Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T20:53:59.907Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  14 October 2009

Martin Hovland
Affiliation:
Statoil, Norway
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Seabed Fluid Flow
The Impact on Geology, Biology and the Marine Environment
, pp. 387 - 441
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AAPG (American Association of Petroleum Geologists), 2003. http://www.aapg.org/education/hedberg/london/
Abegg, F. and Anderson, A., 1997. The acoustic turbid layer in muddy sediments of Eckernförde Bay, western Baltic: methane concentration, saturation and bubble characteristics. Marine Geology, 137, 127–47.CrossRefGoogle Scholar
Abegg, F., Anderson, A., Buzi, L., Lyons, A. P., and Orsi, T. H., 1994. Free methane concentrations and bubble characteristics in Eckernförde Bay, Germany. In Wever, T. F. (ed.), Proceedings of the Gassy Mud Workshop, Kiel, 11–12 July, 1994. Kiel, Forschungsanstalt der Bundeswehr für Wasserschall- und Geophysik (FWG) Report np 14.
Abrams, M. A., 1996. Distribution of subsurface hydrocarbon seepage in near-surface marine sediments. In Schumacher, D. and Abrams, M. A. (eds.), Hydrocarbon Migration and its Near-Surface Expression. American Association of Petroleum Geologists Memoir 66, 1–14.
Acosta, J., 1984. Occurrence of acoustic masking in sediments in two areas of the continental shelf of Spain: Ria de Muros (NW) and Gulf of Cadiz (SW). Marine Geology, 58, 427–34.CrossRefGoogle Scholar
Acosta, J., Muñoz, A., Herranz, P., et al., 2001. Pockmarks in the Ibiza Channel and western end of the Balearic Promontory (western Mediterranean) revealed by multibeam mapping. Geo-Marine Letters, 21, 123–30.Google Scholar
Adam, D., 2002. Fire from ice. Nature, 415, 913–14.CrossRefGoogle Scholar
Adams, N. J. and Kuhlman, L. G., 1990. Case history analyses of shallow gas blowouts. IADC/SPE Drilling Conference, Paper 19919, 97–106.
Addy, S. K. and Worzel, J. L., 1979. Gas seeps and sub-surface structure off Panama City, Florida. American Association of Petroleum Geologists (Bulletin), 63, 668–75.Google Scholar
AFEN, 2002. http://www.ukooa.co.uk/issues/Afen/ (accessed 16 January 2004).
Aharon, P., 1994. Geology and biology of modern and ancient submarine hydrocarbon seeps and vents – an introduction. Geo-Marine Letters, 14, 69–73.CrossRefGoogle Scholar
Aharon, P., 2000. Microbial processes and products fueled by hydrocarbons at submarine seeps. In Riding, R. E. and Awramik, S. M. (eds.), Microbial Sediments. Berlin, Springer-Verlag, 270–81.CrossRef
Aharon, P., Socki, R. A., and Chan, L., 1987. Dolomitization of atolls by sea water convection flow: test of a hypothesis at Niue, South Pacific. Journal of Geology, 95, 187–203.CrossRefGoogle Scholar
Ahmed, S. S., 1972. Geology and petroleum prospects in eastern Red Sea. American Association of Petroleum Geologists (Bulletin), 56, 707–19.Google Scholar
Alberty, M., 1998. Shallow waterflows – history, mechanisms, and intervention. Proceedings of the 1998 Shallow Water Flow Forum, Woodlands, TX, 24–25 June 1998 (presentation).
Alberty, M., Hafle, M. E., Mingle, J. C., and Byrd, T. M., 1999. Mechanisms of shallow waterflows and drilling practices for intervention. SPE Drilling and Completion, 14, 123–9.CrossRefGoogle Scholar
Alexander, R. T. and Macdonald, K. C., 1996. Small off-axis volcanoes on the East Pacific Rise. Earth & Planetary Science Letters, 139, 387–94.CrossRefGoogle Scholar
Aliyev, A., Guliyev, I. S., and Belov, I. S., 2002. Catalogue of Recorded Eruptions of Mud Volcanoes of Azerbaijan (for Period of Years 1810 to 2001). Baku, Azerbaijan, Nafta Press.Google Scholar
Allen, A. and Schlueter, R., 1970. Natural oil seepage at Coal Oil Point, Santa Barbara, California. Science, 170, 974–7.CrossRefGoogle ScholarPubMed
Aloisi, G., Pierre, C., Rouchy, J.-M., Foucher, J.-P., and Faugères, J.-C., 2002. Isotopic evidence of methane-related diagenesis in the mud volcanic sediments of the Barbados accretionary prism. Continental Shelf Research, 22, 2355–72.CrossRefGoogle Scholar
Aloisi, G., Pierre, C., Rouchy, J.-M., et al., 2000. Methane and gas hydrate-related authigenic carbonate crusts in the mud volcanoes of the eastern Mediterranean Sea. Abstracts of the Sixth International Conference on Gas in Marine Sediments. St Petersburg, VNIIOkeangeologia, 5–9, 6–8.
Amouroux, D., Roberts, G., Rapsomanikis, S., and Andreae, M. O., 2002. Biogenic gas (CH4, N2, DMS) emission to the atmosphere from near-shore and shelf waters of the north-western Black Sea. Estuarine, Coastal and Shelf Science, 54, 575–87.CrossRefGoogle Scholar
Anderson, A. L, 1974. Acoustics of Gas-Bearing Sediments. Report Number ARL-TR-74-19, Applied Research Laboratories, Austin, TX, The University of Texas.
Anderson, A. L. and Hampton, L. D., 1980a. Acoustics of gas-bearing sediments I. Background. Journal of the Acoustical Society of America, 67, 1865–89.CrossRefGoogle Scholar
Anderson, A. L. and Hampton, L. D., 1980b. Acoustics of gas-bearing sediments II. Measurements and models. Journal of the Acoustical Society of America, 67, 1890–1902.CrossRefGoogle Scholar
Anderson, A. L., Abegg, F., Hawkins, J. A., Duncan, M. E., and Lyons, A. P., 1998. Bubble populations and acoustic interaction with the gassy floor of Eckernförde Bay. Continental Shelf Research, 18, 1807–38.CrossRefGoogle Scholar
Andreassen, K., Hogstad, K., and Berteussen, K. A., 1990. Gas hydrate in the southern Barents Sea, indicated by a shallow seismic anomaly. First Break, 8, 235–45.CrossRefGoogle Scholar
Andrews, I. J., Long, D., Richards, , P. C, et al., 1990. United Kingdom Offshore Regional Report: the Geology of the Moray Firth. London, HMSO, for the British Geological Survey.Google Scholar
Anketell, J. M., Cegla, J., and Dzulynski, S., 1970. On the deformational structures in systems with reversed density gradients. Rocznik Polskiego Towarzystwa Geologicznego (Annals of the Geological Society of Poland), XⅬ, 6–13.Google Scholar
Anonymous, 1986. Underwater volcanoes trigger earthquakes. New Scientist, 25 December 1986 / 1 January 1987, 24.
Anonymous, 1988. Geologic phenomona. Geotimes, January 1988, 17.
Apps, J. A. and Kamp, P. C. van de, 1993. Energy gases of abiogenic origin in the Earth's crust. In The Future of Energy Gases. United States Geological Survey, Professional Paper 1570, 81–132.
Ardus, D. A. and , Green C. D. (eds.), 1990. Safety in Offshore Drilling: the Role of Shallow Gas Surveys. Dordrecht, Kluwer Academic Publishers.CrossRefGoogle Scholar
Arp, A. J. and Childress, J. J., 1981. Blood function in the hydrothermal vent vestimentiferan tube worm. Science, 213, 324–44.CrossRefGoogle ScholarPubMed
Arp, A. J., Childress, J. J., and Fisher, C. R., 1985. Blood gas transport in Riftia pachyptila. In The Hydrothermal Vents of the Eastern Pacific: An Overview. Bulletin of the Biological Society of Washington, No. 6, 289–300.
Atigh, E. and Byrne, P. M., 2003. Flow liquefaction failure of submarine slopes due to monotonic loadings – an effective stress approach. In Locat, J. and Mienert, J. (eds.), Submarine Mass Movements and their Consequences. Dordrecht, Kluwer Academic Publishers, 3–10.CrossRef
Austvik, T., Li, X., and Gjertsen, L. H., 2000. Hydrate plug properties – formation and removal of plugs. In Gas Hydrates: Challenges for the Future. Annals of the New York Academy of Sciences, 912, 294–303.CrossRefGoogle Scholar
Bach, W., Layne, G. L., and Damm, K. L., 2002. Δ37Cl of mid-ocean ridge vent fluids determined by a new SIMS method for stable chlorine isotope ratio measurements. EOS – Transactions of the American Geophysical Union, 83 (47), Fall Meeting Supplement, Abstract V61B–1367.Google Scholar
Bacon, C. and Lanphere, M. A., 1990. The geologic setting of Crater Lake, Oregon. In Drake, E. T., Larson, G. L., Dymond, J., and Collier, R. (eds.), Crater Lake: An Ecosystem Study. San Francisco, American Association for the Advancement of Science, pp. 19–27.
Bagirov, E., Nadirov, R., and Lerche, I., 1996. Flaming eruptions and ejections from mud volcanoes in Azerbaijan: statistical risk assessment from the historical records. Energy Exploration and Exploitation, 14, 535–83.CrossRefGoogle Scholar
Baker, E. T., German, C. R., and Elderfield, H., 1995. Hydrothermal plumes over spreading-center axes: global distributions and geological inferences. In Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S., and Thomsen, R. E. (eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, American Geophysical Union, Geophysical Monograph 91, pp. 47–71.
Baker, E. T., Massoth, G. J., and Feely, R. A., 1987. Cataclysmic hydrothermal venting on the Juan de Fuca Ridge. Nature, 329, 149–51.CrossRefGoogle Scholar
Ballard, R. D. and Grassle, J. F., 1979. Return to oases of the deep. National Geographic Magazine, 156, 680–705.Google Scholar
Bange, H. W., Bartell, U. H., Rapsomanikis, S., and Andreae, M. O., 1994. Methane in the Baltic and North seas and a reassessment of the marine emissions of methane. Global Biogeochemical Cycles, 8, 465–80.CrossRefGoogle Scholar
Bange, H. W., Rapsomanikis, S., and Andreae, M. O., 1996. The Aegean Sea as a source of atmospheric nitrous oxide and methane. Marine Chemistry, 53, 41–9.CrossRefGoogle Scholar
Baraza, J. and Ercilla, G., 1996. Gas-charged sediments and large pockmark-like features on the Gulf of Cadiz slope (SW Spain). Marine and Petroleum Geology, 13, 253–61.CrossRefGoogle Scholar
Baraza, J., Ercilla, G., and Nelson, C. H., 1999. Potential geologic hazards on the eastern Gulf of Cadiz slope (SW Spain). Marine Geology, 155, 191–215.CrossRefGoogle Scholar
Barber, A. J., Tjokrosapoetro, S., and Charlton, T. R., 1986. Mud volcanoes, shale diapirs, wrench faults, and melanges in accretionary complexes, eastern Indonesia. American Association of Petroleum Geologists (Bulletin), 70, 1729–41.Google Scholar
Barker, W. and Ganez, R. K., 1989. Formation of hydrates during deepwater drilling operations. Journal of Petroleum Technology, 41, 297–301.CrossRefGoogle Scholar
Barriga, F. J. A. S., Binns, R. A., Miller, D. J., and the Shipboard Scientific Party, 2001. Hydrothermal corrosion: a major pre-ore forming process documented by ODP Leg 193 (PACMANUS, Manus Basin, Papua New Guinea). EOS – Transactions of the American Geophysical Union, 82(47), Fall Meeting Supplement, abstract OS11A-MC.Google Scholar
Barry, J. M. and Kochevar, R. E., 1998. A tale of two clams: differing chemosynthetic life styles among vesicomyids in Monterey Bay cold seeps. Cahiers de Biologie Marine, 39, 329–31.Google Scholar
Barry, J. P., Greene, H. G., Orange, D. L., et al., 1996. Biologic and geologic characteristics of cold seeps in Monterey Bay, California. Deep-Sea Research I, 43, 1739–62.CrossRefGoogle Scholar
Barry, J. P., Kochevar, R. E., and Baxter, C. H., 1997. The influence of porewater chemistry and physiology on the distribution of vesicomyid clams at cold seeps in Monterey Bay: implications for patterns of chemosynthetic community organization. Limnology and Oceanography, 43, 318–28.CrossRefGoogle Scholar
Basov, E. I., Weering, T. C. E.van, Gaedike, C., et al., 1996. Seismic facies and specific character of the bottom simulating reflector on the western margin of Paramushir Island, Sea of Okhotsk. Geo-Marine Letters, 16, 297–304.CrossRefGoogle Scholar
Bates, T. S., Kelly, K. C., Johnson, J. E., and Gammon, R. H., 1996. A reevaluation of the open ocean source of methane to the atmosphere. Journal of Geophysical Research, 101, 6953–61.CrossRefGoogle Scholar
Batiza, R., Fox, P. J., Vogt, P. R., Cande, S. C., and Grindlays, N. R., 1989. Abundant Pacific-type near-axis seamounts in the vicinity of the Mid-Atlantic Ridge, 26 °S. Journal of the Geological Society, London, 97, 209–20.Google Scholar
Bauer, C. and Fichler, C., 2002. Quaternary lithology and shallow gas from high resolution gravity and seismic data in the central North Sea. Petroleum Geoscience, 8, 229–36.CrossRefGoogle Scholar
Bauer, J. E., Spies, R. B., Vogel, J. S., Nelson, D. E., and Southon, J. R., 1990. Radiocarbon evidence of fossil carbon cycling in sediments of a nearshore hydrocarbon seep. Nature, 348, 230–2.CrossRefGoogle Scholar
Beauchamp, B. and Bitter, P., 1992. Chemo what?Palaios, 7, 1.CrossRefGoogle Scholar
Beauchamp, B. and Savard, M., 1992. Cretaceous chemosynthetic carbonate mounds in the Canadian Arctic. Palaios, 7, 434–50.CrossRefGoogle Scholar
Becker, K., the Leg 174B Scientific Party, and Davis, E. E., 1998. Leg 174B revisits Hole 395A: logging and long-term monitoring of off-axis hydrothermal processes in young ocean crust. JOIDES Journal, 24(1), 1–3, 13.Google Scholar
Belenkaia, I., 2000. Gas-derived carbonates: reviews in morphology, mineralogy, chemistry and isotopes (data collected during the TTR programme cruises during 1995–1999). In Abstracts of the Sixth International Conference on Gas in Marine Sediments. St Petersburg, VNIIOkeangeologia, 9–10 (abstract).
Bellaiche, G., Loncke, L., Gaullier, V., et al., 2001. The Nile Deep-Sea Fan: main results of the Fanil Cruise (October–November 2000). European Union of Geosciences EUG Ⅺ Journal of Conference, 6(1), 521 (abstract).Google Scholar
Bellissent-Funel, M. C., 2001. Structure of supercritical water. Journal of Molecular Liquids, 90, 313–22.CrossRefGoogle Scholar
Ben-Avraham, Z., Smith, G., Reshef, M., and Jungslager, E., 2002. Gas hydrate and mud volcanoes on the southwest African continental margin off South Africa. Geology, 30, 927–30.2.0.CO;2>CrossRefGoogle Scholar
Berkson, J. M. and Clay, C. S., 1973. Possible syneresis marine seismic study of late-Quaternary sedimentation origin of valleys on the floor of Lake Superior. Nature, 245, 89–91.CrossRefGoogle Scholar
Bernard, B. B. and Brooks, J. M, 2000. Gas hydrates on the Nigerian continental slope. In Abstracts of the Sixth International Conference on Gas in Marine Sediments, St Petersburg, VNIIOkeangeologia, 11.
Berndt, C., Mienert, J., Vanneste, M., Bünz, S., and Bryn, P., 2001. Submarine slope-failure offshore Norway triggers rapid gas hydrate decomposition. Proceedings of the Fourth International Conference on Gas Hydrates, Yokohama, May 19–23.
Bernhard, J. M., Buck, K. R., Farmer, M. A., and Bowser, S. S., 2000. The Santa Barbara Basin is a symbiosis oasis. Nature, 403, 77–80.CrossRefGoogle Scholar
Best, A. I., Clayton, C. R. I., Longva, O., and Szuman, M., 2003. The role of free gas in the activation of submarine slides in Finneidfjord. In Locat, J. and Mienert, J. (eds.), Submarine Mass Movements and their Consequences. Dordrecht, Kluwer Academic Publishers, pp. 491–8.CrossRef
Bethke, C. M., Reed, J. D., and Oltz, D. F., 1991. Long-range petroleum migration in the Illinois Basin. American Association of Petroleum Geologists (Bulletin), 75, 925–45.Google Scholar
Bett, B. J., 2001. UK Atlantic Margin Environmental Survey: introduction and overview of bathyal benthic ecology. Continental Shelf Research, 21, 917–56.CrossRefGoogle Scholar
Bett, B. J. and Cruise participants, 1999. RRS Charles Darwin Cruise 112C, 19 May–24 June 1998. Atlantic Margin Environmental Survey: Seabed Survey of Deep-Water Areas (17th round Tranches) to the North and West of Scotland. Southampton, Southampton Oceanography Centre Cruise Report No. 25.
Bialas, J. and Kukowski, N., 2001. R/V Sonne off Peru. Sea Technology, 42(4), 29–32.Google Scholar
Biju-Duval, B., 2002. Sedimentary Geology: Sedimentary Basins, Depositional Environments, Petroleum Formation. Paris, Editions TECHNIP.Google Scholar
Biju-Duval, B., LeQuelle, P., Mascle, A., Renard, V., and Valery, P., 1982. Multibeam bathymetric survey and high resolution seismic investigations on the Barbados Ridge complex (eastern Caribbean): a key to the knowledge and interpretation of an accretionary wedge. Tectonophysics, 86, 275–304.CrossRefGoogle Scholar
Bil, K. J., 2000. Economic perspective of methane from hydrate. In Max, M. D. (ed.), Natural Gas Hydrates in Oceanic and Permafrost Environments, Dordrecht, Kluwer Academic Publishers, pp. 349–60.CrossRef
Billett, D., 1986. The rise and fall of the sea cucumber. New Scientist, 109(1500), 48–51.Google Scholar
Binns, R. A., Barriga, F. J. A. S., Miller, D. J., and the Shipboard Scientific Party, 2001. The third dimension of an active back-arc hydrothermal system: ODP Leg 193 at PACMANUS. EOS – Transactions of the American Geophysical Union, 82, Fall Meeting Supplement, abstract F587.Google Scholar
Binns, R. A. Parr, J. M, Scott, S. D., Gemmell, J. B., and Herzig, P. M., 1995. PACMANUS: an active, siliceous volcanic-hosted hydrothermal field in the eastern Manus Basin, Papua New Guinea. Abstracts of the PACRIM conference, Auckland, New Zealand, 19–22 November 1995.
