–71.
Mizutani, C. M., Nie, Q., Wan, F. Y. M., et al. (2005). Formation of the BMP activity gradient in the Drosophila embryo. Dev. Cell 8, 915–24.
Moore, K. L. (1974). The Developing Human: Clinically Oriented Embryology. Philadelphia, London and Toronto: W. B. Saunders Co.
Moore, W. J. (1972). Physical Chemistry, 4th edn. Englewood Cliffs, N J: Prentice-Hall.
Muratov, C. B. and Shvartsman, S. Y. (2003). An asymptotic study of the inductive pattern formation mechanism in Drosophila egg development. Physica D 186, 93–108.
Murray, J. D. (1981a). A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol. 88, 161–99.
Murray, J. D. (1981b). On pattern formation mechanisms for lepidopteran wing patterns and mammalian coat markings. Phil. Trans. R. Soc. Lond. B 295, 473–96.
Murray, J. D. (1988). How the leopard gets its spots. Sci. Am. 258, 80–7.
Murray, J. D. (1989). Mathematical Biology. Berlin: Springer-Verlag.
Nagata, W., Harrison, L. G. and Wehner, S. (2003). Reaction–diffusion models of growing plant tips: bifurcations on hemispheres. Bull. Math. Biol. 65, 571–607.
Nägeli, C. (1847). Die neuern Algensysteme. Zürich, Switzerland: Schulthess.
Nagorcka, B. N. (1988). A pattern formation mechanism to control spatial organization in the embryo of Drosophila melanogaster. J. Theor. Biol. 132, 277–306.
Nagorcka, B. N. and Mooney, J. R. (1982). The role of a reaction–diffusion system in the formation of hair fibres. J. Theor. Biol. 98, 575–607.
Nagorcka, B. N. and Mooney, J. R. (1985). The role of a reaction–diffusion system in the initiation of primary hair follicles. J. Theor. Biol. 114, 243–72.
Neville, A. A., Matthews, P. C. and Byrne, H. M. (2006). Interactions between pattern formation and domain growth. Bull. Math. Biol. 68, 1975–2003.
Newman, S. A. (1988). Lineage and pattern in the developing vertebrate limb. Trends Genet. 4, 329–32.
Newman, S. A. (1996). Sticky fingers: Hox genes and cell adhesion in vertebrate limb development. BioEssays 18, 171–4.
Newman, S. A. and Frisch, H. L. (1979). Dynamics of skeletal pattern formation in developing chick limb. Science 205, 662–8.
Nicolis, G. and Prigogine, , I. (1977). Self-Organization in Non-Equilibrium Systems. New York: Wiley.
Nieuwkoop, P. D. (1969). The formation of the mesoderm in urodele amphibians: I. Induction by the endoderm. Wilhelm Roux Arch. Entwicklungsmech. Org. 162, 341–73.
Nieuwkoop, P. D. (1973). The ‘organisation center’ of the amphibian embryo: its origin, spatial organisation and morphogenetic action. Adv. Morphogenet. 10, 1–310.
Nieuwkoop, P. D. (1977). Origin and establishment of embryonic polar axes in amphibian development. Curr. Top. Dev. Biol. 11, 115–32.
Nieuwkoop, P. D., Johnen, A. G. and Albers, B. (1985). The Epigenetic Nature of Early Chordate Development. Cambridge: Cambridge University Press.
Nishimura, N. J. and Mandoli, D. F. (1992). Vegetative growth of Acetabularia acetabulum (Chlorophyta): structural evidence for juvenile and adult phases in development. J. Phycol. 28, 669–77.
Okabe-Oho, Y., Murakami, H., Oho, S. and Sasai, M. (2009). Stable, precise, and reproducible patterning of Bicoid and Hunchback molecules in the early Drosophila embryo. PLoS Comp. Biol. 5: e1000486.
Orchard, J. J. (1996). Reaction–diffusion Modelling of Somite Formation: Computed Dynamics and Bifurcation Analysis. MSc thesis, University of British Columbia, Canada.
Oster, G. F., Murray, J. D. and Harris, A. K. (1983). Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morphol. 78, 83–125.
Othmer, H. and Pate, E. (1980). Scale invariance in reaction–diffusion models of spatial pattern formation. Proc. Nat. Acad. Sci. USA 77, 4180–4.
