Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T05:04:05.610Z Has data issue: false hasContentIssue false

1 - Seaweed thalli and cells

Published online by Cambridge University Press:  05 August 2014

Catriona L. Hurd
Affiliation:
University of Tasmania
Paul J. Harrison
Affiliation:
University of British Columbia, Vancouver
Kai Bischof
Affiliation:
Universität Bremen
Christopher S. Lobban
Affiliation:
University of Guam
Get access

Summary

Introduction: the algae and their environments

Seaweeds

The term “seaweed” traditionally includes only macroscopic, multicellular marine red, green, and brown algae. However, each of these groups has microscopic, if not unicellular, representatives. All seaweeds at some stage in their life cycles are unicellular, as spores or gametes and zygotes, and may be temporarily planktonic (Amsler and Searles 1980; Maximova and Sazhin 2010). Some remain small, forming sparse but productive turfs on coral reefs (Hackney et al. 1989) while others, such as the “kelps” of temperate reefs, can form extensive underwater forests (Graham et al. 2007a). Siphonous algae such as Codium, Caulerpa and Bryopsis that form large thalli are, in fact, acellular. The prokaryotic Cyanobacteria have occasionally been acknowledged in “seaweed” floras (e.g. Setchell and Gardner 1919; Littler and Littler 2011a). They are widespread on temperate rocky and sandy shores (Whitton and Potts 1982) and are particularly important in the tropics, where large macroscopic tufts of Oscillatoriaceae and smaller but abundant nitrogen-fixing Nostocaceae are major components of the reef flora (Littler and Littler 2011a, b; Charpy et al. 2012). Benthic diatoms also form large and sometimes abundant tube-dwelling colonies that resemble seaweeds (Lobban 1989). An ancient lineage of (mostly) deep-water green algae, the Palmophyllales, that includes Verdigellas and Palmophyllum, have a palmelloid organization with complex thalli built from an amorphous matrix with a nearly uniform distribution of spherical cells (Womersley 1971; Zechman et al. 2010). On a smaller scale are the colonial filaments of some simple red algae, such as Stylonema (previously Goniotrichum). A “seaweed” is therefore problematic to precisely define: here “seaweed” refers to algae from the red, green, and brown lineages that, at some stage of their life cycle, form multicellular or siphonous macrothalli. In this book we shall consider macroscopic and microscopic marine benthic environments and how seaweeds respond to those environments.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×