Bischoff, J. L., Stine, S., Rosenbauer, R. J., Fitzpatrick, J. A., and Stafford, T. W., 1993. Ikaite precipitation by mixing of shoreline springs and lake water, Mono Lake, California, USA. Geochimica et cosmochimica acta, 57, 3855–65.CrossRefGoogle Scholar
Bishop, R., 1978. Mechanism for the emplacement of piercement diapirs. American Association of Petroleum Geologists (Bulletin), 62, 1561–81.Google Scholar
Bitterli, P., 1958. Herrera subsurface structure of Penal field, Trinidad. American Association of Petroleum Geologists (Bulletin), 42, 145–58.Google Scholar
Bj⊘rkum, P. A., Walderhaug, O., and Nadeau, P. H., 1998. Physical constraints on hydrocarbon leakage and trapping revisited. Petroleum Geoscience, 4, 237–9.CrossRefGoogle Scholar
Bj⊘rlykke, K. and Hoeg, K., 1997. Effects of burial diagenesis on stresses, compaction and fluid flow in sedimentary basins. Marine and Petroleum Geology, 14, 267–76.CrossRefGoogle Scholar
Bj⊘rnsson, H., Bj⊘rnsson, S., and Sigurgeirsson, Th., 1982. Penetration of water into hot rock boundaries of magma in Grimsvotn. Nature, 295, 580–1.CrossRefGoogle Scholar
Bjor⊘y, M. and Ferriday, I. L., 2001. Surface geochemistry as an exploration tool: a comparison of results using different analytical techniques. Abstracts of the American Association of Petroleum Geologists Hedberg Conference, Vancouver, BC, Canada, 16–19 September 2001.Google Scholar
Blinova, B. N., Ivanov, M. K., and Bohrmann, G., 2003. Hydrocarbon gases in deposits from mud volcanoes in the Sorokin Trough, north-eastern Black Sea. Geo-Marine Letters, 23, 250–7.CrossRefGoogle Scholar
Blinova, V. and Stadnitskaya, A., 2001. Composition and origin of the hydrocarbon gases from the Gulf of Cadiz mud volcano area. In Akhamanov, G. and Suzyumov, A. (eds.), Geological Processes on Deep-Water European Margins. International Oceanographic Commission Workshop Report No. 175 on the International Conference and ninth post-cruise meeting of the Training Through Research Programme, Moscow-Mozhenka, Russia, 28 January–2 February 2001. Paris, UNESCO, pp. 45–6.
Boerman, S. and Webster, D. A., 1982. Control of heme content in Vitreoscilla-spp. by oxygen. Journal of General and Applied Microbiology, 28, 35–43.CrossRefGoogle Scholar
Boetius, A., Ravenschlag, K., Schubert, C. J., et al., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623–6.CrossRefGoogle ScholarPubMed
Boetius, A., Elvert, M., Nauhaus, K., et al., 2001. Anaerobic oxidation of methane mediated by a microbial consortium above marine gas hydrates. Conference Programmes with Abstracts, Earth System Processes conference, Geological Society of America and Geological Society of London, Edinburgh, 24–28 June, p. 48 (abstract).
Boetius, A. and the MUMM team, 2002. The enigmatic process of anaerobic oxidation of methane: first results of project MUMM. Gas Hydrates in the Geosystem. Status seminar, Geotechnologien science report No. 1, Research Centre for Marine Geosciences (GEOMAR), Kiel, pp. 105–6 (abstract).
Bohrmann, G., Greinert, J., Suess, E., and Torres, M., 1998. Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability. Geology, 26, 647–50.2.3.CO;2>CrossRefGoogle Scholar
Bohrmann, G., Heeschen, K., Jung, C., et al., 2002. Widespread fluid expulsion along the seafloor of the Costa Rica convergent margin. Terra Nova, 14, 69–79.CrossRefGoogle Scholar
Bohrmann, G., Ivanov, M., Foucher, J.-P., et al., 2003. Mud volcanoes and gas hydrates in the Black Sea: new data from Dvurechnskii and Odessa mud volcanoes. Geo-Marine Letters, 23, 239–49.CrossRefGoogle Scholar
Boles, J. R., Clark, J. F., Leifer, I., and Washburn, L., 2001. Temporal variation in natural methane seep rate due to tides, Coal Oil Point area, California. Journal of Geophysical Research, 106, 27077–86.CrossRefGoogle Scholar
Bondarev, V. N., Rokos, S. I., Kostin, D. A., Dlugach, A. G., and Polyakova, N. A., 2002. Underpermafrost accumulations of gas in the upper part of the sedimentary cover of the Pechora Sea. Geologiya i Geofizika (Russian Geology and Geophysics), 43, 587–98 (Russian edn.) / 545–56 (English edn.).Google Scholar
Bondevik, S., Svendsen, J. I., Johnsen, G., Mangerud, J., and Kaland, P. E., 1997. The Storegga tsunami along the Norwegian coast, its age and runup. Boreas, 26, 29–53.CrossRefGoogle Scholar
Both, R., Crook, K., Taylor, B., et al., 1986. Hydrothermal chimneys and associated fauna in the Manus Back-arc Basin, Papua, New Guinea. EOS – Transactions of the American Geophysical Union, 67 (21), 489–90.CrossRefGoogle Scholar
Botz, R. W., Georgiev, V., Stoffers, P., Khrischev, Kh., and Kostadinov, V., 1993. Stable isotope study of carbonate-cemented rocks from the Pobiti Kamani area, north-eastern Bulgaria. Geologische Rundschau, 82, 663–6.CrossRefGoogle Scholar
Botz, R., Stüben, D., Winckler, G., et al., 1996. Hydrothermal gases offshore Milos Island, Greece. Chemical Geology, 130, 161–73.CrossRefGoogle Scholar
Boudreau, B. P., Algar, C., Johnson, B. D., et al., 2005. Bubble growth and rise in soft sediment. Geology, 33, 517–20.CrossRefGoogle Scholar
Boulton, G. S., Caban, P. E., Gijssel, K., Leijnse, T., Punkari, M., Weert, F. H. A., 1996. The impact of glaciation on the groundwater regime of northwest Europe. Global and Planetary Change, 12, 397–413.CrossRefGoogle Scholar
Boulton, G. S., Chroston, P. N., and Jarvis, J., 1981. A marine seismic study of late-Quaternary sedimentation and inferred glacier fluctuations along western Inverness-shire, Scotland. Boreas, 10, 39–51.CrossRefGoogle Scholar
Boulton, G. S., Slot, T., Blessing, K., et al., 1993. Deep circulation of groundwater in overpressured subglacial aquifers and its geological consequences. Quaternary Science Reviews, 12, 739–45.CrossRefGoogle Scholar
Bouma, A. H. and Rezak, R., 1969. Oil found on knolls on the Gulfs continental rise. Ocean Industry, 4(5), 73–7.Google Scholar
Bouriak, S., Vanneste, M., and Saoutkine, A., 2000. Inferred gas hydrates, shallow gas accumulations and clay diapirs on the southern edge of the V⊘ring Plateau, offshore Norway. Marine Geology, 163, 125–48.CrossRefGoogle Scholar
Bourque, J., 2002. Shooting the moon. Air & Space, 17, 54–61.Google Scholar
BP Trading Ltd, 1974. Investigation into the formation of pockmarks. Report on Pilot Studies, Lab. Ref. No. 5/10537, August 1974.
Brault, M., Simoneit, B. R. T., Marty, J. C., and Saliot, A., 1988. Hydrocarbons in waters and particulate material from hydrothermal environments at the East Pacific Rise, 13° N. Organic Geochemistry, 12, 209–19.CrossRefGoogle Scholar
Breen, N. A., Silver, E. A., and Hussong, D. M., 1986. Structural styles of an accretionary wedge south of the island of Sumba, Indonesia, revealed by Sea MARC II side scan sonar. Geological Society of America (Bulletin), 97, 1250–61.2.0.CO;2>CrossRefGoogle Scholar
Brekke, T., L⊘nne, Ø., and Ohm, S. E., 1997. Light hydrocarbon gases in shallow sediments in the northern North Sea. Marine Geology, 137, 81–108.CrossRefGoogle Scholar
Brewer, P. G., Orr, F. M., jr, Friederich, G., Kvenvolden, K. A., and Orange, D. L., 1998. Gas hydrate formation in the deep sea: in situ experiments with controlled release of methane, natual gas, and carbon dioxide. Energy & Fuels, 12, 183–8.CrossRefGoogle Scholar
Brewer, P. G., Paull, C., Peltzer, E. T., et al., 2002. Measurement of the fate of gas hydrates during transit through the ocean water column. Geophysical Research Letters, 29, 2081.CrossRefGoogle Scholar
Bright, T. J. and Rezak, R., 1977. Reconnaissance of reefs and fishing banks of the Texas continental shelf. In Geyer, R. A. (ed.), Submersibles and Their Use in Oceanography and Ocean Engineering. Elsevier Oceanography Series, 17, Amsterdam, Elsevier, 113–50.CrossRef
Broecker, W. S. and Peng, T. H., 1982. Tracers in the Sea. New York, Lamont-Doherty Geological Observatory.Google Scholar
Brook, E., Harder, S., Severinghaus, J., Steig, E., and Sucher, C., 2000. On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochemical Cycles, 14, 559–72.CrossRefGoogle Scholar
Brooks, J. M., Anderson, A. L., Sassen, R., et al., 1995. Hydrate occurrences in shallow subsurface cores from continental slope sediments. In , Sloan E. D. jr, Happel, J., and Hantow, M. A. (eds.), Natural Gas Hydrates. Annals of the New York Academy of Science, New York, New York Academy of Sciences, pp. 381–91.
Brooks, J. M., Field, J. M., and Kennicut, M. C. II, 1991. Observations of gas hydrates offshore northern California. Marine Geology, 96, 103–9.CrossRefGoogle Scholar
Brooks, J. M., Kennicut, M. C. II, Fisher, C. R., et al., 1987. Deep-sea hydrocarbon seep communities: evidence for energy and nutritional carbon sources. Science, 238, 1138–42.CrossRefGoogle ScholarPubMed
Brown, A., 2000. Evaluation of possible gas microseepage mechanisms. American Association of Petroleum Geologists (Bulletin), 84, 1775–89.Google Scholar
Brown, C. E., Fingas, M. F., Fruwirth, M., and Gamble, R. L., 1995. Oil spill remote sensing: a brief review of airborne and satellite sensors. Washington, DC, SPOT Image 1995 User Group, August.
Brown, K. M., 1990. The nature and hydrogeologic significance of mud diapirs and diatremes for accretionary systems. Journal of Geophysical Research, 95, 8969–82.CrossRefGoogle Scholar
Brown, K. M. and Westbrook, G. K., 1987. The tectonic fabric of the Barbados Ridge accretionary complex. Marine and Petroleum Geology, 4, 71–81.CrossRefGoogle Scholar
Brown, K. M. and Westbrook, G. K., 1988. Mud diapirism and subcretion in the Barbados Ridge accretionary complex. Tectonics, 7, 613–40.CrossRefGoogle Scholar
Brüchert, V., Currie, B., Peard, K. and Endler, R., 2004. Dynamics of methane and hydrogen sulphide in the water column and sediment of the Namibian shelf. Proceedings of the Goldschmidt Conference, Copenhagen, 5–11 June, abstract A340.
Brun-Cottan, J. C., Guillou, S., and Li, Z. H., 2000. Behaviour of a puff of resuspended sediments: a conceptual model. Marine Geology, 167, 355–73.CrossRefGoogle Scholar
Bryant, W. R. and Roemer, L. B., 1983. Structure of the continental shelf and slope of the northern Gulf of Mexico and its geohazards and engineering constraints. In Geyer, R. A. and Moore, J. R. (eds.), CRC Handbook of Geophysical Exploration at Sea. Florida, CRC Press, pp. 123–84.
Bryn, P., Solheim, A., Berg, K., et al., 2003. The Storegga Slide Complex: repeated large scale sliding in response to climatic cyclicity. In Locat, J. and Mienert, J. (eds.), Submarine Mass Movements and Their Consequences. Dordrecht, Kluwer Academic Publishers, pp. 215–22.CrossRef
Buchardt, B., Israelson, C., Seaman, P., and Stockmann, G., 2001. Ikaite tufa towers in Ikka Fjord, southwest Greenland: their formation by mixing of seawater and alkaline spring water. Journal of Sedimentary Research, 71, 176–89.CrossRefGoogle Scholar
Buchardt, B., Seaman, P., Stockmann, G., et al., 1997. Submarine columns of ikaite tufa. Nature, 390, 129–30.CrossRefGoogle Scholar
Buck, K. R. and Barry, J. M., 1998. Monterey Bay cold seep infauna: quantitative comparison of bacterial mat meiofauna with non-seep control sites. Cahiers de Biologie Marine, 39, 333–5.Google Scholar
Buffett, B. A. and Zatsepina, O. Y., 2000. Formation of gas hydrate from dissolved gas in natural porous media. Marine Geology, 164, 69–77.CrossRefGoogle Scholar
Bugge, T., Befring, S., Belderson, R. H., et al., 1987. A giant three-stage submarine slide off Norway. Geo-Marine Letters, 7, 191–8.CrossRefGoogle Scholar
Bugge, T., Belderson, R. H., and Kenyon, N. H., 1988. The Storegga slide. Philosophical Transactions of the Royal Society of London, A325, 357–88.CrossRefGoogle Scholar
Bugge, T., Knarud, R., and M⊘rk, A., 1984. Bedrock geology on the mid-Norwegian continental shelf. In Spencer, A. M. (ed.), Petroleum Geology of the North European Margin. London, Graham & Trotman Ltd. for the Norwegian Petroleum Society, pp. 271–83.CrossRef
Burne, R. V. and Moore, L. S., 1987. Microbialites: organosedimentary deposits of benthic microbial communities. Palaios, 2, 241–54.CrossRefGoogle Scholar
Burnett, W. C., Bokuniewicz, H., Huettle, M., Moore, W. S., and Taniguchi, M., 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66, 3–33.CrossRefGoogle Scholar
Burruss, R. C., 1993. Stability and flux of methane in the deep crust – a review. In Howell, D. G. (ed.), The Future of Energy Gases. United States Geological Survey Professional Paper 1570, pp. 21–30.
Burton, A. B., 1993. Controls on marine carbonate cement mineralogy: review and reassessment. Chemical Geology, 105, 163–79.CrossRefGoogle Scholar
Bussmann, I. and Suess, E., 1998. Groundwater seepage in Eckernförde Bay (western Baltic sea): effect on methane and salinity distribution of the water column. Continental Shelf Research, 18, 1795–806.CrossRefGoogle Scholar
Butenko, J. and Barbot, J. P., 1979. Geological hazards related to offshore drilling and construction in the Orinoco River delta, Venezuela. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 3395.
Butenko, J., Milliman, J. D., and Ye, Y.-C., 1985. Geomorphology, shallow structure, and geological hazards in the East China Sea. Continental Shelf Research, 4, 121–41.CrossRefGoogle Scholar
Butterfield, D. A., 2000. Deep ocean hydrothermal vents. In Sigurdsson, H. (ed.), Encyclopedia of Volcanoes. New York, Academic Press, pp. 857–75.CrossRef
Cairns, S. D. and Stanley, G. D., jr, 1981. Ahermatypic coral banks: living and fossil counterparts. Proceedings of the Fourth International Coral Reef Symposium, volume 1, Manila, Philippines, 18–22 May, pp. 611–18.
Cameron, T. D. J., Laban, C., and Schuttenhelm, R. T. E., 1984. Quaternary Geology, Flemish Bight Sheet 52° N–02° E. 1:250000 map series. London, HMSO for British Geological Survey and Rijks Geologische Dienst.Google Scholar
Cameron, T. D. J., Crosby, A., Balson, P. S., et al., 1992. The Geology of the Southern North Sea. United Kingdom Offshore Regional Report.London, HMSO, for the British Geological Survey.Google Scholar
Campbell, K. A., Farmer, J. D., and Marais, Des D., 2002. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids, 2, 63–94.CrossRefGoogle Scholar
Canales, J. A., 2002. How a venting feature offshore Equatorial Guinea led to a discovery. World Oil, 23(8), 93–4.
Cann, J. and Morgan, J., 2002. Secrets of the Lost City. Geoscientist, 12(11), 4–7.Google Scholar
Cann, J. R., and Strens, M. R., 1989. Modeling periodic megaplume emission by black smoker systems. Journal of Geophysical Research, 94, 27–37.CrossRefGoogle Scholar
Cao, M., Gregson, K., and Marshall, S., 1998. Global methane emission from wetlands and its sensitivity to climate change. Atmospheric Environment, 32, 3293–9.CrossRefGoogle Scholar
Carlson, P. R. and Marlow, M. S., 1984. Discovery of a gas plume in Navarin Basin. Oil and Gas Journal, 2 April, 157–8.Google Scholar
Carlson, P. R., Golan-Bac, M., Karl, H. A., and Kvenvolden, K. A., 1982. Geologic hazards in the Navarin Basin province, northern Bering Sea. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 4172.
Carlson, P. R., Golan-Bac, M., Karl, H. A., and Kvenvolden, K. A., 1985. Seismic and geochemical evidence for shallow gas in sediment on the Navarin continental margin, Bering Sea. American Association of Petroleum Geologists (Bulletin), 69, 422–36.Google Scholar
Carney, R. S., 1994. Consideration of the oasis analogy for chemosynthetic communities at Gulf of Mexico hydrocarbon vents. Geo-Marine Letters, 14, 149–59.CrossRefGoogle Scholar
Carson, B., Kastner, M., Bartlett, D., et al., 2000. Active carbon flux on the Cascadia accretionary prism: preliminary results from long-term, in-situ measurements at ODP Site 892B. EOS – Transactions of the American Geophysical Union, 81(48), AGU Fall meeting, abstract OS51E-11.Google Scholar
Cartwright, J. A., 1996. Polygonal fault systems: a new type of fault structure revealed by 3D seismic data from the North Sea basin. In Weimer, P. and Davis, T. L. (eds.), Applications of 3-D Seismic Data to Exploration. American Association of Petroleum Geologists, Studies in Geology No. 42 and SEG Geophysical Developments Series No. 5, pp. 225–30.
Cartwright, J. A. and Dewhurst, D. N., 1998. Layer-bound compaction faults in fine grained sediments. Geological Society of America (Bulletin), 110, 1242–57.2.3.CO;2>CrossRefGoogle Scholar
Cartwright, J. A. and Lonergan, L., 1996. Volumetric contraction during the compaction of mud rocks: a mechanism for the development of regional-scale polygonal systems. Basin Research, 8, 183–93.CrossRefGoogle Scholar
Casas, D., Ercilla, G., and Baraza, J., 2003. Acoustic evidences for gas in the continental slope sediments of the Gulf of Cadiz (E Atlantic). Continental Shelf Research, 23, 300–10.Google Scholar
Caston, V. N. D., 1977. Quaternary Deposits of the Central North Sea. 2: The Quaternary Deposits of the Forties Field, Northern North Sea. Report no. 77/11. Edinburgh, Institute of Geological Sciences.Google Scholar
Cauquil, E., Stephane, L., George, R. A., and Shyu, J.-P., 2003. High resolution autonomous underwater vehicle (AUV) geophysical survey of a large, deep water pockmark, offshore Nigeria. Proceeding of the EAGE 65th Conference & Exhibition, Stavanger, 2–5 June, abstract P056.
Cavagna, S., Clari, P., and Martire, L., 1999. The role of bacteria in the formation of cold seep carbonates: geological evidence from Monferrato (Tertiary, NW Italy). Sedimentary Geology, 126, 253–70.CrossRefGoogle Scholar
Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W., and Waterbury, J. B., 1981. Prokaryotic cells in the hydrothermal vent tubeworm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science, 213, 340–2.CrossRefGoogle Scholar
CBD (Convention of Biological Diversity), 2001. Global Diversity Outlook. Montreal, Secretariat of the Convention on Biological Diversity, United Nations Environment Programme.
Chaney, R. C., 1984. Methods of predicting the deformation of the seabed due to cyclic loading. In Denness, B. (ed.), Seabed mechanics. London, Graham and Trotman, pp. 159–67.CrossRef
Chanton, J. P., Martens, C. S., and Kelley, C. A., 1989. Gas transport from methane-saturated, tidal freshwater and wetland sediments. Limnology and Oceanography, 34, 807–19.CrossRefGoogle Scholar
Chapman, R. E., 1981. Geology and Water. The Hague, Martinus Nijhoff/Dr W. Junk Publishers.CrossRefGoogle Scholar
Chappellaz, J., Blunier, T., Raynaud, D., et al., 1993. Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP. Nature, 366, 443–5.CrossRefGoogle Scholar
Chappellaz, J., Raynaud, D., Blunier, T., and Stauffer, B., 2000. The ice core record of atmospheric methane. In Khalil, M. A. K. (ed.), Atmospheric Methane, 2nd edn. Berlin, Springer-Verlag, pp. 9–24.CrossRef
Charlou, J. L., Philippe, J.-B., Donval, J. P, et al., 2000. High methane concentrations in plumes and brines associated with mud volcanoes of the eastern Mediterranean Sea (MEDINAUT diving cruise, Nov.–Dec. 1998). Abstracts of the Sixth International Conference on Gas in Marine Sediments, St Petersburg, VNIIOkeangeologia, 15.
