Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T14:52:18.294Z Has data issue: false hasContentIssue false

11 - Stochastic resonance and small-amplitude signal transduction in voltage-gated ion channels

Published online by Cambridge University Press:  14 August 2009

Jan Walleczek
Affiliation:
Stanford University, California
Get access

Summary

Introduction

Voltage-gated ion channels are crucial ‘building blocks’ in various systems of signal transduction and processing in living organisms. They are ultimately responsible for information flow at several hierarchical levels of biological complexity that include signal sensing (Lu and Fishman, 1994) and generation of nerve action potentials (Hille, 1992), and are crucially important in synaptic transmission and other intercellular communications (Alberts et al., 1994). Preceding biologically inspired work on the role of external noise in electrical signal transduction concentrated on rather complex objects such as neurons (Bulsara et al., 1994; Pei et al., 1996; Chapeau-Blondeau et al., 1996; Longtin, 1997; Plesser and Tanaka, 1997) and neuronal ensembles (Gluckman et al., 1996; Chialvo et al., 1997). It was demonstrated that addition of random fluctuations, or noise to the input of these systems could improve the transmission efficiency for small input signals. Yet even more elaborate physiological systems showing similar properties include isolated sciatic nerves of a toad (Morse and Evans, 1996; Moss et al., 1996), rat SA1 cutaneous mechanoreceptors (Collins et al., 1996a), mechanosensory transduction pathways in arthropods (Douglass et al., 1993; Levin and Miller, 1996), and human sensory perception (Cordo et al., 1996; Collins et al., 1996b; Chiou-Tan et al., 1996; Simonoto et al., 1997). The counterintuitive phenomenon of noise-improved signal transduction, called ‘stochastic resonance’ – first introduced as a possible explanation for the periodic recurrences of the Earth's ice ages (Benzi et al., 1981) – has now been established empirically for many macroscopic systems and, for some of them, is understood theoretically (Wiesenfeld and Moss, 1995; Gammaitoni et al., 1998; see also Moss, Chapter 10, this volume).

Type
Chapter
Information
Self-Organized Biological Dynamics and Nonlinear Control
Toward Understanding Complexity, Chaos and Emergent Function in Living Systems
, pp. 257 - 280
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×