Ouyang, Q. and Swinney, H. L. (1991). Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352, 610–11.
Page, K. M., Maini, P. K., Monk, N. A. M. and Stern, C. D. (2001). A model of primitive streak initiation in the chick embryo, J. Theor. Biol. 208, 419–38.
Palmeirim, I., Henrique, D., Ish-Horowicz, D. and Pourquié, O. (1997). Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91, 639–48.
Palsson, E. (2007). Modeling wave propagation, chemotaxis, cell adhesion and cell sorting: examples with Dictyostelium, using a 3-D cell-based model. In Modeling Biology, Structures, Behaviors, Evolution, Vienna Series in Theoretical Biology, ed. Laubichler, M. D. and Muller, G. D., pp. 165–94. Cambridge, MA: MIT Press.
Palsson, E. and Cox, E. C. (1997). Selection for spiral waves in the social amoebae Dictyostelium.Proc. Nat. Acad. Sci. USA 94, 13719–23.
Pankratz, M. J., Gaul, U., Hoch, M., et al. (1990). Overlapping gene activities generate pair-rule stripes and delimit the expression domains of homeotic genes along the longitudinal axis of the Drosophila blastoderm embryo. In Genetics of Pattern Formation and Growth Control, ed. Mahowald, A. P., pp. 17–29. New York: Wiley-Liss.
Papatsenko, D. (2009). Stripe formation in the early fly embryo: principles, models, and networks. BioEssays 31, 1172–80.
Peck, A. L. (trans.) (1942). Aristotle: Generation of Animals. Cambridge, MA: Harvard University Press.
Pedraza, J. M. and Oudenaarden, A. (2005). Noise propagation in gene networks. Science 307, 1965–9.
Peel, A. (2004). The evolution of arthropod segmentation mechanisms. Bioessays 26: 1108–16.
Peel, A., Chipman, A. D. and Akam, M. (2005). Arthropod segmentation: beyond the Drosophila paradigm. Nat. Rev. Genet. 6, 905–16.
Phillips, H. M. and Steinberg, M. S. (1969). Equilibrium measurements of embryonic chick cell adhesiveness: I. Shape equilibrium in centrifugal fields. Proc. Nat. Acad. Sci. USA 64, 121–7.
Pick, L. (1998). Segmentation: painting stripes from flies to vertebrates. Dev. Genetics 23, 1–10.
Potts, R. B. (1952). Some generalized order–disorder transformations. Proc. Camb. Phil. Soc. 48, 106−9.
Pourquié, O. (2003). The segmentation clock: converting embryonic time into spatial pattern. Science 301, 328–30.
Poustelnikova, E., Pisarev, A., Blagov, M., Samsonova, M. and Reinitz, J. (2004). A database for management of gene expression data in situ. Bioinformatics 20, 2212–21.
Prescott, G. W., Croasdale, H. T. and Vinyard, W. C. (1977). A Synopsis of North American Desmids: II. Desmidiaceae: Placodermae, section 2. Lincoln and London: University of Nebraska Press.
Prigogine, I. (1967). Dissipative structures in chemical systems. In Fast Reactions and Primary Processes in Chemical Kinetics, ed. Claesson, S., pp. 371–82. New York: Interscience.
Prigogine, I. and Lefever, R. (1968). Symmetry-breaking instabilities in dissipative systems: II. J. Chem. Phys. 48, 1695–700.
Pueyo, J. I., Lanfear, R. and Couso, J. P. (2008). Ancestral Notch-mediated segmentation revealed in the cockroach Periplaneta americana. Proc. Nat. Acad. Sci. USA 105, 16614–19.
Puiseux-Dao, S. (1962). Recherches biologiques et physiologiques sur quelques Dasycladacées, en particulier, le Batophora oerstedii et l'Acetabularia mediterranea Lam. Rev. Gen. Bot. 69, 409–503.
Rao, C. V. and Arkin, A. P. (2001). Control motifs for intracellular regulatory networks. Annu. Rev. Biomed. Eng. 3, 391–419.
Rao, C. V., Wolf, D. M. and Arkin, A. P. (2002). Control, exploitation and tolerance of intracellular noise. Nature 420, 231–7.
Rashevsky, N. (1940). An approach to the mathematical biophysics of biological self-regulation and of cell polarity. Bull. Math. Biophys. 2, 15–25.