Charlou, J. L., Donval, J. P., Fouquet, Y., Jean-Baptiste, P., and Holm, N., 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (6⋚14‵ N, MAR). Chemical Geology, 191, 345–59.CrossRefGoogle Scholar
Charlou, J. L., Donval, J. P., Fouquet, Y., et al., 2004. Physical and chemical characterization of gas hydrates and associated methane plumes in the Congo–Angola Basin. Chemical Geology, 205, 405–25.CrossRefGoogle Scholar
Chester, R., 2000. Marine Geochemistry, 2nd edn. Oxford, Blackwell Science.Google Scholar
Chevaldonné, P., 1997. The fauna at deep-sea hydrothermal vents, an introduction. In Desbruyères, D. and Segonzac, M. (eds.), Handbook of Deep-Sea Hydrothermal Vent Fauna. Plouzane, IFREMER (Institut français de recherche pour l'exploitation de la mer), pp. 7–20.
Childress, J. J. and Fisher, C. R., 1992. The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses. Oceanography and Marine Biology Annual Review, 30, 337–441.Google Scholar
Childress, J. J., Fisher, C. R., Brooks, J. M., et al., 1986. A methanotrophic marine molluscan (bivalvia, Mytilidae) symbiosis: mussels fuelled by gas. Science, 233, 1306–8.CrossRefGoogle Scholar
Chiodini, G., Cioni, R., Marini, L., and Panichi, C., 1995. Origin of the fumarolic fluids of Vulcano Island, Italy and implications for volcanic surveillance. Bulletin of Volcanology, 57, 99–110.CrossRefGoogle Scholar
Chiodini, G., Caliro, S., Minopoli, C., et al., 2004. Geochemistry of the submarine gaseous emissions of Panarea (Aeolian islands, southern Italy): evidence of a recent input of magmatic gases. First General Congress, European Geosciences Union, Nice, 25–30 April (poster). (See Geophysical Research Abstracts, 6, 04251, 2004.)
Chow, J., Lee, J. S., Liu, C. S., Lee, B. D., and Watkins, J. S., 2001. A submarine canyon as the cause of a mud volcano – Liuchienuyu Island in Taiwan. Marine Geology, 176, 55–63.CrossRefGoogle Scholar
Christian, H. A., Barrie, J. V., Hunter, J. A., Luternauer, J., and Monahan, P. A., 1995. Deep hole geotechnical investigation, Westshore Terminal, Roberts Bank Superport, March 6 – 31. Draft Open File Report. Sidney, BC, Geological Survey of Canada.
Christian, H. A., Woeller, D. J., Robertson, P. K., and Courtney, R. C., 1997. Site investigations to evaluate flow liquefaction slides at Sand Heads, Fraser River delta. Canadian Geotechnical Journal, 34, 384–97.CrossRefGoogle Scholar
Christodoulou, D., Papatheodorou, G., Ferentinos, G., and Masson., M., 2003. Active seepage in two contrasting pockmark fields in the Patras and Corinth gulfs, Greece. Continental Shelf Research, 23, 194–9.Google Scholar
Chronis, G., Piper, D., and Anagnostou, G., 1991. Late Quaternary evolution of the Gulf of Patras, Greece. Tectonism, deltaic sedimentation and sea level changes. Marine Geology, 97, 191–9.CrossRefGoogle Scholar
Church, T. M., 1996. An underground route for the water cycle. Nature, 380, 579–80.CrossRefGoogle Scholar
Cicerone, R. J. and Oremland, R. S., 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles, 2, 299–327.CrossRefGoogle Scholar
Çifçi, G., Dondurur, D., and Ergün, M., 2001. Gas-saturated sediments and their effects on the southern side of the eastern Black Sea. In Akhamanov, G. and Suzyumov, A. (eds.), Geological Processes on Deep-Water European Margins. International Oceanographic Commission Workshop Report No. 175 on the International Conference and ninth post-cruise meeting of the Training Through Research Programme, Moscow-Mozhenka, Russia, 28 January–2 February 2001. Paris, UNESCO, pp. 48–9.
Çifçi, G., Dondurur, D., and Ergün, M., 2003. Deep and shallow structures of large pockmarks in the Turkish shelf, eastern Black Sea. Continental Shelf Research, 23, 311–22.Google Scholar
Clari, P. A., Gagliardi, C., Governa, M. E., Ricci, B., and Zuppi, G. M., 1988. I calcari di Marmorito: una testimonianza di processi diagenetici in presenza di metano. Bollettino del Museo Regionale di Scienze Naturali Torino, 5, 197–216. (In Italian.)Google Scholar
Clark, J., 2002. Hydrocarbon seeps in the Santa Barbara Channel, California: an example of macro-seepage. Abstracts of the Seventh International Conference, Baku, Azerbaijan, 7th–12th October. Gas in Marine Sediments, 2002. Baku, Nafta Press, 28.
Clark, J., Leifer, I., Washburn, L., and Luyendyk, B. P., 2003. Compositional changes in natural gas bubble plumes: observations from the Coal Oil Point marine hydrocarbon seep field. Continental Shelf Research, 23, 187–93.Google Scholar
Clark, M. K., 1986. Continuation of a ‘sedimental journey’ planned in the Great Lakes. Sea Technology, May 1986, 23–6.Google Scholar
Clarke, R. H. and Cleverly, R. W., 1991. Petroleum seepage and postaccumulation migration. In England, W. A. and Fleet, A. J. (eds.), Petroleum Migration. Geological Society of London, Special Publication 59, 265–71.
Clayton, C., 1992. Source volumetrics of biogenic gas generation. In Vially, R. (ed.), Bacterial Gas. Paris, Editions Technip, pp. 191–204.
Clayton, C. J. and Dando, P. R., 1996. Comparison of seepage and seep leakage rates. In Schumacher, D. and Abrams, M. A. (eds.), Hydrogen Migration and its Near-Surface Expression. American Association of Petroleum Geologists Memoir 66, 169–71.
Clayton, C. J. and Hay, S. J., 1994. Gas migration mechanisms from accumulation to surface. Bulletin of the Geological Society of Denmark, 41, 12–23.Google Scholar
Clennell, M. B., 1992. The mélanges of Sabah, Malaysia. Ph. D. Thesis, University of London.Google Scholar
Clennell, M. B., Hovland, M., Booth, J. S., Henry, P., and Winters, W. J., 1999. Formation of natural gas hydrates in marine sediments. 1. Conceptual model of gas hydrate growth conditioned by host sediment properties. Journal of Geophysical Research, 104, 22985–3003.CrossRefGoogle Scholar
Clennell, M. B., Judd, A., and Hovland, M., 2000. Movement and accumulation of methane in marine sediments: relation to gas hydrate systems. In Max, M. D. (ed.), Natural Gas Hydrate in Oceanic and Permafrost Environments. Dordrecht, Kluwer Academic Publishers, pp. 105–22.CrossRef
Clifton, H. E., Greene, H. G., Moor, G. W., and Phillips, R. L., 1971. Methane seep off Malibu Point Following San Fernando Earthquake. United States Geological Survey Professional Paper 733, pp. 112–16.Google Scholar
Cloud, P. E., 1960. Gas as a sedimentary and diagenetic agent. American Journal of Science, 248A, 34–45.Google Scholar
Coates, M., Connell, D. W., Bodero, J., Miller, G. J., and Back, R., 1986. Aliphatic hydrocarbons in Great Barrier Reef organisms and environment. Estuarine Coastal Shelf Science, 23, 99–113.CrossRefGoogle Scholar
Cohen, A. S., Talbot, M. R., Awramik, S. M., Dettman, D. L., and Abell, P., 1997. Lake level and paleoenvironmental history of Lake Tanganyika, Africa, as inferred from late Holocene and modern stromatolites. Geological Society of America (Bulletin), 109, 444–60.2.3.CO;2>CrossRefGoogle Scholar
Colantoni, P., Gabbianelli, G., Ceffa, C., and Ceccolini, C., 1998. Bottom features and gas seepages in the Adriatic Sea. In Abstracts and Guidebook, Fifth International Conference on Gas in Marine Sediments, Bologna, 9–12 September, 28–31.
Cole, D., Stewart, S. A., and Cartwright, J. A., 2000. Giant irregular pockmark craters in the Palaeogene of the Outer Moray Firth Basin, UK North Sea. Marine and Petroleum Geology, 17, 563–77.CrossRefGoogle Scholar
Coleman, D. F. and Ballard, R. D., 2001. A highly concentrated region of cold hydrocarbon seeps in the southeastern Mediterranean Sea. Geo-Marine Letters, 21, 162–7.CrossRefGoogle Scholar
Collett, T. S., 2002. Energy resource potential of natural gas hydrates. American Association of Petroleum Geologists (Bulletin), 86, 1971–92.Google Scholar
Collier, J. S. and White, R. S., 1990. Diapirism within Indus fan sediments: Murray Ridge, Gulf of Oman. Geophysical Journal International, 101, 345–53.CrossRefGoogle Scholar
Colman, S. M., Foster, D. S., and Harris, D. W., 1992. Depressions and other lake-floor morphologic features in deep water, southern Lake Michigan. Journal of Great Lakes Research, 18, 267–79.CrossRefGoogle Scholar
Commeau, R. F., Paull, C. K., Comineau, J. A., and Poppe, L. J., 1987. Chemistry and mineralogy of pyrite-enriched sediments at a passive margin sulfide brine seep: abyssal Gulf of Mexico. Earth & Planetary Science Letters, 82, 62–74.CrossRefGoogle Scholar
Committee on Oil in the Sea, 2003. Oil in the Sea III: Inputs, Fates, and Effects. Washington DC, The National Academies Press.
Comrie, R., Read, A., and Fletcher, T., 2002. Cemented hardgrounds on the Norwegian Continental Shelf and their impact on submarine cable installation. Offshore Site Investigation and Geotechnics – Diversity and Sustainability. London, Society for Underwater Technology.
Conrad, R. and Seiler, W., 1988. Methane and hydrogen in seawater (Atlantic Ocean). Deep-Sea Research, 35, 1903–17.CrossRefGoogle Scholar
Conti, A., Stefanon, A., and Zuppi, G., 2002. Gas seeps and rock formation in the northern Adriatic Sea. Continental Shelf Research, 22, 2333–44.CrossRefGoogle Scholar
Cooper, M. C., Selley, R. C., and Cartwright, J. A. 1998. Vertical gas migration mechanisms in the central North Sea, studied with ultra high resolution digital 2D and 3D seismic data. In Abstracts and Guidebook, Fifth International conference on Gas in Marine Sediments, Bologna, 9–12 September, pp. 163–5.
Corliss, J. B., Dymond, J. R., Gordon, L. I., et al., 1979. Submarine thermal springs on the Galapagos Rift. Science, 203, 1073–83.CrossRefGoogle ScholarPubMed
Corselli, C. and Basso, D., 1996. First evidence of benthic communities based on chemosynthesis on the Napoli Mud Volcano (eastern Mediterranean). Marine Geology, 132, 227–40.CrossRefGoogle Scholar
Corthay J. E., II, 1998. Delineation of a massive seafloor hydrocarbon seep, overpressured aquifer sands, and shallow gas reservoirs, Louisiana continental slope. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 8594, 37–53.
Cousins, S. H., 1989. Species richness and the energy theory. Nature, 340, 350–1.CrossRefGoogle Scholar
Cragg, B. A., Parkes, R. J., Fry, J. C., et al., 1996. Bacterial populations and processes in sediments containing gas hydrates (ODP Leg 146: Cascadia Margin). Earth & Planetary Science Letters, 139, 497–507.CrossRefGoogle Scholar
Craig, H., 1981. Hydrothermal plumes and tracer circulation along the East Pacific Rise; 20° N to 20° S. EOS – Transactions of the American Geophysical Union, 62, 693.Google Scholar
Cranston, R. E., 1994. Marine sediments as a source of atmospheric methane. Bulletin of the Geological Society of Denmark, 41, 101–9.Google Scholar
Cranston, R. E., Ginsburg, G. D., Soloviev, V. A., and Lorenson, T. D., 1994. Gas venting and hydrate deposits in the Okhotsk Sea. Bulletin of the Geological Society of Denmark, 41, 80–5.Google Scholar
Croker, P. and García-Gil, S., 2002. A multibeam survey of the Codling Fault Zone, western Irish Sea. Gas in Marine Sediments, Abstracts of the Seventh International Conference, Baku, Azerbaijan, 7th–12th October 2002. Baku, Nafta Press, 29 (Poster).
Croker, P. and O'Loughlin, O., 1998. A catalogue of Irish offshore carbonate mud mounds. Carbonate Mud Mounds and Cold Water Reefs. Paris, IOC-UNESCO Workshop Report 143:11.
Crook, K. A. W., Lisitzin, A. P., and Borissova, I. A. (eds.), 1997. Results and prospects from the joint USSR Australia USA PNG Geological Study of the Manus Basin during the 21st Cruise of the R/V Akademik Mstislav Keldysh. Marine Geology, 142, 1–209.CrossRefGoogle Scholar
Cullen, D. J. and Burnett, W. C., 1986. Phosphorite associations on seamounts in the tropical southwest Pacific Ocean. Marine Geology, 71, 215–236.CrossRefGoogle Scholar
Cunha, M. R., Hilário, A. M., Teixeira, I. G., and all Shipboard Scientific Party aboard the TTR- 10 Cruise, 2001. The faunal community associated to mud volcanoes in the Gulf of Cadiz. In Akhamanov, G. and Suzyumov, A. (eds.), Geological Processes on Deep-Water European Margins. International Oceanographic Commission Workshop Report No. 175 on the International Conference and ninth post-cruise meeting of the Training Through Research Programme, Moscow-Mozhenka, Russia, 28 January–2 February. Paris, UNESCO pp. 61–2.
Curray, J. R., Moore, D. G., and the DSDP Scientific Party, 1982. Initial Reports of the Deep Sea Drilling Project, Vol. 64 (I & II). Washington, DC, US Government Printing Office.CrossRefGoogle Scholar
Curtis, C. D, 1983. Microorganisms and diagenesis of sediments. In Krumbein, W. W (ed.), Microbial Geochemistry. Oxford, Blackwell, 263–86.
Curzi, P. V., 1998. Sedimentation, subsidence and tectonics affecting gas charged sediments in central Adriatic Sea. Abstracts and Guidebook, Fifth International Conference on Gas in Marine Sediments, Bologna, 9–12 September, 182–4.
Curzi, P. V. and Veggiani, A., 1985. I pockmarks nel mare Adriatico centrale. Acta nat. ‘Ateneo Parmense’, 21, 79–90. (In Italian)Google Scholar
Cynar, F. J. and Yayanos, A.A, 1992. The distribution of methane in the upper waters of the southern California Bight. Journal of Geophysical Research, 97, 11269–85.CrossRefGoogle Scholar
Cynar, F. J. and Yayanos, A. A, 1993. The oceanic distribution of methane and its flux to the atmosphere over southern Californian waters. In Oremland, R. S. (ed.), Biogeochemistry of Global Change: Radiatively Active Trace Gases. New York, Chapman & Hall, pp. 487–504.CrossRef
D'Arrigo, J. S., 1986. Stable Gas-in-Liquid Emulsions. Amsterdam, Elsevier.Google Scholar
D'Heur, M. and Pekot, L. J., 1987. Tommeliten. In Spencer, A. M. (ed.), Geology of the Norwegian Oil and Gas Fields. London, Graham and Trotman for the Norwegian Petroleum Society, pp. 117–28.
Dadashev, F. G., 1963. Hydrocarbon Gases of Mud Volcanoes in Azerbaijan. Baku, Azerneshr, (In Russian).Google Scholar
Dählmann, A., Wallmann, K., Sahling, H., et al., 2001. Hot vents in an ice-cold ocean: indications for phase separation at the southernmost area of hydrothermal activity, Bransfield Strait, Antarctica. Earth & Planetary Science Letters, 193, 381–94.CrossRefGoogle Scholar
Dallimore, S. R., Edwardson, K. A., Hunter, J. A., Clague, J. J., and Luternauer, J. L., 1995. Composite Geotechnical Logs for Two Deep Boreholes in the Fraser River Delta, British Columbia. Open File Report 3018 Sidney, BC, Geological Survey of Canada.CrossRefGoogle Scholar
Dallimore, S. R., Uchida, T., and Collett, T. S., 1999. Summary. In Dallimore, S. R., Uchida, T., and Collett, T. S. (eds.), Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada. Geological Survey of Canada, Bulletin, 544, pp. 1–10.
Damm, E. and Budéus, G., 2003. Fate of vent-derived methane in seawater above Hakon Mosby Mud Volcano (Norwegian Sea). Marine Chemistry, 82, 1–11.CrossRefGoogle Scholar
Dando, P. R., 2001. A Review of Pockmarks in the UK Part of the North Sea, with Particular Reference to their Biology. Strategic Environmental Assessment – SEA2, Technical Report TR_001. London, Department of Trade and Industry.Google Scholar
Dando, P. R. and Southward, A. J., 1986. Chemoautotrophy in bivalve molluscs of the genus Thyasira. Journal of the Marine Biological Association of the United Kingdom, 66, 915–29.CrossRefGoogle Scholar
Dando, P. R. and Spiro, B., 1993. Varying nutrional dependence of the thyasiris bivalves Thyasira sarsi and T. equalis on chemoautotrophic symbiotic bacteria, demonstrated by isotope ratios of tissue carbon and shell carbonate. Marine Ecology Progess Series, 92, 151–8.CrossRefGoogle Scholar
Dando, P. R., Aliani, S., Arab, H., et al., 2000. Hydrothermal studies in the Aegean Sea. Physics and Chemistry of the Earth (B), 25, 1–8.CrossRefGoogle Scholar
Dando, P. R., Austen, M. C., Burke, R. A., jr, et al., 1991. Ecology of a North Sea pockmark with an active methane seep. Marine Ecology Progress Series, 70, 49–63.CrossRefGoogle Scholar
Dando, P. R., Bussmann, I., Niven, S. J., et al., 1994a. A methane seep area in the Skagerrak, the habitat of the pogonophore Siboglinum poseidoni and the bivalve mollusc Thyasira sarsi. Marine Ecology Progress Series, 107, 157–67.CrossRefGoogle Scholar
Dando, P. R., Hughes, J. A., Leahy, Y., Taylor, L. J., and Zivanovic, S., 1995a. Earthquakes increase hydrothermal venting and nutrient inputs into the Aegean. Continental Shelf Research, 15, 655–62.CrossRefGoogle Scholar
Dando, P. R., Hughes, J. A., Leahy, Y., et al., 1995b. Gas venting from submarine hydrothermal areas around the island of Milos, Helenic Volcanic Arc. Continental Shelf Research, 15, 913–29.CrossRefGoogle Scholar
Dando, P. R., Jensen, P., O'Hara, S. C. M., et al., 1994b. The effects of methane seepage at an intertidal/shallow subtidal site on the shore of the Kattegat, Vendsyssel, Denmark. Bulletin of the Geological Society of Denmark, 41, 65–79.Google Scholar
Dando, P. R., O'Hara, S. C. M., Schuster, U., et al., 1994c. Gas seepage from a carbonate-cemented sandstone reef on the Kattegat coast of Denmark, Marine and Petroleum Geology, 11, 182–9.CrossRefGoogle Scholar
Dando, P. R., Rees., E. I. S., Dando, M. A., Schlüter, M. and Sauter, E., 2001. Methane venting associated with submarine groundwater discharge in Eckernförde Bucht, Baltic Sea. Abstracts of the Sixth International Conference on Gas in Marine Sediments. St Petersburg, VNIIOkeangeologia, 21.
Dando, P. R., Southward, A. J., Southward, E. C., et al., 1992. Shipwrecked tube worms. Nature, 356, 667.CrossRefGoogle Scholar
Dando, P. R., Stüben, D., and Varnavas, S. P., 1999. Hydrothermalism in the Mediterranean Sea. Progress in Oceanography, 44, 333–67.CrossRefGoogle Scholar
Darwin, C., 1839. Journal of Researches into the Natural History and Geology of the Countries Visited During the Voyage of H. M. S. “Beagle” Round the World. London, Henry Colburn.Google Scholar
Davies, R. J. and Stewart, S. A., 2004. 3-D architecture of mud diapirs and volcanoes: an example from the South Caspian Sea. Abstracts and Programme of the Conference on Seabed and Shallow Section Marine Geoscience: Shared Lessons and Technologies from Academia and Industry. Geological Society of London, London, 24–26 February, 25 (abstract).
Davis, E., 2000. Volcanic action at Axial Seamount. Nature, 403, 379–80.CrossRefGoogle ScholarPubMed
Davis, E. E. and Lister, C. R. B., 1977. Heat flow measured over the Juan de Fuca Ridge: evidence for widespread hydrothermal circulation in a highly heat transportive crust. Journal of Geophysical Research, 82, 4845–60.CrossRefGoogle Scholar
Davis, E. E., Becker, L., Pettigrew, T., Carson, B., and MacDonald, R., 1992. CORK: a hydrological seal and downhole observatory for deep-ocean boreholes. Proceedings of the Ocean Drilling Program Initial Reports, 139, 43–53.Google Scholar
Davis, E. E., Goodfellow, W. D., Bornhold, B. D., et al., 1987. Massive sulfides in a sedimented rift valley, northern Juan de Fuca Ridge. Earth & Planetary Science Letters, 82, 49–61.CrossRefGoogle Scholar
Davis, P. H. and Spies, R. B., 1980. Infaunal benthos of a natural petroleum seep. Study of community structure. Marine Biology, 59, 31–41.CrossRefGoogle Scholar
Davis, R. A., 1994. The Evolving Coast. New York, NY, Scientific American Library.Google Scholar
Day, K., 2002. Seabed canyons: slope instability problems, or just interesting features? Proceedings of the Offshore Technology Conference, Houston, TX, OTC paper 14101.
Angelis, M. A. and Lilley, M. D., 1987. Methane in surface waters of Oregon estuaries and rivers. Limnology and Oceanography, 32, 716–22.CrossRefGoogle Scholar
Angelis, M. A., Lilley, M. D., Olson, E. J., and Baross, J. A., 1993. Methane oxidation in deep-sea hydrothermal plumes of the Endeavour Segment of the Juan de Fuca Ridge. Deep-Sea Research, 40, 1169–86.CrossRefGoogle Scholar
de Batist, M., Klerkx, J., Vanneste, M., et al., 2000. Tectonically induced gas hydrate destabilization and gas venting in Lake Baikal, Siberia. In Abstracts of the Sixth International Conference on Gas in Marine Sediments. St Petersburg, VNIIOkeangeologia, 22–3.
Beukelaer, S. M., MacDonald, I. R., Guinasso, N. L., and Murray, J. A., 2003. Distinct side-scan sonar, RADARSAT SAR, and acoustic profiler signatures of gas and oil seeps on the Gulf of Mexico slope. Continental Shelf Research, 23, 177–86.Google Scholar
Haas, H., Boer, W., and Weering, T. C. E., 1997. Recent sedimentation and organic carbon burial in a shelf sea: the North Sea. Marine Geology, 144, 131–46.CrossRefGoogle Scholar
Mol, B., Rensbergen, P. van, Pillen, S., et al., 2002. Large deep-water coral banks in the Porcupine Basin, southwest of Ireland. Marine Geology, 188, 193–231.CrossRefGoogle Scholar
Mol, B., Huvenne, V., Bünz, S., et al., 2004. EUROcean Deep Ocean Margins (EURODOM). Oceanography, 17, 156–65.CrossRefGoogle Scholar
Ronde, C. E. J., Baker, E. T., Massoth, G. J., et al., 2001. Intra-oceanic subduction-related hydrothermal venting, Kermadec Volcanic Arc, New Zealand. Earth & Planetary Science Letters, 193, 359–69.CrossRefGoogle Scholar
DEFRA (Department for Environment, Food and Rural Affairs, UK), 2003. UK gains emergency protection for the Darwin Mounds, News Release, 20 August. See http://www.defra.gov.uk/news/2003/030820a.htm
Degens, E. T. and Ross, D. A. (eds.), 1969. Hot Brines and Recent Heavy Metal Deposits in the Red Sea. New York, Springer-Verlag.CrossRefGoogle Scholar
Delisle, G., 2004. The mud volcanoes of Pakistan. Environmental Geology, 46, 1024–9.CrossRefGoogle Scholar
Delisle, G. and Berner, U., 2002. Gas hydrates acting as cap rock to fluid discharge in the Makran accretionary prism? In Clift, P. D., Kroon, D., Gaedicke, C., and Craig, J. (eds.), The Tectonic and Climatic Evolution of the Arabian Sea Region. Geological Society of London, Special Publication 195, 137–46.CrossRef
Delisle, G., Rad, U.van, Andruleit, H., et al., 2002. Active mud volcanoes on- and offshore eastern Makran, Pakistan. Geologische Rundschau, 91, 93–110.Google Scholar
Deming, J. W. and Baross, J. A., 1993. Deep-sea smokers: window to a subsurface biosphere?Geochimica et cosmo chimica acta, 57, 3219–30.CrossRefGoogle Scholar
Denardo, B., Pringle, L., and DeGrace, C., 2001. When do bubbles cause a floating body to sink?American Journal of Physics, 69, 1064–72.CrossRefGoogle Scholar
Marais, Des D. J., 1985. Carbon exchange between the mantle and the crust, and its affect upon the atmosphere today compared to Archaean time. Geophysical Monograph, 32, 602–11.Google Scholar
Desbruyères, D. and Segonzac, M., 1997. Handbook of Deep-Sea Hydrothermal Vent Fauna. Brest, IFREMER (Institut français de recherche pour l'exploitation de la mer).Google Scholar
Desbruyères, D. and Toulmond, A., 1998. A new species of hesionid worm, Hesiocaeca methanicola sp. nov. (Polychaeta: Hesionidae), living in ice-like methane hydrates in the deep Gulf of Mexico. Cahiers de Biologie Marine, 39, 93–8.Google Scholar
Detrick, R. S., Buhl, P., Vera, E., et al., 1987. Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature, 326, 35–41.CrossRefGoogle Scholar
Dewhurst, D. N., Cartwright, J. A., and Lonergan, L., 1999a. The development of polygonal fault systems by syneresis of colloidal sediments. Marine & Petroleum Geology, 16, 793–810.CrossRefGoogle Scholar
Dewhurst, D. N., Yang, Y., and Aplin, A. C., 1999b. Permeability and fluid flow in natural mudstones. In Aplin, A. C., Fleet, A. J., and Macquaker, J. H. S. (eds.), Muds and Mudstones: Physical and Fluid Flow Properties. Geological Society of London, Special Publication 158, 23–43.
Dia, A., Aquilina, L., Boulègue, J. Suess, E., and Torres, M., 1993. Origin of fluids and related barite deposits at vent sites along the Peru convergent margin. Geology, 21, 1099–102.2.3.CO;2>CrossRefGoogle Scholar
Díaz-del-Río, V., Somoza, L., Martínez-Frias, J., et al., 2001. Carbonate chimneys in the Gulf of Cadiz: initial report of their petrography and geochemistry. In Akhamanov, G. and Suzyumov, A. (eds.), Geological Processes on Deep-Water European Margins, International Oceanographic Commission Workshop Report No. 175 on the International Conference and ninth post-cruise meeting of the Training Through Research Programme, Moscow-Mozhenka, Russia, 28 January–2 February Paris, UNESCO, pp. 53–4.
Díaz-del-Río, V., Somoza, L., Martínez-Frias, J., 2003. Vast fields of hydrocarbon-derived carbonate chimneys related to the accretionary wedge/olistostrome of the Gulf of Cádiz. Marine Geology, 195, 177–200.CrossRefGoogle Scholar
Dickens, G. R., 1999. The blast in the past. Nature, 401, 752–5.CrossRefGoogle Scholar
Dickens, G. R., 2003. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth & Planetary Science Letters, 213, 169–83.CrossRefGoogle Scholar
Dill, R. F., Shinn, E. A., Jones, A. T., Kelly, K., and Steinen, R. P., 1986. Giant subtidal stromatolites forming in normal salinity waters. Nature, 324, 55–8.CrossRefGoogle Scholar
Dillon, W. P. and Max, M. D., 2000. The US Atlantic Continental Margin; the best-known hydrate locality. In Max, M. D. (ed.), Natural Gas Hydrates in Oceanic and Permafrost Environments. Dordrecht, Kluwer Academic Publishers, pp. 157–70.CrossRef
Dillon, W. P. and Paull, C. K., 1983. Marine gas hydrates – II: geophysical evidence. In Cox, J. L. (ed.), Natural Gas Hydrates: Properties, Occurrence and Recovery. Boston, Butterworth, pp. 73–90.
Dillon, W. P., Danforth, W. W., Hutchinson, D. R., et al., 1998. Evidence for faulting related to dissociation of gas hydrate and release of methane off the southeastern United States. In Henriet, J.-P., and Mienert, J. (eds.), Gas Hydrates: Relevance to World Margin Stability and Climate Change. Geological Society of London, Special Publication 137, 293–302.
Dillon, W. P., Lee, M. W., Fehlhaber, K., and Colemand, D. F., 1993. Gas hydrates on the Atlantic continental margin of the United States – controls on the concentration. In Howell, D. G. (ed.), The Future of Energy Gases. United States Geological Survey Professional Paper 1570, pp. 313–30.
Dillon, W. P., Popenoe, P., Grow, J. A., et al., 1982. Growth faulting and salt diapirism: their relationship and control in the Carolina Trough, eastern North America. In Watkins, J. S. and Drake, C. L. (eds.), Studies in Continental Margin Geology. American Association of Petroleum Geologists Memoir 34, 21–46.
Dimitrov, L. I., 2002a. Contribution to atmospheric methane by natural seepages on the Bulgarian continental shelf. Continental Shelf Research, 22, 2429–42.CrossRefGoogle Scholar
Dimitrov, L. I., 2002b. Mud volcanoes – the most important pathway for degassing deeply buried sediments. Earth-Science Reviews, 59, 49–76.CrossRefGoogle Scholar
Dimitrov, L. I., 2003. Mud volcanoes – a sizeable source of atmospheric methane. Geo-Marine Letters, 23, 155–61. doi: 10.1007/s00367-003-0140-3.CrossRefGoogle Scholar
Dimitrov, L. I. and Dontcheva, V., 1994. Seabed pockmarks in the southern Bulgarian Black Sea zone. Bulletin of the Geological Society of Denmark, 41, 24–33.Google Scholar
Dimitrov, L. and Woodside, J., 2003. Deep sea pockmark environments in the eastern Mediterranean. Marine Geology, 195, 263–76.CrossRefGoogle Scholar
Dinet, A. F., Grassle, J. F., and Tunnicliffe, V., 1988. Premières observations sur la méiofauna des sites hydrothermaux de la dorsale est-Pacifique (Guaymas, 21° N) et de l'Explorer Ridge. Oceanologica acta, No. SP.8, 7–14. (In French)Google Scholar
Dionne, J. C., 1973. Monroes: a type of so-called mud volcanoes in tidal flats. Journal of Sedimentary Petrology, 43, 848–56.Google Scholar
Dmitrievsky, A. N, Sagalevich, A. M, Balanyuk, I. E, Sorokhtin, O. G, and Matveenkov, V. V, 2001. Gas Breath of the Oceans, 31st International Geological Conference. Moscow, NIP SEA.
Donovan, T. J., 1974. Petroleum migration at Cement, Oklahoma: evidence and mechanism. American Association of Petroleum Geologists (Bulletin), 58, 429–46.Google Scholar
Dons, C., 1944. Norges korallrev. Norske Videnskabers Selskab, Trondheim, Forhandlinger, 16A, 37–82. OR Kgl. Norsk vitenskapelig selskaps frorhandl., 16, 37–82. (In Norwegian.)Google Scholar
DTI (Department of Trade and Industry), 2001. Strategic Environmental Assessment of the Mature Areas of the Offshore North Sea: SEA2. Public domain Report to the DTI; see http://www.offshore-sea.org.uk/consultations/SEA_2/SEA/2_Assessment_Document.pdf
Dugan, B. and , Flemings P. B., 2000. The New Jersey margin: compaction and fluid flow. Journal of Geochemical Exploration, 69–70, 477–81.CrossRefGoogle Scholar
Dugan, B. and Flemings, P. B., 2002. Fluid flow and stability of the US Continental Slope offshore New Jersey from the Pleistocene to the present. Geofluids, 2, 137–46.CrossRefGoogle Scholar
Duncan, A. R. and Pantin, H. M., 1969. Evidence of submarine geothermal activity in the Bay of Plenty. New Zealand Journal of Marine and Freshwater Research, 3, 602–6.CrossRefGoogle Scholar
Dunham, K. C., 1990. Geology of the Northern Pennine Orefiled. Volume 1: Tyne to Stainmore, 2nd edn. Economic Memoir of the British Geological Survey, Sheets 19 and 25, and parts of 13, 24, 26, 31, 32 (England and Wales). London, HMSO.Google Scholar
Dupré, S., Loncke, L., Deville, E., et al., 2004. Active seepage on top of the Nile Deep-sea fan mud pies. First General Congress, European Geosciences Union, Nice, April (poster). (See Geophysical Research Abstracts, 6, 05045.)
Duranti, D., Hurst, A., Bell, C., Groves, S., and Hanson, R., 2002. Injected and remobilized Eocene sandstones from the Alba field, UKCS: cores and wireline log characteristics. Petroleum Geoscience, 8, 99–108.CrossRefGoogle Scholar
Dutta, N. C. and Nutt, L., 1998. The role of Seismic While Drilling measurements for SWF applications. Proceeding of the 1998 Shallow Water Flow Forum, Woodlands, TX, 24–25 June (presentation).
Dymond, J., Collier, R. W., and Watwood, M. E., 1989. Bacterial mats from Crater Lake, Oregon and their relationship to possible deep-lake hydrothermal venting. Nature, 342, 673–5.CrossRefGoogle Scholar
EC (European Commission), 1999. Interpretation Manual of European Union Habitats, Version EUR 15/2. Brussels, European Commission.
Edgerton, H. E., Seibold, E., Vollbrecht, K., and Werner, F., 1966. Morphologische Untersuchungen am Mittelgrund (Eckernförder Bucht, westliche Ostsee). Meyniana, 16, 37–50. (In German)Google Scholar
Edmonds, B., Moorwood, R. A. S., and Szczepanski, R., 2001. Controlling, remediation of fluid hydrates in deepwater drilling operations. Ultradeep Engineering Supplement to offshore Magazine, March, 7–10.Google Scholar
EEC (European Economic Council), 1992. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal, L206 (22.7.1992), 7–50.
Egbert, G. D. and Ray, R. D., 2000. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775–8.CrossRefGoogle ScholarPubMed
Egorov, A. V. and Trotsuik, V. Ya., 1990. The analysis of the subbottom gas hydrate formation from the microbiologically-produced methane. In Yaqutsey, V. P. (ed.), Resources of Gas of Untraditional Sources, and the Problem of their Exploration. VNIGNY, Leningrad, 201–11. (in Russian.)
Egorov, A. V., Crane, K., Rozhkov, A. N., and Vogt, P. R., 1999. Gas hydrates that outcrop on the sea floor: stability models. Geo-Marine Letters, 19, 68–75.CrossRefGoogle Scholar
Egorov, V. N., Polikarpov, G. G., Gulin, S. B., et al., 2003. Present-day views on the environmental forming and ecological role of the Black Sea methane gas seeps. Marine Ecological Journal, 2, 5–26. (In Russian.)Google Scholar
Ehhalt, D. H., 1974. The atmospheric cycle of methane. Tellus, 26, 58–70.CrossRefGoogle Scholar
Ehhalt, D. H. and Schmidt, U., 1978. Sources and sinks of atmospheric methane. Pure and Applied Geophysics, 116, 452–64.CrossRefGoogle Scholar
Ehhalt, D., Prather, M., Dentener, F., et al., 2001. Atmospheric chemistry and greenhouse gases. In Houghton, J. T., Ding, Y., Griggs, D. J., et al. (eds.), Climate Change 2001: the Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press, 241–87.
Eichelberger, J. C., Carrigan, C. R., Westrich, H. R., and Price, R. H., 1986. Non-explosive silicic volcanism. Nature, 323, 598–602.CrossRefGoogle Scholar
Eichhubl, P., Greene, H. G., Naehr, T., and Maher, N., 2000. Structural control of fluid flow: offshore fluid seepage in the Santa Barbara Basin, California. Journal of Geochemical Exploration, 69–70, 545–9.CrossRefGoogle Scholar
Eide, Ø. and Andersen, K. H., 1984. Foundation engineering for gravity structures in the northern North Sea. Report No. 154. Oslo, Norwegian Geotechnical Institute.
Elhatip, H., 2003. The use of hydrochemical techniques to estimate the discharge of Ovacik submarine springs on the Mediterranean coast of Turkey. Environmental Geology, 43, 714–19.Google Scholar
Ellis, J. P. and McGuinness, W. T., 1986. Pockmarks of the northwestern Arabian Gulf. In Proceedings of the Oceanology International Conference (Brighton, March 1986). Advances in Underwater Technology, Ocean Science and Offshore Engineering, vol. 6. London, Graham and Trotman, pp. 353–67.
Embley, R. W. and Jacobi, R. D., 1986. Mass wasting in the western North Atlantic. In Vogt, P. R and Tucholke, B. E (eds.), The Geology of North America, the Western North Atlantic Region. Boulder, CO, Geological Society of America, 479–90.
Emeis, K.-C., Brüchert, V., Currie, B., et al., 2004. Shallow gas in shelf sediments of the Namibian coastal upwelling ecosystem. Continental Shelf Research, 24, 627–42.CrossRefGoogle Scholar
Emery, K. O., 1956. Sediments and water of the Persian Gulf. American Association of Petroleum Geologists (Bulletin), 40, 2354–83.Google Scholar
Emery, K. O., 1974. Pagoda structures in marine sediments. In Kaplan, I. R. (ed.), Gases in Marine Sediments. New York, Plenum Press, 309–17.
Emery, K. O. and Uchupi, E., 1984. The Geology of the Atlantic Ocean. New York, Springer-Verlag.CrossRefGoogle Scholar
Engell-S⊘rensen, L. and Havskov, J., 1987. Recent North Sea seismicity studies. Physics of Earth and Planetary Interiors, 45, 37–44.CrossRefGoogle Scholar
Ergun, M. and Çifçi, G., 1999. Gas-saturated sediments in the eastern Black Sea and geohazard effects. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 10924.
Etiope, G., 2004. New directions: GEM – geologic emissions of methane, the missing source in the atmospheric methane budget. Atmospheric Environment, 38, 3099–100.CrossRefGoogle Scholar
Etiope, G. and Klusman, R. W., 2002. Geologic emissions of methane to the atmosphere. Chemosphere, 49, 777–89.CrossRefGoogle ScholarPubMed
Etiope, G. and Milkov, A. V., 2004. A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere. Environmental Geology, 46, 997–1002. doi: 10.1007/s00254-004-1085-1.CrossRefGoogle Scholar
Etiope, G., Caracausi, A., Favara, R., Italiano, F., and Baciu, C., 2002. Methane emissions from the mud volcanoes of Sicily (Italy). Geophysical Research Letters, 29, 14.CrossRefGoogle Scholar
Evans, D., 1987. Quaternary Geology, Tiree Sheet 56° N–08° W. 1:250,000 map series. Edinburgh, British Geological Survey.Google Scholar
Faber, B. and Stahl, W., 1984. Geochemical surface exploration for hydrocarbons in the North Sea. American Association of Petroleum Geologists (Bulletin), 68, 363–86.Google Scholar
Faber, E., Gerling, P., Berner, U., and Sohns, E., 1994. Methane in ocean waters – concentration and carbon-isotope variability at East Pacific Rise and in the Arabian Sea. Environmental Monitoring and Assessment, 31, 139–44.CrossRefGoogle ScholarPubMed
Fader, G. B. J., 1985. Surficial and bedrock geology of the Grand Banks. BIO Review '85. Nova Scotia, Bedford Institute of Oceanography, 16–20.