Reddy, V. G. and Meyerowitz, E. M. (2005). Stem-cell homeostasis and growth dynamics can be uncoupled in the Arabidopsis shoot apex. Science 310, 663–7.
Reeves, G. T., Muratov, C. B., Schüpbach, T. and Shvartsman, S. Y. (2007). Quantitative models of developmental pattern formation. Dev. Cell 11, 289–300.
Reinhardt, D., Pesce, E. -R., Stieger, P., et al. (2003). Regulation of phyllotaxis by polar auxin transport. Nature 426, 255–60.
Reinitz, J. and Sharp, D. H. (1995). Mechanism of formation of eve stripes. Mech. Dev. 49, 133–58.
Reinitz, J., Mjolsness, E. and Sharp, D. H. (1995). Model for cooperative control of positional information in Drosophila by bicoid and hunchback. J. Exp. Zool. 271, 47–56.
Rennich, S. C. and Green, , P. B. (1997). The mathematics of plate bending. In The Dynamics of Cell and Tissue Motion, eds Alt, W., Deutsch, A. and Dunn, G., pp. 251–3. Basel: Birkhauser Verlag.
Rida, P. C., Minh, N. and Jiang, Y. J. (2004). A Notch feeling of somite segmentation and beyond. Dev. Biol. 265, 2–22.
Rolland-Lagan, A.-G., Bangham, J. A. and Coen, E. (2003). Growth dynamics underlying petal shape and asymmetry. Nature 422, 161–3.
Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. and Elowitz, M. B. (2005). Gene regulation at the single-cell level. Science 307, 1962–5.
Salazar-Ciudad, I. and Jernvall, J. (2004). How different types of pattern formation mechanisms affect the evolution of form and development. Evol. Dev. 6, 6–16.
Salazar-Ciudad, I., Jernvall, J. and Newman, S. A. (2003). Mechanisms of pattern formation in development and evolution. Development 130, 2027–37.
Sater, A. K. and Jacobson, A. G. (1990). The restriction of the heart morphogenetic field inXenopus laevis. Dev. Biol. 140, 328–36.
Saunders, T. and Howard, M. (2009a). Morphogen profiles can be optimized to buffer against noise. Phys. Rev. E 80, 041902.
Saunders, T. and Howard, M. (2009b). When it pays to rush: interpreting morphogen gradients prior to steady-state. Phys. Biol. 6, 046020.
Serrano, N. and O'Farrell, P. H. (1997). Limb morphogenesis: connections between patterning and growth. Curr. Biol. 7, R186–R195.
Shipman, P. D. and Newell, A. C. (2005). Polygonal planforms and phyllotaxis on plants. J. Theor. Biol. 236, 154–97.
Sick, S., Reinker, S., Timmer, J. and Schlake, T. (2006). WNT and DKK determine hair follicle spacing through a reaction–diffusion mechanism. Science 314, 1447–50.
Simon, R., Carpenter, R., Doyle, S., Coen, E. (1994). FIMBRIATA controls flower development by mediating between meristem and organ identity genes. Cell 78, 99–107.
Slack, J. M. W. (1983). From Egg to Embryo. Cambridge: Cambridge University Press.
Smith, R. S., Guyomarc'h, S., Mandel, T., et al. (2006). A plausible model of phyllotaxis. Proc. Nat. Acad. Sci, USA 103, 1301–6.
Smith, S. C. and Armstrong, J. B. (1990). Heart induction in wild-type and cardiac mutant axolotls (Ambystoma mexicanum). J. Exp. Zool. 254, 48–54.
Smith, S. C. and Armstrong, J. B. (1991). Heart development in normal and cardiac-lethal mutant axolotls: a model for the control of vertebrate cardiogenesis. Differentiation 47, 129–34.
Smith, S. C. and Armstrong, J. B. (1993). Reaction–diffusion control of heart development: evidence for activation and inhibition in precardiac mesoderm. Dev. Biol. 160, 535–42.
Solms-Laubach, , zu, H. Graf. (1895). Monograph of the Acetabularieae. Trans. Linn. Soc. Lond. 2 (Botany) 5, 1–39.