Fader, G. B. J., 1991. Gas-related sedimentary features from the eastern Canadian continental shelf. Continental Shelf Research, 11, 1123–53.CrossRefGoogle Scholar
Fader, G. B. J. and King, L. H., 1981. A Reconnaissance Study of the Surficial Geology of the Grand Banks Newfoundland. Geological Survey of Canada, Paper 81-lA, 45–56.CrossRefGoogle Scholar
Fader, G. B. J. and Miller, R. O., 1986. Regional geological constraints to resource development – Grand Banks of Newfoundland. Volume 1, Proceedings of the Third Canadian Conference on Marine Geotechnical Engineering, St John's, Newfoundland, June, 3–40.
Falconer, R. K. H., 1991. Shallow gas offshore Taranaki, New Zealand. Proceedings of the 1991 New Zealand Oil Exploration Conference, Christchurch, New Zealand, September, 426–33.
Fannin, N. G. T., 1979. The use of regional geological surveys in the North Sea and adjacent areas in the recognition of offshore hazards. In Ardus, D. A. (ed.), Offshore Site Investigations. London, Graham and Trotman, 5–21.
Farrow, G. E., 1978. Recent sediments and sedimentation in the Inner Hebrides. Proceedings of the Royal Society of Edinburgh, 83B, 91–105.Google Scholar
Faugères, J. C., Gonthier, E., Bobier, C., and Griboulard, R., 1997. Tectonic control on sedimentary processes in the southern termination of the Barbados prism. Marine Geology, 140, 117–40.CrossRefGoogle Scholar
Faure, H., Walter, R. C., and Grant, D. R., 2002. The coastal oasis: ice age springs on emerged continental shelves. Global and Planetary Change, 3, 47–56.CrossRefGoogle Scholar
Faure, M., Lalevée, F., Gusokujima, Y., Iiyama, J.-T., and Cadet, J.-P., 1986. The pre-Cretaceous deep-seated tectonics of the Abukuma massif and its place in the structural framework in Japan. Earth & Planetary Science Letters, 77, 384–98.CrossRefGoogle Scholar
Fiala-Médioni, A., Pranal, V., and Colomines, J. C., 1994. Deep-sea symbiotic models chemosynthetic based: comparison of hydrothermal vents and cold seep bivalve molluscs. Proceedings of the Seventh Deep-Sea Biology Symposium, IMBC, Crete.
Field, M. E. and Jennings, A. E., 1987. Seafloor gas seeps triggered by a northern California earthquake. Marine Geology, 77, 39–51.CrossRefGoogle Scholar
Field, M. E., Gardner, J. V., Jennings, A. E., and Edwards, B. D., 1982. Earthquake-induced sediment failures on a 0.25° slope, Klamath River delta, California. Geology, 10, 542–6.2.0.CO;2>CrossRefGoogle Scholar
Figueiredo, A. G. jr, Nittouer, C. A., and Alencar Costa, E., 1996. Gas-charged sediments in the Amazon submarine delta. Geo-Marine Letters, 16, 31–5.CrossRefGoogle Scholar
Fischer, P. J. and Stevenson, A. J., 1973. Natural hydrocarbon seeps along the northern shelf of the Santa Barbara Basin, California. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 1738.
Fisher, C. R., 1990. Chemoautotrophic and methanotrophic symbioses in marine invertebrates. CRC Critical Reviews in Aquatic Sciences, 2, 399–436.Google Scholar
Fisher, C. R., MacDonald, I. R., Joye, S., and Sassen, R., 1998. The lair of the ice worm: a clathrate dwelling polychaete from the Gulf of Mexico. Proceedings of the 1998 Ocean Sciences Meeting. San Diego, CA, American Geophysical Union.Google Scholar
Fisher, T. R., Carlson, P. R., and Barber, R. T., 1982. Sediment nutrient regeneration in three North Carolina estuaries. Estuarine and Coastal Shelf Science, 14, 101–16.CrossRefGoogle Scholar
Fleischer, P., Orsi, T. H., Richarson, M. D., and Anderson, A. L., 2001. Distribution of free gas in marine sediments: a global overview. Geo-Marine Letters, 21, 103–22.Google Scholar
Flodén, T., and Söderberg, P., 1988. Pockmarks and Related Seabed Structures in Some Areas of Precambrian Bedrock in Sweden. Geological Survey of Finland, Special Paper No. 6, 163–9.Google Scholar
Flodén, T. and Söderberg, P., 1994. Shallow gas traps and gas migration models in crystalline bedrock areas offshore Sweden. Baltica, 8, 50–6.Google Scholar
Flood, R. D., 1981. Pockmarks in the deep sea. EOS – Transactions of the American Geophysical Union, 62, 304.Google Scholar
Flood, R. D. and Johnson, T. C., 1984. Side-scan targets in Lake Superior – evidence for bedforms and sediment transport. Sedimentology, 31, 311–33.CrossRefGoogle Scholar
Floodgate, G. D. and Judd, A. G., 1992. The origins of shallow gas. Continental Shelf Research, 12, 1145–56.CrossRefGoogle Scholar
Flügel, H. J. and Langhof, I., 1983. A new hermaphroditic pogonophore from the Skagerrak. Sarsia, 68, 131–8.CrossRefGoogle Scholar
Foote, R. Q., Martin, R. G., and Powers, R. B., 1983. Oil and gas potential of the Maritime Boundary region in the central Gulf of Mexico. American Association of Petroleum Geologists (Bulletin), 67, 1047–65.Google Scholar
Formolo, M. J., Lyins, T. W., Zhang, C., et al., 2004. Quantifying carbon sources in the formation of authigenic carbonates at gas hydrate sites in the Gulf of Mexico. Chemical Geology, 205, 253–64.CrossRefGoogle Scholar
Fornari, D. J., Batiza, R., and Allan, J. F., 1987. Irregularly shaped seamounts near the East Pacific Rise: implications for seamount origin and rise axis processes. In , Keating B. H., Fryer, P., Batiza, R., and Boehlert, G. W. (eds.), Seamounts, Islands, and Atolls. American Geophysical Union, Geophysical Monograph 43, 13–21.
Fortey, R., 2000. Trilobite! Eyewitness to Evolution. London, Flamingo.CrossRefGoogle Scholar
Fossa, J. H. and Mortensen, P. B., 1998. Artsmangfoldet pa Lophelia-korallrev og metoder for kartlegging og overvakning. Fisken og Havet, 17, 1–95. (In Norwegian.)Google Scholar
Fossa, J. H., Mortensen, P. B., and Furevik, D. M., 2002. The deep-water coral Lophelia pertusa in Norwegian waters: distribution and fisheries impacts. Hydrobiologia, 471, 1–12.CrossRefGoogle Scholar
Fredlund, D. G. and Rahardjo, H., 1993. Soil Mechanics for Unsaturated Soils. New York, John Wiley Interscience.CrossRefGoogle Scholar
Freiwald, A., 1995. Deep-water coral reef mounds on the Sula-Ridge, mid-Norway Shelf. Universität Bremen, Field Report, Cruise 24/95, R/V Victor Hensen.Google Scholar
Friedman, G. M., 1965. On the origin of aragonite in the Dead Sea. Israel Journal of Earth-Science, 14, 79–85.Google Scholar
Fromant, A. C., 1965. The water supplies of Bahrain. Journal of the Institute of Water Engineers, 19, 579–85.Google Scholar
Fry, B. and Wainwright, S. C., 1991. Diatom sources of 13C-rich carbon in marine food webs. Marine Ecology Progress Series, 76, 149–57.CrossRefGoogle Scholar
Fryer, P. and Fryer, G. J., 1987. Origins of nonvolcanic seamounts in a forearc environment. In Keating, B., Fryer, P., and Batiza, R. (eds.), Seamounts, Islands, and Atolls. American Geophysical Union, Geophysical Monograph 43, 61–9.CrossRef
Fryer, P. and Mottl, M., 2000. Pollution Prevention and Safety Panel Information, Site MAF-4B, Leg 195. In Scientific Prospectus of the Ocean Drilling Program (ODP) Leg 195. College Station, TX, ODP, 1–12.
Fryer, P., Saboda, K. L., Johnson, L. E., et al., 1990. Conical Seamount: SeaMARC II, Alvin submersible, and seismic-reflection studies. Proceedings of the Ocean Drilling Programme, Initial Reports, 125, 69–80.Google Scholar
Fu, B., Aharon, P., Byerly, G. R., and Roberts, H. H., 1994. Barite chimneys on the Gulf of Mexico slope: initial report on their petrography and geochemistry. Geo-Marine Letters, 14, 81–7.CrossRefGoogle Scholar
Fujikura, K., Kojima, S., Tamaki, K., et al., 1999. The deepest chemosynthesis-based community yet discovered from the hadal zone, 7326 m deep, in the Japan Trench. Marine Ecology Progress Series, 190, 17–26.CrossRefGoogle Scholar
Fung, I., John, J., Lerner, J., et al., 1991. Three-dimensional model synthesis of the global methane cycle. Journal of Geophysical Research, 96, 13033–65.CrossRefGoogle Scholar
Furnes, G. K., Kvamme, O. B., and Nygaard, O., 1991. Tidal response on the reservoir pressure at the Gullfaks oil field. Pure Applied Geophysics, 135, 421–46.CrossRefGoogle Scholar
Fusi, N. and Kenyon, N. H., 1996. Distribution of mud diapirism and other geological structures from long-range sidescan sonar (GLORIA) data, in the eastern Mediterranean Sea. Marine Geology, 132, 21–38.CrossRefGoogle Scholar
Fyfe, J. A., Gregersen, U., Jordt, H., et al., 2003. Oligocene to Holocene. In Evans, D. and Graham, C. (eds.), The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea. Bath, Geological Society of London, 279–87.
Fyfe, W. S., 1992. Magma underplating of continental crust. Journal of Volcanology and Geothermal Research, 50, 33–40.CrossRefGoogle Scholar
Fyfe, W. S., 1994. The water inventory of the Earth: fluids and tectonics. In Parnell, J. (ed.), Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins. Geological Society of London, Special Publication 78, 1–7.
Gaedicke, C., Baranov, B. V., Obzhirov, A. I., et al., 1997. Seismic stratigraphy, BSR distribution, and venting of methane-rich fluids west of Paramushir and Onekotan islands, northern Kurils. Marine Geology, 136, 259–76.CrossRefGoogle Scholar
Galindo-Zaldivar, J., Nieto, L. M., Robertson, A. H. F., and Woodside, J. M., 2001. Recent tectonics of Eratosthenes Seamount: an example of seamount deformation during incipient continental collision. Geo-Marine Letters, 20, 233–42.Google Scholar
Galkin, S. V., 1997. Megafauna associated with hydrothermal vents in the Manus Back-arc Basin (Bismarck Sea). Marine Geology, 142, 197–206.CrossRefGoogle Scholar
Gallagher, J. W., Braaten, A. M., Hovland, M., and Kemp, A., 1989. Use of an interpretation station for the study of shallow gas sands on Haltenbanken. Proceedings of the Shallow Gas and Leaky Reservoirs Conference, Norwegian Petroleum Forening, Stavanger, April 10–11.
Games, K. P., 1990. Processing procedures for high resolution seismic data. In Ardus, D. A. and Green, C. D. (eds.), Safety in Offshore Drilling: the Role of Shallow Gas Surveys. Dordrecht, Kluwer Academic Publishers, 103–31.CrossRef
Games, K. P., 2001. Evidence of shallow gas above the Connemara oil accumulation, Block 26/28, Porcupine Basin. In Shannon, P. M., Haughton, P. D. W., and Corcoran, D. V. (eds.), The Petroleum Exploration of Ireland's Offshore Basins. Geological Society of London, Special Publication 188, 361–73.
García-Gil, S., 2003. A natural laboratory for shallow gas: the Rías Baixas (NW Spain). Geo-Marine Letters, 23, 215–29.CrossRefGoogle Scholar
Gardner, J. M., 2001. Mud volcanoes revealed and sampled on the western Moroccan continental margin. Geophysical Research Letters, 28, 339–42.CrossRefGoogle Scholar
Gardner, J. V., Prior, D. B., and Field, M. E., 1999. Humboldt Slide – a large shear-dominated retrogressive slope failure. Marine Geology, 154, 323–38.CrossRefGoogle Scholar
Gaston, K. J., 2000. Global patterns of biodiversity. Nature, 405, 220–7.CrossRefGoogle ScholarPubMed
Gatcliff, R. W., Richards, P. C., Smith, K., et al., 1994, United Kingdom Offshore Regional Report: the Geology of the Central North Sea. London, HMSO, for the British Geological Survey.Google Scholar
Gebruk, A. V., Galkin, S. V., Vereshchaka, A. L., Moskalev, L. I., and Southward, A. J., 1997. Ecology and biogeography of the hydrothermal vent fauna of the mid-Atlantic Ridge. Advances in Marine Biology, 32, 94–146.Google Scholar
Geodekian, A. A., Trotsyuk, V. Ya., and Verkshovskaya, Z. I., 1976. Hydrocarbon gases in bottom sediments of the Sea of Okhotsk. Doklady Akademii Nauk SSSR, 226, 228–30. (In Russian.)Google Scholar
Georgalas, G., Karageorghiou, E., and Papakis, N., 1962. Sur les fluctuations de la source thermominérale d'Ipati – Greece. Memoires des 5me Réunion d'Athenes de Association International Hydrogéologiques, 277–8. (In French.)Google Scholar
Gervitz, J. L., Carey, B. D., jr and Blanco, S. R., 1985. Regional geochemical analysis of the southern portion of the Norwegian Sector of the North Sea. In Thomas, B. M. (ed.), Petroleum Geochemistry in Exploration of the Norwegian Shelf. London, Graham & Trotman, 247–61.CrossRef
Geyer, R. A., 1979. Naturally occurring hydrocarbon seeps in the Gulf of Mexico and the Caribbean Sea. Pamphlet, College Station, TX, Texas A & M University.Google Scholar
Ginsburg, G. D. and Soloviev, V. A., 1994. Mud volcano gas hydrates in the Caspian Sea. Bulletin of the Geological Society of Denmark, 41, 95–100.Google Scholar
Ginsburg, G. D. and Soloviev, V. A., 1998. Submarine Gas Hydrates. St Petersburg, VNIIOkeangeologia.Google Scholar
Glasby, G. P., 1971. Direct observations of columnar scattering associated with geothermal gas bubbling in the Bay of Plenty, New Zealand. New Zealand Journal of Marine and Freshwater Research, 5, 483–96.CrossRefGoogle Scholar
Glenn, K., 2002. Coral reefs and hydrocarbon seeps. Ausgeonews, 68, 4–7.Google Scholar
Glennie, K. W. and Underhill, J. R., 1998. Origin, development and evolution of structural styles. In Glennie, K. W. (ed.), Petroleum Geology of the North Sea; Basic Concepts and Recent Advances, 4th edn., Oxford, Blackwell, 42–84.
Gold, T., 1999. The Deep Hot Biosphere. New York, Copernicus Books.CrossRefGoogle Scholar
Gold, T. and Soter, S., 1980. The deep-Earth-gas hypothesis. Scientific American, 242, 154–61.CrossRefGoogle Scholar
Gold, T. and Soter, S., 1985. Fluid ascent through the solid lithosphere and its relation to earthquakes. Pure Applied Geophysics, 122, 492–530.CrossRefGoogle Scholar
Gold, T., Gordon, B. E., Streett, W., Bilson, E., and Patnaik, P., 1986. Experimental study of the reaction of methane with petroleum hydrocarbons in geological conditions. Geochimica et cosmochimica acta, 50, 2411–18.CrossRefGoogle Scholar
Golmshtok, A. Ya., 2000. Influence of faulting and other factors on characteristics of the BSR, Lake Baikal, Siberia. In Abstracts of the Sixth International Conference on Gas in Marine Sediments. St Petersburg, VNIIOkeangeologia, 31–2.
Gontz, A. M., Belknap, D. F., and Kelley, J. T., 2001. Evidence for changes in the Belfast Bay pockmark field, Maine. Geological Society of America, Northeastern Section, 36th Annual Meeting, Burlington, VT, 12–14 March; see http://gsa.confex.com/gsa/2000NE/finalprogram/abstract/2141.htm
Gosink, T. A., Pearson, J. G., and Kelley, J. J., 1976. Gas movement through sea ice. Nature, 263, 41–2.CrossRefGoogle Scholar
Graber, K. K., 2002. Guidelines for site survey and safety. College Station, TX, Ocean Drilling Program ODP/TAMU Drilling Services Dept.
Grace, R. D. (with contributions by Cudd, B., Carden, R. S., and Shursen, J. L.), 1994. Advanced Blowout and Well Control. Houston, TX, Gulf Publishing Co.Google Scholar
Granin, N. G. and Granina, L. Z., 2002. Gas hydrates and gas venting in Lake Baikal. Geologiya i Geofizika (Russian Geology and Geophysics), 43, 629–37 (Russian edn.) / 589–97 (English edn.)Google Scholar
Granina, L. Z., Callender, E., Lomonosov, I. S., Mats, V. D., and Golobokova, L. P., 2001. Anomalies in the composition of Baikal pore waters. Geologija i Geofyzika (Russian Geology and Geophysics), 42, 360–70 (Russian edn.)/362–72 (English edn.)Google Scholar
Grant, A. C., Levy, E. M., Lee, K., and Moffat, J. D., 1986. Pisces IV research submersible finds oil on Baffin Shelf. Current Research, Part A, Geological Survey of Canada, Paper 86-lA, 65–9.Google Scholar
Grant, N. J. and Whiticar, M. J., 2002. Stable carbon isotope evidence for methane oxidation in plumes above Hydrate Ridge, Cascadia Oregon Margin. Global Biogeochemical Cycles, 16, 1124.CrossRefGoogle Scholar
Graue, K., 2000. Mud volcanoes in deepwater Nigeria. Marine and Petroleum Geology, 17, 959–74.CrossRefGoogle Scholar
Gravdal, A., 1999. Kvartære sedimentasjonsprosesser i Helland-Hansen omradet; Sides⊘kende sonar (TOBI) og seismiske unders⊘kelser. M. Sc. Thesis, University of Bergen. (In Norwegian.)
Gravdal, A., Haflidason, H., and Evans, D., 2003. Seabed and subsurface features on the southern V⊘ring Plateau and northern Storegga Slide Escarpment. In Mienert, J. and Weaver, P. (eds.), European Margin Sediment Dynamics, Side-Scan Sonar and Seismic Images. Berlin, Springer-Verlag, 111–17.
Green, C. D., Heijna, B., and Walker, P., 1985. An integrated approach to the investigation of new development areas. Offshore Site Investigation. Advances in Underwater Technology and Offshore Engineering Series, No. 3. London, Graham and Trotman, 99–120.Google Scholar
Greinert, J. and Nützel, B., 2004. Hydroacoustic experiments to establish a method for the flux determination of methane bubbles at cold seeps. Geo-Marine Letters, 24, 75–85.CrossRefGoogle Scholar
Greinert, J., Bollwerk, S. M., Derkachev, A., Bohrmann, G., and Suess, E., 2002a. Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk: precipitation processes at cold seep sites. Earth & Planetary Science Letters, 203, 165–80.CrossRefGoogle Scholar
Greinert, J., Bohrmann, G., and Elvert, M., 2002b. Stromatolitic fabric of authigenic carbonate crusts: results of anaerobic methane oxidation at cold seeps in 4850 m water depth. Geologische Rundschau, 91, 698–711.Google Scholar
Grozic, J. L. H., 2003. Liquefaction potential of gassy marine sands. In Locat, J. and Mienert, J. (eds.), Submarine Mass Movements and Their Consequences. Dordrecht, Kluwer Academic Publishers, 37–45.CrossRef
Gubbay, S., 2002. The Offshore Directory: Review of a Selection of Habitats, Communities and Species of the North-East Atlantic. Report for the World Wide Fund for Nature, October. Godalming, Surrey, WWF-UK.Google Scholar
Gudmestad, O. T. and Hovland, M., 1986. Procedure for draining off shallow gas from the seabed and an arrangement for execution of the procedure. United States Patent No. 4,569,618.