Solursh, M., Jensen, K. L., Zanetti, N. C., Linsenmayer, T. F. and Reiter, R. S. (1984). Extracellular matrix mediates epithelial effects on chondrogenesis in vitro. Dev. Biol. 105, 451–7.
Spirov, A. V. and Holloway, D. M. (2003). Making the body plan: precision in the genetic hierarchy of Drosophila embryo segmentation. In. Silico. Biol. 3, 89–100.
Spirov, A. V., Lopes, F. J. P. and Holloway, D. M. (2008). Molecular fluctuations and interpreting spatial gradients, applied to Hunchback pattern formation. Dev. Biol. 319, 589.
Spirov, A. V., Fahmy, K., Schneider, M., et al. (2009). Formation of the bicoid morphogen gradient: an mRNA gradient dictates the protein gradient. Development 136, 605–14.
Staehelin, A. and Giddings, T. H. (1982). Membrane-mediated control of cell wall microfibrillar order. In Developmental Order: Its Origin and Regulation, ed. Subtelny, S. and Green, P. B., pp. 133–47. New York: Alan R. Liss.
Steer, M. W. (1988). The role of calcium in exocytosis and endocytosis in plant cells. Physiologia Pl. 72, 213–20.
Steinberg, M. S. (1970). Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J. Exp. Zool. 173, 395–434.
Streit, A., Berliner, A. J., Papanayotou, C., Sirulnik, A. and Stern, C. D. (2000). Initiation of neural induction by FGF signalling before gastrulation. Nature 406, 74–8.
Surkova, S., Kosman, D., Kozlov, K., et al. (2008). Characterization of the Drosophila segment determination morphome. Dev. Biol. 313, 844–62.
Swindale, N. V. (1980). A model for the formation of ocular dominance stripes. Proc. R. Soc. Lond. B 208, 243–64.
Tardent, P. (1978). Coelenterata, Cnidaria. In Morphogenese der Tiere, pp. 199–302. Stuttgart: Gustav Fischer Verlag.
Thaller, C. and Eichele, G. (1987). Identification and spatial distribution of retinoids in the developing chick limb bud. Nature 327, 625–8.
Thompson, D. W. (1917). On Growth and Form, 1st edn (2nd edn, 1942; abridged edn, ed. Bonner, J. T., 1961). Cambridge: Cambridge University Press.
Tickle, C., Summerbell, D. and Wolpert, L. (1975). Positional signalling and specification of digits in chick limb morphogenesis. Nature 254, 199–202.
Tippit, D. H. and Pickett-Heaps, J. D. (1974). Experimental investigations into morphogenesis in Micrasterias. Protoplasma 81, 271–96.
Tkacik, G., Gregor, T. and Bialek, W. (2008). The role of input noise in transcriptional regulation. PLoS One 3, e2774.
Tostevin, F., ten Wolde, P. R. and Howard, M. (2007). Fundamental limits to position determination by concentration gradients. PLoS Comp. Biol. 3, e78.
Townes, P. S. and Holtfreter, J. (1955). Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128, 53–120.
Turing, A. M. (1952). The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72.
Tyson, J. J. and Kauffman, S. A. (1975). Control of mitosis by a continuous biochemical oscillation. J. Math. Biol. 1, 289–310.
Tyson, J. J. and Light, J. C. (1973). Properties of two-component bimolecular and trimolecular chemical reaction systems. J. Chem. Phys. 59, 4164–73.
Ueda, K. and Noguchi, T. (1988). Microfilament bundles of F-actin and cytomorphogenesis in the green alga Micrasterias crux-melitensis. Eur. J. Cell Biol. 46, 61–7.
Ueda, K. and Yoshioka, S. (1976). Cell wall development of Micrasterias americana, especially in isotonic and hypertonic solutions. J. Cell Sci. 21, 617–31.
Umulis, D. M., Serpe, M., O'Connor, M. B. and Othmer, H. G. (2006). Robust, bistable patterning of the dorsal surface of the Drosophila embryo. Proc. Nat. Acad. Sci. USA 103, 11613–18.
Umulis, D. M., Shimmi, O., O'Connor, M. B. and Othmer, H. (2010). Organism-scale modeling of early Drosophila pattering via bone morphogenetic proteins. Dev. Cell 7, 1–15.
Virag, A. (1999). Discovering Genes Involved in Branching Decisions in Neurospora crassa. PhD thesis, University of British Columbia, Canada.