Guliev, I. S., 1992. A Review of Mud Volcanism. Baku, Geology Institute of Azerbaijan, Azerbaijan Academy of Sciences.Google Scholar
Guliev, I., 2002. South-Caspian depression – and intensive area of hydrocarbon fluid formation and migration. In Gas in Marine Sediments, Abstracts of the Seventh International Conference, Baku, Azerbaijan, 7th–12th October, 2002, 66–9.
Guliyev, I. S. and Feizullayev, A. A., 1997. All About Mud Volcanoes. Baku, Nafta Press.Google Scholar
Gunnerus, J. E., 1768. Om nogle Norske coraller, KGL. Norske Videnskabers Selskabs Skrifter, 4, 38–73. (In Norwegian.)Google Scholar
Hackworth, M. and Aharon, P., 2000. Authigenic carbonate precipitation driven by episodic gas hydrate sublimation: evidence from the Gulf of Mexico. In Abstracts of the Sixth International Conference on Gas in Marine Sediments. St Petersburg, VNIIOkeangeologia, 46–7.
Hagen, R. A. and Vogt, P. R., 1999. Seasonal variability of shallow biogenic gas in Chesapeake Bay. Marine Geology, 158, 75–88.CrossRefGoogle Scholar
Hamilton, T. S. and Cameron, B. E. B., 1989. Hydrocarbon occurrence in the western margin of the Queen Charlotte Basin. Bulletin of Canadian Petroleum Geology, 37, 443–66.Google Scholar
Hampton, L. D and Anderson, A. L., 1974. Acoustics and gas in sediments. In Kaplan, I. R. (ed.), Natural Gases in Marine Sediments. Marine Science Series No. 3. New York, Plenum Press, 249–74.CrossRef
Hampton, M. A. and Winters, W. J., 1981. Environmental geology of Shelikof Strait, OCS sale area 60, Alaska. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 4118.Google Scholar
Hampton, M. A., Lee, H. J., and Locat, J., 1996. Submarine landslides. Reviews of Geophysics, 34, 33–59.CrossRefGoogle Scholar
Hanken, N.-M., R⊘nholt, G., and Hovland, M., 1999. Dannelsen av “Blow-out pipes” basert pa studier av Plio-Pleistocen sedimenter pa Rhodos. Abstracts of the Norwegian Geological Union, Vinterm⊘te Conference. Stavanger, Norway, January, 52. (In Norwegian.)
Hannington, M., Herzig, P., Stoffers, J., et al., 2001. First observations of high-temperature submarine hydrothermal vents and massive anhydrite deposits off the north coast of Iceland. Marine Geology, 177, 199–220.CrossRefGoogle Scholar
Hannington, M. D., Jonasson, I. R., Herzig, P. M., and Petersen, S., 1995. Physical and chemical processes of seafloor mineralization at mid-ocean ridges. In Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S., and Thomsen, R. E. (eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. American Geophysical Union, Geophysical Monograph 91, 115–57.
Hanor, J. S., 1978. Precipitation of beach rock cements: mixing of marine and meteoric waters vs. CO2-degassing. Journal of Sedimentary Petrology, 48, 489–501.Google Scholar
Hansen, J. M., 1988. Koraller i Kattegat. Kortlægning fase 1. Internal report, Copenhagen, Milj⊘ministeriet (Danish Ministry of the Environment). (In Danish.)Google Scholar
Harrington, J. F. and Horseman, S. T., 1999. Gas transport properties of clays and mudrocks. In Aplin, A. C., Fleet, A. J., and Macquaker, J. H. S. (eds.), Muds and Mudstones: Physical and Fluid Flow Properties. Geological Society of London, Special Publication 158, 107–24.
Harrington, P. K., 1985. Formation of pockmarks by pore-water escape. Geo-Marine Letters, 5, 193–7.CrossRefGoogle Scholar
Harris, R. N., Fisher, A. T., and Chapman, D. S., 2002. Fluid flow through seamounts: patterns of flow and implications for global fluid flux and heat loss. EOS – Transactions of the American Geophysical Union, Fall Meeting Supplement, Abstract T52F-05.
Hart, B. S. and Hamilton, T. S., 1993, High-resolution acoustic mapping of shallow gas in unconsolidated sediments beneath the Strait of Georgia, British Columbia. Geo-Marine Letters, 13, 49–55.CrossRefGoogle Scholar
Hart, B. S. and Olynyk, H. W. (Terra Surveys Ltd.), 1994, The Roberts Bank failure deposit, Fraser River Delta, British Columbia, Report to the Geological Survey of Canada. Sidney, BC, Terra Surveys Ltd.
Hartmann, M., Scholten, J. C., and Stoffers, P., 1998. Hydrographic structure of brine-filled deeps in the Red Sea: correction of Atlantis II Deep temperatures. Marine Geology, 144, 331–2.CrossRefGoogle Scholar
Hashimoto, J., Miura, T., Fujikura, K., and Ossaka, J., 1993. Discovery of vestimentiferan tube-worms in the euphotic zone. Zoological Science, 10, 1063–7.Google Scholar
Hasiotis, T., Papatheodorou, G., Kastanos, N., and Ferentinos, G., 1996. A pockmark field in the Patras Gulf (Greece) and its activation during the 14/7/93 seismic event. Marine Geology, 130, 333–44.CrossRefGoogle Scholar
Hay, A. E., 1996. Remote acoustic image of the plume from a submarine spring in an arctic fjord. Science, 225, 1154–6.CrossRefGoogle Scholar
Haymon, R. M., Fornari, D. J, Damm, K. L von, et al., 1993. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9ο45–52‵ N: direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991. Earth & Planetary Science Letters, 119, 85–101.CrossRefGoogle Scholar
Heaton, T. H. and Hartzell, S. H., 1987. Earthquake hazards in the Cascadia Subduction Zone. Science, 236, 162–8.CrossRefGoogle ScholarPubMed
Hedberg, H. D., 1974. Role of methane generation to undercompacted shales, shale diapirs and mud volcanoes. American Association of Petroleum Geologists (Bulletin), 58, 661–73.Google Scholar
Hedberg, H. D., 1980. Methane generation and petroleum migration. In Roberts, W. H. III, and Cordell, R. J. (eds.), Problems of Petroleum Migration. American Association of Petroleum Geologists, Studies in Geology No. 10, 179–206.
Hedberg, H. D., 1996. Utilization of hydrocarbon seep information. In Schumacher, D. and Abrams, M. A. (eds.), Hydrocarbon migration and its near-surface expression. American Association of Petroleum Geologists Memoir 66, ⅲ (Forward).
Heeschen, K. U., Tréhu, A. M., Collier, R. W., Suess, E., and Rehder, G., 2003. Distribution and height of methane bubble plumes on the Cascadia Margin characterized by acoustic imaging. Geophysical Research Letters, 30, 1643.CrossRefGoogle Scholar
Heezen, B. C. and Hollister, C. D., 1971. The Face of the Deep. New York, Oxford University Press.Google Scholar
Heezen, B. C., Matthews, J. L., Catalano, R., et al., 1973. Western Pacific guyots. In Kaneps, A. G. (ed.), Initial Reports of the Deep Sea Drilling Project. Washington, DC, US Government Printing Office, vol. 20, part 3, 653–723.
Heggland, R., 1997. Detection of gas migration from a deep source by the use of exploration 3D seismic data. Marine Geology, 137, 41–7.CrossRefGoogle Scholar
Heggland, R., 1998. Gas seepage as an indicator of deeper prospective reservoirs. A study based on exploration 3D seismic data. Marine and Petroleum Geology, 15, 1–9.CrossRefGoogle Scholar
Heggland, R., Meldahl, P., Groot, P., and Aminzadeh, F., 2000. Chimneys in the Gulf of Mexico. The American Oil and Gas Reporter, 43, 78–83.Google Scholar
Heggland, R., Nygaard, E., and Gallagher, J. W., 1996. Techniques and experience using exploration 3D seismic data to map drilling hazards. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 7968.
Hein, R., Crutzen, P. J., and Heinmann, M., 1997. An inverse modeling approach to investigate the global atmospheric methane cycle. Global Biogeochemical Cycles, 11, 43–76.CrossRefGoogle Scholar
Hekinian, R., 1984. Undersea volcanoes. Scientific American, 251(1), 46–55.CrossRefGoogle Scholar
HELCOM, 1996. Coastal and Marine Protected Areas in the Baltic Sea Region. Baltic Sea Environment Proceedings, No. 63.
Hempel, P., Spiess, V., and Schreiber, R., 1994. Expulsion of shallow gas in the Skagerrak – evidence from sub-bottom profiling, seismic, hydroacoustical and geochemical data. Estuarine, Coastal and Shelf Sciences, 38, 587–601.CrossRefGoogle Scholar
Henriet, J.-P. and Mienert, J., 1998. Gas Hydrates Relevance to World Margin Stability and Climatic Change. Geological Society of London, Special Publication 137.Google Scholar
Henriet, J.-P., Mol, B., Pillen, S., et al., 1998. Gas hydrate crystals may help build reefs. Nature, 391, 648.CrossRefGoogle Scholar
Henriet, J.-P., De Mol, B., Vanneste, M., et al., 2001. In Shannon, P. M., Haughton, P. D. W., and Corcoran, D. V. (eds.), The Petroleum Exploration of Ireland's Offshore Basins. Geological Society of London, Special Publication 188, 375–83.
Henriet, J.-P., Rooij, D. Van, Huvenne, V., De Mol, B., and Guidard, S., 2003. Mounds and sediment drift in the Porcupine Basin west of Ireland. In Mienert, J. and Weaver, P. (eds.), European Margin Sediment Dynamics, Side-Scan Sonar and Seismic Images. Berlin, Springer-Verlag, 217–20.
Henry, P., Pichon, X., Lallemant, S., et al., 1990. Mud volcano field seaward of the Barbados accretionary complex: a deep-tow side-scan sonar survey. Journal of Geophysical Research, 95, 8917–29.CrossRefGoogle Scholar
Henry, P., Foucher, J.-P., Pichon, X., et al., 1992. Interpretation of temperature measurements from the Kaiko–Nankai cruise: modeling fluid flow in clam colonies. Earth & Planetary Science Letters, 109, 355–71.CrossRefGoogle Scholar
Henry, P., Pichon, X., Lallemant, S., et al., 1996. Fluid flow in and around a mud volcano field seaward of the Barbados accretionary wedge: results from Manon cruise. Journal of Geophysical Research, 101, 20297–323.CrossRefGoogle Scholar
Hess, H. H., 1946. Drowned ancient islands of the Pacific Basin. American Journal of Science, 244, 722–91.CrossRefGoogle Scholar
Hessler, R. R. and Kaharl, V. A., 1995. The deep-sea hydrothermal vent community: an overview. In Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S., and Thomsen, R. E. (eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. American Geophysical Union, Geophysical Monograph 91, 72–84.
Heyer, J. and Berger, U., 2000. Methane emission from the coastal area in the southern Baltic Sea. Estuarine, Coastal and Shelf Science, 51, 13–30.CrossRefGoogle Scholar
Higgins, G. E. and Saunders, J. B., 1967. Report on 1964 Chatham Mud Island, Erin Bay, Trinidad, West Indies. American Association of Petroleum Geologists (Bulletin), 51, 55–64.Google Scholar
Hill, J. M., Halka, J. P., Conkwright, R., Koczot, K., and Coleman, S., 1992. Distribution and effects of shallow gas on bulk estuarine sediment properties. Continental Shelf Research, 12, 1219–29.CrossRefGoogle Scholar
Hillier, R. D. and Cosgrove, J. W., 2002. Core and seismic observations of overpressure-related deformation within Eocene sediments of the Outer Moray Firth. Petroleum Geoscience, 8, 141–9.CrossRefGoogle Scholar
Hinchcliffe, J. C., 1978. Death stalks the secret coast. Triton, 23, 56–7.Google Scholar
Ho, C. K. and Webb, S. W., 1998. Capillary barrier performance in heterogeneous porous media. Water Resources Research, 34, 603–9.CrossRefGoogle Scholar
Holbrook, P., 1999. A simple closed form force balanced solution for pore pressure, overburden and the principal effective stresses in the Earth. Marine and Petroleum Geology, 16, 303–19.CrossRefGoogle Scholar
Holbrook, W. S., Hoskins, H., Wood, W. T., et al., 1996. Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science, 273, 1840–3.CrossRefGoogle Scholar
Holbrook, W. S., Lizarralde, D., Pecher, I. A., et al., 2002. Escape of methane gas through sediment waves in a large methane hydrate province. Geology, 30, 467–70.2.0.CO;2>CrossRefGoogle Scholar
Holden, C., 1996. The next Hawaiian island?Science, 273, 1177.Google Scholar
Holmes, R., 1977. Quaternary Deposits of the Central North Sea, 5: the Quaternary Geology of the UK Sector of the North Sea Between 56° and 58°N. Institute of Geological Sciences, Report No. 77/14.Google Scholar
Holtedahl, H., 1993. Marine Geology of the Norwegian Continental Margin. Trondheim, Norges Geologiske Unders⊘kelse, Special Publication No. 6.Google Scholar
Horibe, Y., Kim, K., and Craig, H., 1983. Off-ridge submarine hydrothermal vents: back-arc spreading centres and hotspot seamounts. EOS – Transactions of the American Geophysical Union, 64, 724.Google Scholar
Horibe, Y., Kim, K., and Craig, H., 1986. Hydrothermal methane plumes in the Mariana Back-arc spreading centre. Nature, 324, 131–3.CrossRefGoogle Scholar
Horikoshi, M. and Ishii, T., 1985. Cold seep communities at 3800 and 5850 m off Japan. Deep-Sea Newsletter, 16–17.Google Scholar
Hornafius, J. S., Quigley, D., and Luyendyk, B. P., 1999. The world's most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): quantification of emissions. Journal of Geophysical Research, 104, 20703–11.CrossRefGoogle Scholar
Horseman, S. T., Harrington, J. F., and Sellin, P., 1999. Gas migration in clay barriers. Engineering Geology, 54, 139–49.CrossRefGoogle Scholar
Horvitz, L., 1980. Near-surface evidence of hydrocarbon movement from depth. In Roberts, W. H. III, and Cordell, R. J. (eds.), Problems of Petroleum Migration. American Association of Petroleum Geologists, Studies in Geology, 10, 241–69.
Hotita, J. and Berndt, M. E., 1999. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science, 285, 1055–7.Google Scholar
Houghton, J. T., Filho, Meira L. G., Callander, B. A., et al., 1996. Climate Change 1995: the Science of Climate Change, Cambridge, Cambridge University Press (For the Inter-governmental Panel on Climate Change).Google Scholar
House, C. H., Orphan, V. J., McKeegan, K. D., and Hinrichs, K.-U., 2001. Methane-consuming microbial consortia identified and studied using a novel combination of fluorescent in-situ hybridization and ion microprobe Δ13C analysis. Conference Programmes with Abstracts, Earth System Processes Conference, June, Geological Society of America and Geological Society of London, Edinburgh, 24–28 June, (abstract) 65–6.
Hovland, M., 1981. Characteristics of pockmarks in the Norwegian Trench. Marine Geology, 39, 103–17.CrossRefGoogle Scholar
Hovland, M., 1983. Elongated depressions associated with pockmarks in the western slope of the Norwegian Trench. Marine Geology, 51, 35–46.CrossRefGoogle Scholar
Hovland, M., 1987. Shallow gas drainage. The Norwegian Petroleum Directorate, Seminar on Shallow Gas, Stavanger, 12 September.
Hovland, M., 1988. Organisms: the only cause of scattering layers?EOS – Transactions of the American Geophysical Union, 69, 760.CrossRefGoogle Scholar
Hovland, M., 1990a. Suspected gas-associated clay diapirism on the seabed off mid Norway. Marine and Petroleum Geology, 7, 267–76.CrossRefGoogle Scholar
Hovland, M., 1990b. Do carbonate reefs form due to fluid seepage?Terra Nova, 2, 8–18.CrossRefGoogle Scholar
Hovland, M., 1991. Large pockmarks, gas-charged sediments and possible clay diapirs in the Skagerrak. Marine and Petroleum Geology, 8, 311–16.CrossRefGoogle Scholar
Hovland, M., 1998. Seabed pockmarks on the Helike Delta front. In Katsonopoulou, D., Schildardi, D., and Soter, S. (eds.), Helike II, Ancient Helike and Aigialeia. Aigon, Dora Kastopoulou.
Hovland, M., 1999. Coral culprits. New Scientist, 27 February, 54–5.Google Scholar
Hovland, M., 2002. On the self-sealing nature of marine seeps. Continental Shelf Research, 22, 2387–94.CrossRefGoogle Scholar
Hovland, M., 2005. Gas Hydrates. In Selley, R. C., Cocks, L. R. M., and Plimer, I. R. (eds.), Encyclopedia of Geology. Amsterdam, Elsevier, vol. 4, 261–8.
Hovland, M. and Curzi, P., 1989. Gas seepage and assumed mud diapirism in the Italian central Adriatic Sea. Marine and Petroleum Geology, 6, 161–9.CrossRefGoogle Scholar
Hovland, M. and Gudmestad, O. T., 2001. Potential influence of gas hydrates on seabed installations. In Paull, C. K. and Dillon, W. P. (eds.), Natural Gas Hydrates. American Geophysical Union, Geophysical Monograph 124, 300–9.
Hovland, M. and Irwin, H., 1989. Hydrocarbon leakage, biodegradation and the occurrence of shallow gas and carbonate cement. Proceedings of the Shallow Gas and Leaky Reservoirs Conference, Norwegian Petroleum Society, Stavanger, Norway, 10–11 April.
Hovland, M. and Judd, A. G., 1988. Seabed Pockmarks and Seepages: Impact on Geology, Biology and the Marine Environment. London, Graham and Trotman Ltd.Google Scholar
Hovland, M. and Mortensen, P. B., 1999. Norske korallrev og prosesser i havbunnen (Norwegian coral reefs and seabed processes). Bergen, John Grieg Forlag. (In Norwegian with an English summary.)
Hovland, M. and Risk, M., 2003. Do Norwegian deep-water coral reefs rely on seeping fluids?Marine Geology, 198, 83–96.CrossRefGoogle Scholar
Hovland, M. and Sommerville, J. H., 1985. Characteristics of two natural gas seepages in the North Sea. Marine and Petroleum Geology, 20, 319–26.CrossRefGoogle Scholar
Hovland, M. and Thomsen, E., 1989. Hydrocarbon–based communities in the North Sea?Sarsia, 74, 29–42.CrossRefGoogle Scholar
Hovland, M. and Thomsen, E., 1997. Cold-water corals – are they hydrocarbon seep related?Marine Geology, 137, 159–64.CrossRefGoogle Scholar
Hovland, M., Judd, A. G., and King, L. H., 1984. Characteristic features of pockmarks on the North Sea floor and Scotian Shelf. Sedimentology, 31, 471–80.CrossRefGoogle Scholar
Hovland, M., Talbot, M., Olaussen, S., and Aasberg, L., 1985. Recently-formed methane-derived carbonate from the North Sea floor. In Thomas, B. M. (ed.), Petroleum Geochemistry in Exploration of the Norwegian Shelf. London, Graham and Trotman, for the Norwegian Petroleum Society, 263–6.CrossRef
Hovland, M., Talbot, M., Qvale, H., Olaussen, S., and Aasberg, L., 1987. Methane-related carbonate cements in pockmarks of the North Sea. Journal of Sedimentary Petrology, 57, 881–92.Google Scholar
Hovland, M., Judd, A. G., and Burke, R. A., jr, 1993. The global flux of methane from shallow submarine sediments. Chemosphere, 26, 559–78.CrossRefGoogle Scholar
Hovland, M., Croker, P., and Martin, M., 1994. Fault-associated seabed mounds (carbonate knolls?) off western Ireland and north-west Australia. Marine and Petroleum Geology, 11, 232–46.CrossRefGoogle Scholar
Hovland, M., Lysne, D., and Whiticar, M. J., 1995. Gas hydrate and sediment gas composition, ODP Hole 892A, offshore Oregon, USA. In Carson, B., Westbrook, G. K., and Musgrave, R. J. (eds.), Proceedings Ocean Drilling Program, Scientific Results, Leg 146. College Station, TX, ODP, 151–61.
Hovland, M., Gallagher, J. W., Clennell, M. B., and Lekvam, K., 1997a. Gas hydrate and free gas volumes in marine sediments: example from the Niger Delta front. Marine and Petroleum Geology, 14, 245–55.CrossRefGoogle Scholar
Hovland, M., Hill, A., and Stokes, D., 1997b. The structure and geomorphology of the Dashgil Mud Volcano, Azerbaijan. Geomorphology, 21, 1–15.CrossRefGoogle Scholar
Hovland, M., Mortensen, P. B., Brattegard, T., Strass, P., and Rokoengen, K., 1998a. Ahermatypic coral banks off mid-Norway: evidence for a link with seepage of light hydrocarbons. Palaios, 13, 189–200.CrossRefGoogle Scholar
Hovland, M., Nygaard, E., and Thorbj⊘rnsen, S., 1998b. Piercement shale diapirism in the deep-water Vema Dome area, V⊘ring Basin, offshore Norway. Marine and Petroleum Geology, 15, 191–201.CrossRefGoogle Scholar
Hovland, M., L⊘seth, H., Bj⊘rkum, P. A., Wensaas, L., and Arntsen, B., 1999a. Seismic detection of shallow high pressure zones. Offshore, December, 94–6.Google Scholar
Hovland, M., Francis, T. J. G., Claypool, G. E., and Ball, M. M., 1999b. Strategy for scientific drilling of marine gas hydrates. Joides Journal, 25, 20–4.Google Scholar
Hovland, M., Svensen, H., Forsberg, C. F., et al., 2005. Complex pockmarks with carbonate-ridges off mid-Norway: products of sediment degassing. Marine Geology, 218, 191–206.CrossRefGoogle Scholar
Hovland, M., Kuznetsova, T., Rueslatten, H., et al., 2006. Sub-surface precipitation of salts in supercritical seawater. Basin Research, DOI: 10.1111/j1365–2117. 2006. 00290.CrossRef
Howe, J. A., Shimmield, T., Austin, W. E. N., and Longva, O., 2002. Post-glacial depositional environments in a mid-high latitude glacially overdeepened sea loch, inner Loch Etive, western Scotland. Marine Geology, 185, 417–33.CrossRefGoogle Scholar
Howell, D. G. (ed.), 1993. The Future of Energy Gases. United States Geological Survey Professional Paper 1570.Google Scholar
Huang, B. J., Xiao, X. M., and Dong, W. L., 2002. Multiphase natural gas migration and accumulation and its relationship to diapir structures in the DF1-1 gas field, South China Sea. Marine and Petroleum Geology, 19, 861–72.CrossRefGoogle Scholar
Hunt, J. M., 1997. Petroleum Geochemistry and Geology. New York, W. H. Freeman.Google Scholar
Hurdle, B. G (ed.), 1986. The Nordic Seas. New York, Springer.
Hutchinson, D. R., Grow, J. A., Klitgord, K. D., and Swift, B. A., 1982. Deep structure and evolution of the Carolina Trough. In Watkins, J. S. and Drake, C. L. (eds.), Studies in Continental Margin Geology. American Association of Petroleum Geologists Memoir 34, 129–52.
Huvenne, V. A. I., Blondel, Ph., and Henriet, J.-P., 2002. Textural analyses of sidescan sonar imagery from two mound provinces in the Porcupine Seabight. Marine Geology, 189, 323–41.CrossRefGoogle Scholar
Hyndman, R. and Davis, E., 1992. A mechanism for the formation of methane hydrate and seafloor bottom simulating reflectors by vertical fluid expulsion. Journal of Geophysical Research, 97, 7025–41.CrossRefGoogle Scholar
Imray, J. F., 1868. Sailing Directions for the West Coast of North America, Part 1. London, James Imray.Google Scholar
ISA (International Seabed Authority), 2003. http://www.isa.org.jm/ (accessed 16th January 2004.)
Isacks, B. and Barazangi, M., 1977. Geometry of Benioff zones: lateral segmentation and downwards bending of the subducted lithosphere. In Talwani, M. and Pitman, W. C. III (eds.), Island Arcs, Deep Sea Trenches and Back Arc Basins. Washington, DC, American Geophysical Union, 99–114.CrossRef
Isaksen, G. H., Wall, G. R., Thomsen, M. A., et al., 2001. Application of petroleum seep technology in mitigating the risk of source-rock adequacy and yield-timing in a frontier basin: the Rockall Trough, UK. Conference Proceedings with Abstracts, Earth System Processes Conference, Geological Society of America and Geological Society of London, Edinburgh, 24–28 June, IOS (abstract).
Ishibashi, J.-I. and Urabe, T., 1995. Hydrothermal activity related to arc-backarc magmatism in the western Pacific. In Taylor, B. (ed.), Backarc Basins: Tectonics and Magmatism. New York, Plenum Press, 451–95.CrossRef
Ivanov, M. V., Polikarpov, G. G., Lein, A.Yu., et al., 1991. Biogeochemistry of the carbon cycle in the region of methane seeps of the Black Sea. Doklady Akademii Nauk SSSR, 320, 1235–40. (In Russian.)Google Scholar
Ivanov, M. V., Lien, A. Yu., and Galchenko, V. F., 1993. The oceanic global methane cycle. In Oremland, R. S. (ed.), Biogeochemistry of Global Change: Radiatively Active Trace Gases. New York, Chapman & Hall, 505–20.CrossRef
Ivanov, M. V., Limonov, A. F., and Weering, T. C. E. Van, 1996. Comparative characteristics of the Black Sea and Mediterranean Ridge mud volcanoes. Marine Geology, 132, 253–71.CrossRefGoogle Scholar
Iversen, N. and J⊘rgensen, B. B., 1985. Anaerobic methane oxidation rates at the sulfate–methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnology and Oceanography, 30, 944–55.CrossRefGoogle Scholar
Jackson, D. I., Jackson, A. A., Evans, D., et al., 1995. United Kingdom Offshore Regional Report: The Geology of the Irish Sea. London, HMSO, for the British Geological Survey.Google Scholar
Jackson, D. R., Williams, K. L., Wever, T. F., Friedrichs, C. T., and Wright, L. D., 1998. Sonar evidence for methane ebullition in Eckernförde Bay. Continental Shelf Research, 18, 1893–916.CrossRefGoogle Scholar
Jakubov, A. A., Ali-Zade, A. A., and Zeinalov, M. M., 1971. Mud Volcanoes of the Azerbaijan SSR: Atlas. Baku, Academy of Sciences of Azerbaijan. (In Russian.)Google Scholar
Jakubov, A. A., Dadashev, F. G., and Mekhtiev, A. K., 1983. Zakonomernosti razmeshchenia gryazevykh vulkanov na dne Kaspiyskogo morya (Regular features of gas hydrate distribution on the Caspian Sea floor). In Geologo-geomorfologischeskie issedovania Kaspiyskogo morya (Geological and Geomorphological Studies in the Caspian Sea). Moscow, Nauka Press, 70–2. (In Russian.)
Jamtveit, B., Svensen, H., Podladchikov, Y., and Planke, S., 2004. Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. In Breitkreutz, C. and Petford, N. (eds.), Physical Geology of High-Level Magmatic Systems. Geological Society of London, Special Publication 234, 233–41.CrossRef
Janecky, D. J. and Seyfried, W. E., jr, 1984. Formation of massive sulfide deposits on oceanic ridge crests: incremental reaction models for mixing between hydrothermal solutions and seawater. Geochimica et cosmochimica acta, 48, 2723–38.CrossRefGoogle Scholar
Jannasch, H. W., 1983. Microbial processes at deep sea hydrothermal vents. In Rona, P. A., Bostr⊘m, K., Laubier, L., and Smith, K. L. jr (eds.), Hydrothermal Processes at Seafloor Spreading Centers. New York, Plenum Press, 677–709.CrossRef
Jannasch, H. W., 1995. Microbial interactions with hydrothermal fluids. In Humphris, S. E, Zierenberg, R. A, Mullineaux, L. S, and Thomsen, R. E (eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. American Geophysical Union, Geophysical Monograph 91, 273–96.
Jansen, J. H. F., 1976. Late Pleistocene and Holocene history of the northern North Sea, based on acoustic reflection records. Netherlands Journal of Sea Research, 10, 1–43.CrossRefGoogle Scholar
Jayakumar, D. A., Naqvi, S. W. A., Narvekar, P. V., and George, M. D., 2001. Methane in coastal and offshore waters of the Arabian Sea. Marine Chemistry, 74, 1–13.CrossRefGoogle Scholar
Jenden, P. D., Hilton, D. R., Kaplan, I. R., and Craig, H., 1993. In Howells, D. G. (ed.), The Future of Energy Gases. United States Geological Survey Professional Paper 1570, 31–56.
Jensen, P., 1986. Nematode fauna in the sulphide-rich brine seep and adjacent bottoms of the East Flower Garden, NW Gulf of Mexico. Marine Biology, 92, 489–503.CrossRefGoogle Scholar
Jensen, P., Aagaard, I., Burke, R. A., jr, et al., 1992. ‘Bubbling reefs’ in the Kattegat: submarine landscapes of carbonate-cemented rocks support a diverse ecosystem at methane seeps. Marine Ecology Progress Series, 83, 103–12.CrossRefGoogle Scholar
Jerosch, K., Allais, A.-G., Schlüter, M., and Foucher, J.-P., 2004. Geo-referenced video-mosaicking as a means to GIS-supported sea floor community mapping at Hakon Mosby mud volcano. First General Congress, European Geosciences Union, Nice, 25–30 April (poster). (See Geophysical Research Abstracts, 6, 00669.)
Johannes, R. E., 1980. The ecological significance of the submarine discharge of groundwater. Marine Ecology Progress Series, 3, 365–73.CrossRefGoogle Scholar
Johnson, H., Richards, P. C., Long, D., and Graham, C. C., 1993. United Kingdom Offshore Regional Report: The Geology of the Northern North Sea. London, HMSO, for the British Geological Survey.Google Scholar
Johnson, T. C., 1980. Late-glacial and post glacial sedimentation in Lake Superior based on seismic reflection profiles. Quaternary Research, 13, 380–91.CrossRefGoogle Scholar
Johnstone, C. M., Turnbull, C. G., and Tasker, M. L., 2002. Natura 2000 in UK offshore waters: advice to support the implementation of the EC Habitats and Birds Directives in UK offshore waters. Peterborough, Joint Nature Conservation Council Report 325.Google Scholar
Jollivet, D., Blanc, G., Faugeres, J.-C., Griboulard, R., and Desbruyères, D., 1990. Composition and spatial organization of a cold seep community on the South Barbados Accretionary Prism: tectonic, geochemical and sedimentary context. Progress in Oceanography, 24, 25–45.CrossRefGoogle Scholar
Jolly, R. J. H. and Lonergan, L., 2002. Mechanisms and controls on the formation of sand intrusions. Journal of the Geological Society, London, 159, 605–17.CrossRefGoogle Scholar
Jones, B., Renaut, R. W., and Rosen, M. R., 1997. Vertical zonation of biota in microstromatolites associated with hot springs, North Island, New Zealand. Palaios, 12, 220–36.CrossRefGoogle Scholar
Jones, G. B., Floodgate, G. D., and Bennell, J. D., 1986. Chemical and microbiological aspects of acoustically turbid sediments: preliminary investigations. Marine Geotechnolology, 6, 315–32.CrossRefGoogle Scholar
Jones, M. E., 1994. Mechanical principles of sediment deformation. In Maltman, A. J. (ed.), Geological Deformation of Sediments. London, Chapman and Hall, 36–71.CrossRef
Jones, M. L., 1981. Riftia pachyptila, a new genus, new species: the vestimentiferan worm from the Galapagos Rift geothermal vents (Pogonophora). Proceedings of the Biological Society of Washington, 93, 1295–313.Google ScholarPubMed
Jones, M. L., 1985. On the Vestimentifera, new phylum: six new species, and other taxa, from hydrothermal vents and elsewhere. In Jones, M. L. (ed.), Hydrothermal Vents of the Eastern Pacific: an Overview. Bulletin of the Biological Society of Washington, No. 6, 117–58.
Jones, R. D. and Amador, J. A., 1993. Methane and carbon monoxide production, oxidation, and turnover times in the Caribbean Sea as influenced by the Orinoco River. Journal of Geophysical Research, 98, 2353–9.CrossRefGoogle Scholar
Jones, R. W., 1993. Preliminary observations on benthonic formanifera associated with biogenic gas seep in the North Sea. In Jenkins, D. G. and Graham, D. (eds.), Applied Micropaleontology. Dordrecht, Kluwer Academic Publishers, 69–91.
Jones, R. W., 1996. Micropalaeontology in Petroleum Exploration. Oxford, Oxford University Press.Google Scholar
Jones, V. T., III, Matthews, M. D., and Richers, D. M., 1999. Light hydrocarbons for petroleum and gas prospecting. In Hale, M. and Govett, G. J. S. (eds.), Geochemical Remote Sensing of the Subsurface. Handbook of Exploration Geochemistry, 7, 133–211.
Jonsson, V. K. and Matthiasson, M., 1974. Cooling the Heimaey lava with water – report on the operation. Journal of the Engineering Association of Iceland, 59, 70–83. (In Icelandic.)Google Scholar
Josenhans, H. W. and Zevenhuizen, J., 1983. Pockmarks on the Labrador Shelf triggered or caused by iceberg scouring. Proceedings of the Conference on Geotechnical Practice in Offshore Engineering, Austin, TX, 27–29 April.
Josenhans, H. W., King, L. H., and Fader, G. B. J., 1978. A side scan sonar mosaic of pockmarks on the Scotian Shelf. Canadian Journal of Earth Sciences, 15, 831–40.CrossRefGoogle Scholar
Jouzel, J., Barkov, N. I., Barnola, J. M., et al., 1993. Extending the Vostok ice-record of palaeo-climate to the penultimate glacial period. Nature, 364, 407–11.CrossRefGoogle Scholar
Joye, S. B., Boetius, A., Orcutt, B. N., et al., 2004. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chemical Geology, 205, 219–38.CrossRefGoogle Scholar
Judd, A. G., 1982. Computerised marine geophysical and geotechnical mapping techniques and their application to a study of pockmarks. Ph. D. thesis, University of Newcastle upon Tyne.
Judd, A. G., 1990. Shallow gas and gas seepages: a dynamic process? In Ardus, D. A. and Green, C. D. (eds.), Safety in Offshore Drilling: the Role of Shallow Gas Surveys. Dordrecht, Kluwer Academic Publishers, 27–50.CrossRef
Judd, A. G., 1995. Gas and Gas Mobility in the Offshore Sediments of the Fraser Delta, British Columbia. Canada, Sidney, BC, Pacific Geoscience Centre, Geological Survey of Canada, Open File Report.
Judd, A. G., 2000. Geological sources of methane. In Khalil, M. A. K. (ed.), Atmospheric Methane: Its Role in the Global Environment. Berlin, Springer-Verlag, 280–303.CrossRef
Judd, A. G., 2001. Pockmarks in the UK sector of the North Sea. Technical report TR_002, Strategic Environmental Assessment of parts of the North Sea (SEA2), Department of Trade and Industry, September.Google Scholar
Judd, A. G., 2004. Natural seabed gas seeps as sources of atmospheric methane. Environmental Geology, 46, 988–96.CrossRefGoogle Scholar
Judd, A. G., 2005a. Gas emissions from mud volcanoes. Significance to global climate change. In Martinelli, G. and Panahi, B. (eds.), Mud Volcanoes, Geodynamics and Seismicity. NATO Science Series, IV. Earth and Environmental Sciences, 51, Dordrecht, Springer, 147–57.
Judd, A. G., 2005b. The distribution and extent of methane-derived authigenic carbonate. Technical report, Strategic Environmental Assessment of the Irish Sea (SEA6), Department of Trade and Industry, March.Google Scholar
Judd, A. G. and Hovland, M., 1989. The role of chemosynthesis in supporting fish stocks in the North Sea. Journal of Fish Biology, 35 (Supplement A), 329–30.Google Scholar
Judd, A. G. and Hovland, M., 1992. The evidence of shallow gas in marine sediments. Continental Shelf Research, 12, 1081–96.CrossRefGoogle Scholar
Judd, A. G., Long, D., and Sankey, M., 1994. Pockmark formation and activity, UK block 15/25, North Sea. Bulletin of the Geological Society of Denmark, 41, 34–49.Google Scholar
Judd, A. G., Davies, G., Wilson, J., et al., 1997. Contributions to atmospheric methane by natural seepages on the UK continental shelf. Marine Geology, 140, 427–55.CrossRefGoogle Scholar
Judd, A. G., Hovland, M., Dimitrov, L. I., García-Gil, S., and Jukes, V., 2002a. The geological methane budget at continental margins and its influence on climate change. Geofluids, 2, 109–26.CrossRefGoogle Scholar
Judd, A. G., Sim, R., Kingston, P., and McNally, J., 2002b. Gas seepage on an intertidal site: Torry Bay, Firth of Forth, Scotland. Continental Shelf Research, 22, 2317–31.CrossRefGoogle Scholar
Juhl, A. R. and Targon, G. L., 1993. Biology of an active methane seep on the Oregon continental shelf. Marine Ecology Progress Series, 102, 287–94.CrossRefGoogle Scholar
J⊘rgensen, B. B., Bang, M., and Blackburn, T. H., 1990. Anaerobic mineralization in marine sediments from the Baltic Sea – North Sea transition. Marine Ecology Progress Series, 59, 39–54.CrossRefGoogle Scholar
J⊘rgensen, N. O., 1976. Recent high magnesian calcite aragonite cementation of beach and submarine sediments from Denmark. Journal of Sedimentary Petrology, 46, 940–51.Google Scholar
J⊘rgensen, N. O., 1979. Magnesium incorporation in Recent marine calcite cement from Denmark. Journal of Sedimentary Petrology, 49, 945–50.Google Scholar
J⊘rgensen, N. O., 1980. Gypsum formation in Recent submarine sediments from Kattegat, Denmark. Chemical Geology, 28, 349–53.CrossRefGoogle Scholar
J⊘rgensen, N. O., 1981. Authigenic K-feldspar in Recent submarine gypsum concretions from Denmark. Marine Geology, 39, M21–M25.Google Scholar
J⊘rgensen, N. O., 1989. Holocene methane-derived dolomite-cemented sandstone pillars from the Kattegat, Denmark. Marine Geology, 88, 71–81.CrossRefGoogle Scholar
J⊘rgensen, N. O., 1992a. Methane-derived carbonate cementation of marine sediments from the Kattegat, Denmark: geochemical and geological evidence. Marine Geology, 103, 1–13.CrossRefGoogle Scholar
J⊘rgensen, N. O., 1992b. Methane-derived carbonate cementation of marine sediments from the Kattegat, Denmark. Continental Shelf Research, 12, 1209–18.CrossRefGoogle Scholar
Kadko, D., Baross, J., and Alt, J., 1995. The magnitude and global implications of hydrothermal flux. In Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S., and Thomsen, R. E. (eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. American Geophysical Union, Geophysical Monograph 91, 446–66.
Kahn, L. M., Silver, E. A., Orange, D., Kochevar, R., and McAdoo, B., 1996. Surficial evidence of fluid expulsion from the Costa Rica accretionary prism. Geophysical Research Letters, 23, 887–90.CrossRefGoogle Scholar
Kalinko, M., 1964. Mud volcanoes, reasons of their origin, development and fading. VNIGRI, 40, 30–54. (In Russian.)Google Scholar
Kamenev, G. M., 1991a. Macrobenthos of sublittoral Kraternaya Bight. 1. Qualitative composition and species distribution. In Zhirmusky, A. V. and Tarasov, V. G. (eds.), Shallow-Water Hydrothermal Vents and the Ecosystem of Kraternaya Bight (Ushishir Volcano, Kurile Islands). Book II Biota. Vladivostok, Far East Branch, USSR Academy of Sciences, 48–91. (In Russian.)