Virag, A. and Griffiths, A. J. F. (2004). A mutation in the Neurospora crassa actin gene results in multiple defects in tip growth and branching. Fungal genet. biol. 41, 213–25.
Vöchting, H. (1877). Ueber Theilbarkeit im Pflanzenreich und die Wirkung innerer un äusserer Krafte auf Organbildung an Pflanzentheilen. Pflüger's Arch. 15, 153–90.
Vöchting, H. (1878). Ueber Organbildung im Pflanzenreich, Vol. 1. Bonn, Germany: Max Cohen & Sohn.
Aderkas, P. (2002). In vitro phenotypic variation in larch cotyledon number. Int. J. Plant Sci. 163, 301–7.
Waddington, C. H. (1956). Principles of Embryology. London: Allen & Unwin.
Wald, G. (1957). The origin of optical activity in nature. Ann. N. Y. Acad. Sci. 69, 352–67.
Walker, D. C., ed. (1979). Origins of Optical Activity in Nature. Amsterdam: Elsevier.
Waller, M. D. (1961). Chladni Figures: A Study in Symmetry. London: G. Bell & Sons.
Wang, Y. C. and Ferguson, E. L. (2005). Spatial bistability of Dpp-receptor interactions during Drosophila dorsal–ventral patterning. Nature 434, 229–34.
Wässle, H. and Riemann, H. J. (1978). The mosaic of nerve cells in the mammalian retina. Proc. R. Soc. Lond. B 200, 441–61.
Weil, T. T., Forrest, K. M. and Gavis, E. R. (2006). Localization of bicoid mRNA in late oocytes is maintained by continual active transport. Dev. Cell 11, 251–62.
Weil, T. T., Parton, R., Davis, I. and Gavis, E. R. (2008). Changes in bicoid mRNA anchoring highlight conserved mechanisms during the oocyte-to-embryo transition. Curr. Biol. 18, 1055–61.
Werz, G. (1965). Determination and realization of morphogenesis in Acetabularia. Brookhaven Symp. Biol. 18, 185–203.
West, W. and West, G. S. (1905). A Monograph of the British Desmidiaceae, Vol. 2. London: Adlard & Son, for the Ray Society.
Wigglesworth, V. B. (1940). Local and general factors in the development of ‘pattern’ in Rhodnius prolixus (Hemiptera). J. Exp. Biol. 17, 180–200.
Wolff, C., Sommer, R., Schroeder, R., Glaser, G. and Tautz, D. (1995). Conserved and divergent expression aspects of the Drosophila segmentation gene hunchback in the short germ band embryo of the flour beetleTribolium. Development 121, 4227–36.
Wolpert, L. (1970). Positional information and pattern formation. In Towards a Theoretical Biology, ed. Waddington, C. H., Vol. 3, pp. 198–230. Edinburgh: Edinburgh University Press.
Wolpert, L. (1971). Positional information and pattern formation. In Current Topics in Developmental Biology, Vol. 6, pp. 183–224. New York: Academic Press.
Wolpert, L. (1975). Control processes in development: pattern formation in chick limb morphogenesis. Ann. Biomed. Eng. 3, 401–5.
Wolpert, L. (1981). Positional information and pattern formation. Phil. Trans. R. Soc. Lond. B 295, 441–50.
Wolpert, L. (1990). The embryonic position. The New Biologist 2, 1075–8.
Wolpert, L. (1992). Gastrulation and the evolution of development. Development 116, 7–13.
Wolpert, L. (2002). Principles of development. 2nd edn. London: Oxford University Press.
Wortis, M., Seifert, U., Berndl, K., et al. (1993). Curvature-controlled shapes of lipid-bilayer vesicles: budding, vesiculation and other phase transitions. In Dynamical Phenomena at Interfaces, Surfaces and Membranes, ed. Beysens, D., Boccara, N. and Forgacs, G., pp. 221–36. Commack, N Y: Nova Science Publishers.
Wu, Y. F., Myasnikova, E. and Reinitz, J. (2007). Master equation simulation analysis of immunostained Bicoid morphogen gradient. BMC Sys. Biol. 1, 52.
Zhabotinskii, A. M. (1964). Periodical oxidation of malonic acid in solution (a study of the Belousov reaction kinetics). Biofizika 9, 306–11.