Kamenev, G. M., 1991b. Macrobenthos of sublittoral Kraternaya Bight. 2. Quantitative distribution of species and bottom communities. In Zhirmusky, A. V. and Tarasov, V. G. (eds.), Shallow-Water Hydrothermal Vents and the Ecosystem of Kraternaya Bight (Ushishir Volcano, Kurile Islands). Book II Biota. Vladivostok, Far East Branch, USSR Academy of Sciences, 92–137. (In Russian.)
Kamenev, G. M., Fadeev, V. I., Selein, N. I., Tarasov, V. G., and Malakhov, V. V., 1993. Composition and distribution of macro- and meiobenthos around hydrothermal vents in the Bay of Plenty (New Zealand). New Zealand Journal of Marine and Freshwater Research, 27, 407–18.CrossRefGoogle Scholar
Kamenev, G. M., Nadtochy, V. A., and Kuznetsov, A. P., 2001. Conchocele bisecta (Conrad, 1849) (Bivalvia: Thyasiridae) from cold-water methane-rich areas of the Sea of Okhotsk. The Veliger, 44, 84–94.Google Scholar
Karisiddaiah, S. M. and Veerayya, M., 1994. Methane-bearing shallow gas-charged sediments in the eastern Arabian Sea: a probable source for greenhouse gas. Continental Shelf Research, 14, 1361–70.CrossRefGoogle Scholar
Karisiddaiah, S. M. and Veerayya, M., 2002. Occurrence of pockmarks and gas seepages along the central western continental margin of India. Current Science, 82, 52–7.Google Scholar
Karisiddaiah, S. M., Veerayya, M., Vora, K. H., and Wagle, B. G., 1993. Gas-charged sediments on the inner continental shelf off western India. Marine Geology, 110, 143–52.CrossRefGoogle Scholar
Karl, D. M., 1995. Ecology of free-living, hydrothermal vent microbial communities. In Karl, D. M. (ed.), The Microbiology of Deep-Sea Hydrothermal Vents. New York, CRC Press, 35–124.
Karlsson, W., 1986. The Snorre, Statfjord and Gullfaks oil fields and the habitat of hydrocarbons on the Tampen Spur, offshore Norway. In Spencer, A. M. (ed.), Habitat of Hydrocarbons on the Norwegian Continental Shelf. London, Graham and Trotman for the Norwegian Petroleum Society, 181–97.
Kasahara, J., 2002. Tides, earthquakes, and volcanoes. Science, 297, 348–9.CrossRefGoogle ScholarPubMed
Kasten, S., Hensen, C., Zabel, M., et al., 2001. Gas hydrates in surface sediments of the northern Congo Fan – geochemical and microbiological characterization of the top of the gas hydrate stability zone. European Union of Geosciences EUG Ⅺ Journal of Conference, 6 (1), 151.Google Scholar
Kastner, M., Kvenvolden, K. A., and Lorenson, T. D., 1998. Chemistry, isotopic composition, and origin of a methane–hydrogen sulphide hydrate at the Cascadia subduction zone. Earth & Planetary Science Letters, 156, 173–83.CrossRefGoogle Scholar
Kastner, M., Kvenvolden, K. A., Whiticar, M. J., Camerlenghi, A., and Lorenson, T. D., 1995. Relation between pore fluid chemistry and gas hydrates associated with bottom-simulating reflectors at the Cascadia Margin, Sites 889 and 892. ODP, Scientific Results, 146, 175–87.
Kaufmann, B., 1998. Diagenesis of middle Devonian carbonate mounds Mader basin (eastern Anti-Atlas, Morocco). Journal of Sedimentary Research, 67, 945–56.Google Scholar
Kelley, D. S., Karson, J. A., Blackman, D. K., et al., 2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N. Nature, 412, 145–9.CrossRefGoogle ScholarPubMed
Kelley, D. S., Baross, J. A., Frueh-Green, G. L., Schrenk, M. O., and Karson, J. A., 2002. The ultramafic-hosted Lost City Hydrothermal Field: clues in the search for life elsewhere in the Solar System?EOS – Transactions of the American Geophysical Union, 83, abstract B62A-03.Google Scholar
Kelley, J. T., Dickson, S. M., Belknap, D. F., Barnhardt, W. A., and Henderson, M., 1994. Giant sea-bed pockmarks: evidence for gas escape from Belfast Bay, Maine. Geology, 22, 59–62.2.3.CO;2>CrossRefGoogle Scholar
Kempe, S., Kazmierczak, J., Landmann, G., et al., 1991. Largest known microbialites discovered in Lake Van, Turkey. Nature, 349, 605–8.CrossRefGoogle Scholar
Kennett, J., Cannariato, K. G, Hendy, I. L, and Behl, R. J, 2003. Methane Hydrates in Quaternary Climate Change: the Clathrate Gun Hypothesis. Washington, DC, American Geophysical Union.
Kennett, J., Hendy, I., and Behl, R., 1996. Late Quaternary foraminiferal carbon isotope record of Santa Barbara Basin: implications for rapid climate change. Abstracts of the Annual Meeting of the American Geophysical Union, San Francisco 15–19 December, F292 (abstract).
Kennicut, M. C., Brooks, J. M., Bidigare, R. R., et al., 1985. Vent type taxa in a hydrocarbon seep region on the Louisiana Slope. Nature, 317, 351–3.CrossRefGoogle Scholar
Kennicut, M. C. II, Brooks, J. M., Bidigare, R. R., et al., 1989. An upper slope ‘cold’ seep community: northern California. Limnology and Oceanography, 34, 635–40.CrossRefGoogle Scholar
Kenyon, N. H., Belderson, R. H., and Stride, A. H., 1982. Detailed tectonic trends on the central part of the Hellenic Outer Ridge and in the Hellenic Trench System. In Legget, J. (ed.), Trench-Forearc Geology. Geological Society of London, Special Publication 10, 335–43.
Kenyon, N. et al., 1997. RRS Charles Darwin cruise 104 leg 2, 21 Mar– 19 Apr 1997. Geological processes in the Strait of Hormuz, Arabian Gulf: a contribution to the Scheherezade Programme. Southampton, Southampton Oceanography Centre Cruise Report No. 11.
Kenyon, N. H., Ivanov, M. K., and Akhmetzhanov, A. M., 1998. Cold Water Carbonate Mounds and Sediment Transport on the Northeast Atlantic Margin. Intergovernmental Oceanographic Commission, Technical series, No. 52.Google Scholar
Kerr, P. F., Drew, I. M., and Richardson, D. S., 1970. Mud volcano clay, Trinidad, West Indies. American Association of Petroleum Geologists (Bulletin), 54, 2101–10.Google Scholar
Khalil, M. A. K., 2000. Atmospheric methane: an introduction. In Khalil, M. A. K. (ed.), Atmospheric Methane: its Role in the Global Environment. Berlin, Springer-Verlag, 1–8.CrossRef
Khalil, M. A. K. and Rasmussen, R. A., 1983. Sources, sinks and seasonal cycles of atmospheric methane. Journal of Geophysical Research, 88, 5131–44.Google Scholar
Kholodov, V. N., 2002a. Mud volcanoes, their distribution regularities and genesis: communication I. Mud volcanic provinces and morphology of mud volcanoes. Lithology and Mineral Resources, 37, 197–209. (Translated from Litologiya i Polezne Iskopaemye, 37, 227–41.)CrossRefGoogle Scholar
Kholodov, V. N., 2002b. Mud volcanoes, their distribution regularities and genesis: communication II. Geological–geochemical peculiarities and formation model. Lithology and Mineral Resources, 37, 293–309. (Translated from Litologiya i Polezne Iskopaemye, 37, 339–58.)CrossRefGoogle Scholar
Kim, D., Park, S., Lee, G., and Seo, Y., 2002. Compressional wave velocity and electrical resistivity of gassy sediment in the southeastern shelf of Korea. In Gas In Marine Sediments, Seventh International Conference, Baku, Azerbaijan, 7th–12th October 2002. Baku, Nafta Press, 90–1.
Kim, K., Craig, H., and Horibe, Y., 1983. Methane in ‘realtime’ tracer for submarine hydrothermal systems. EOS – Transactions of the American Geophysical Union, 64, 724 (abstract).Google Scholar
King, L. H. and MacLean, B., 1970. Pockmarks on the Scotian Shelf. Geological Society of America (Bulletin), 81, 3141–8.CrossRefGoogle Scholar
Kinsman, B., 1965. Wind Waves. Englewood Cliffs, NJPrentice-Hall.Google Scholar
Kipfer, R., Aeschebach-Hertig, W., Baur, H., et al., 1994. Injection of mantle type helium into Lake Van (Turkey): the clue for quantifying deep water renewal. Earth & Planetary Science Letters, 125, 357–70.CrossRefGoogle Scholar
Kipphut, G. W. and Martens, C. S., 1982. Biogeochemical cycling in an organic-rich coastal marine basin – 3. Dissolved gas transport in methane-saturated sediments. Geochimica et cosmochimica acta, 46, 2049–60.CrossRefGoogle Scholar
Klaucke, I., Bohrmann, G., and Weinrebe, W., 2004. Estimation of the regional methane efflux on Hydrate Ridge, Oregon. First General Assembly of the European Geosciences Union, Nice, 25–30 April (poster). (See Geophysical Research Abstracts, 6, 03489.)
Kleinberg, R. L. and Brewer, P. G., 2001. Probing gas hydrate deposits. American Scientist, 89, 244–51.CrossRefGoogle Scholar
Kleinschmidt, M. and Tschauder, R., 1985. Shallow crater hydrothermal vent systems off the Palos Verdes Peninsula, Los Angeles County, California. In Jones, M. L. (ed.), Hydrothermal Vents of the Eastern Pacific: an Overview. Bulletin of the Biological Society of Washington, No. 6, 485–8.
Knies, J., Damm, E., Gutt, J., Mann, U., and Pinturier, L., 2004. Near-surface hydrocarbon anomalies in shelf sediments off Spitsbergen: evidences for past seepages. Geochemistry, Geophysics, Geosystems, 5 (6); Q06003; DOI:10.1029/2003GC000687.CrossRefGoogle Scholar
Kohout, F. A., 1966. Submarine springs: a neglected phenomenon of coastal hydrology. Hydrology, 26, 391–413.Google Scholar
Kopf, A. J., 2002, Significance of mud volcanism. Reviews of Geophysics, 40, 2-1–2-52, 1005.CrossRefGoogle Scholar
Kopf, A., Robertson, A. H. F., Clennell, M. B., and Flecker, R., 1998. Mechanisms of mud extrusion on the Mediterranean Ridge accretionary prism. Geo-Marine Letters, 18, 97–114.CrossRefGoogle Scholar
Kornacki, A. S., Kendrick, J. W., and Berry, J. L., 1994. Impact of oil and gas vents and slicks on petroleum exploration in the deepwater Gulf of Mexico. Geo-Marine Letters, 14, 160–9.CrossRefGoogle Scholar
Koski, R. V., Clague, D. A., Rosenbauer, R. A., et al., 2002. Hydrothermal tar mounds in Escabana Trough, Southern Gorda Ridge. EOS – Transactions of the American Geophysical Union, 83, Fall Meeting Supplement, Abstract V72A-1293.Google Scholar
Krastel, S., Spiess, V., Ivanov, M., et al., 2003. Acoustic investigations of mud volcanoes in the Sorokin Trough, Black Sea. Geo-Marine Letters, 23, 230–8.CrossRefGoogle Scholar
Krishnamurti, R., 1968. Finite amplitude convection with changing mean temperature. Journal of Fluid Mechanics, 33, 445–63.CrossRefGoogle Scholar
Kristiansson, K. and Malmquist, L., 1980. A new model mechanism for the transportation of radon through the ground. Proceedings of the Society of Exploration Geophysicists 15th International Meeting, Houston, TX, 16–20 November.
Kruglyakova, R., Gubano, Y., Kruglyakov, V., and Prokoptsev, G., 2002. Assessment of technogenic and natural hydrocarbon supply into the Black Sea and seabed sediments. Continental Shelf Research, 22, 2395–408.CrossRefGoogle Scholar
Kugler, H. G., 1933. Contribution to the knowledge of sedimentary volcanism in Trinidad. Journal of the Institute of Petroleum Technology, Trinidad, 19, 743–60.Google Scholar
Kuhn, T. S., 1970. The Structure of Scientific Revolutions. Chicago, University of Chicago Press.Google Scholar
Kukowski, N. and Pecher, I., 1999. Thermo-hydraulics of the Peruvian accretionary complex at 12° S. Geodynamics, 27, 373–402CrossRefGoogle Scholar
Kukowski, N. and Pecher, I. A., 2000. Gas hydrates in nature: results from geophysical and geochemical studies (editorial). Marine Geology, 164, 1.CrossRefGoogle Scholar
Kukowski, N., Schillhorn, T., Huhn, K., et al., 2001. Morphotectonics and mechanics of the central Makran accretionary wedge off Pakistan. Marine Geology, 173, 1–19.CrossRefGoogle Scholar
Kulm, L. D. and Suess, E., 1990. Relationship between carbonate deposits and fluid venting: Oregon accretionary prism. Journal of Geophysical Research, 95, 8899–915.CrossRefGoogle Scholar
Kulm, L. D., Suess, E., Moore, J. C., et al., 1986. Oregon Subduction Zone: venting, fauna, and carbonates. Science, 231, 561–6.CrossRefGoogle ScholarPubMed
Kutas, R. I., Rusakov, O. M., and Kobolev, V. P., 2002. Gas seeps in northwestern Black Sea: geological and geophysical studies. Geologiya i Geofizika (Russian Geology and Geophysics), 43, 698–705 (Russian edn.) / 664–70 (English edn.).Google Scholar
Kvalstad, T. J., Nadim, F., and Harbitz, C. B., 2001. Deepwater geohazards: geotechnical concerns and solutions. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 12958.
Kvenvolden, K. A., 1983. Marine gas hydrates – I: geochemical evidence. In Cox, J. L. (ed.), Natural Gas Hydrates: Properties, Occurrence and Recovery. Boston, Butterworth, 63–72.
Kvenvolden, K. A., 1999. Potential effects of gas hydrate on human welfare. Proceedings of the National Academy of Sciences, USA, 96, 3420–6.CrossRefGoogle ScholarPubMed
Kvenvolden, K. A., 2000. Natural gas hydrate: introduction and history of discovery. In Max, M. D. (ed.), Natural Gas Hydrate in Oceanic and Permafrost Environments. Dordrecht, Kluwer Academic Publishers, 9–16.CrossRef
Kvenvolden, K. A., 2002. Methane hydrate in the global organic carbon cycle. Terra Nova, 14, 302–6.CrossRefGoogle Scholar
Kvenvolden, K. A. and Cooper, C. K., 2003. Natural seepage of crude oil into the marine environment. Geo-Marine Letters, 23, 140–6.CrossRefGoogle Scholar
Kvenvolden, K. A. and Lorenson, T. D., 2001. In Paull, C. K. and Dillon, W. P. (eds.), Natural Gas Hydrates. American Geophysical Union, Geophysical Monograph 124, 5–7.
Kvenvolden, K. A. and Redden, G. D., 1980. Hydrocarbon gas in sediment from the shelf, slope and basin of the Bering Sea. Geochimica et cosmochimica acta, 44, 1145–50.CrossRefGoogle Scholar
Kvenvolden, K. A., Nelson, C. H., Thor, D. R., et al., 1979. Biogenic and thermogenic gas in gas-charged sediments of Norton Sound, Alaska, Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 3412.
Kvenvolden, K. A., Lilley, M. D., Lorenson, T. D., Barnes, P. W., and McLaughlin, E., 1993. The Beaufort Sea continental shelf as a seasonal source of atmospheric methane. Geophysical Research Letters, 20, 2459–62.CrossRefGoogle Scholar
Kvenvolden, K. A., Lorenson, T. D., and Reeburgh, W. S., 2001. Attention turns to naturally occurring methane seepage. EOS – Transactions of the American Geophysical Union, 82, 457.CrossRefGoogle Scholar
Laberg, J. S. and Vorren, T. O., 1993. A late Pleistocene submarine slide on the Bear Island Trough mouth fan. Geo-Marine Letters, 13, 227–34.CrossRefGoogle Scholar
Lackschewitz, K. S., Kummetz, M., Ackermand, D., et al., 2001. Hydrothermal alteration in the PACMANUS hydrothermal field: implications from secondary mineral assemblages and mineral chemistry, ODP Leg 193. EOS – Transactions of the American Geophysical Union, 82, Fall Meeting Supplement, Abstract F589.Google Scholar
Lacroix, A. V., 1993. Unaccounted-for sources of fossil and isotopically-enriched methane and their contribution to the emissions inventory: a review and synthesis. Chemosphere, 26, 507–57.CrossRefGoogle Scholar
Laier, T., J⊘rgensen, N. O., Buchardt, B., Cederberg, T., and Kuijpers, A., 1992. Accumulation and seepages of biogenic gas in northern Denmark. Continental Shelf Research, 12, 1173–86.CrossRefGoogle Scholar
Laier, T., Kuijpers, A., Dennegard, B., and Heier-Nielsen, S., 1996. Origin of shallow gas in Skagerrak and Kattegat – evidence from stable isotopic analyses and radiocarbon dating. NGU (Norges Geologiske Unders⊘kelse) Bulletin, 430, 129–36.Google Scholar
Lambert, G. and Schmidt, S., 1993. Reevaluation of the oceanic flux of methane: uncertainties and long term variations. Chemosphere, 26, 579–89.CrossRefGoogle Scholar
Lammers, S., Suess, E., and Hovland, M., 1995a. A large methane plume east of Bear Island (Barents Sea): implications for the marine methane cycle. Geologische Rundschau, 84, 59–66.CrossRefGoogle Scholar
Lammers, S., Suess, E., Mansurov, M. N., and Anikiev, V. V., 1995b. Variations in atmospheric methane supply from the Sea of Okhotsk induced by seasonal ice cover. Global Biogeochemical Cycles, 9, 351–8.CrossRefGoogle Scholar
Lamontagne, R. A., Swinnerton, J. W., Linnenbon, V. J., and Smith, W. D., 1973. Methane concentrations in various marine environments. Journal of Geophysical Research, 78, 5317–24.CrossRefGoogle Scholar
Lance, S., Henry, P., Pichon, X., et al., 1998. Submersible study of mud volcanoes seaward of the Barbados accretionary wedge: sedimentology, structure and rheology. Marine Geology, 145, 255–92.CrossRefGoogle Scholar
Lancelot, Y. and Ewing, J. I., 1973. In Hollister, C. D., Ewing, J. I., et al. (eds.), Initial Reports on Deep Sea Drilling Project. Washington, DC, US Government Printing Office, vol. Ⅺ, 791–9.
Landes, K. K., 1973. Mother Nature as oil polluter. American Association of Petroleum Geologists (Bulletin), 57, 637–41.Google Scholar
LaRock, P. A., Hyun, J.-H., and Bennison, B. W., 1994. Bacterioplankton growth and production at the Louisiana hydrocarbon seeps. Geo-Marine Letters, 14, 104–9.CrossRefGoogle Scholar
Larsen, M. C., Nelson, C. H., and Thor, D. R., 1980. Sedimentary processes and potential hazards on the sea floor of northern Bering Sea. USGS Open File Report80–979.Google Scholar
Laval, B., Cady, S. L., Pollack, J. C., et al., 2000. Modern freshwater microbialite analogues for ancient dendritic reef structures. Nature, 407, 626–9.Google ScholarPubMed
Pichon, X., Foucher, J.-P., Boulègue, J., et al., 1990. Mud volcano field seaward of the Barbados accretionary complex: a submersible survey. Journal of Geophysical Research, 95, 8931–43.CrossRefGoogle Scholar
Pichon, X., Kobayashi, K., and Kaiko–Nankai Scientific Crew, 1992. Fluid venting activity within the eastern Nankai Trough accretionary wedge: a summary of the 1989 Kaiko–Nankai results. Earth & Planetary Science Letters, 109, 303–18.CrossRefGoogle Scholar
Lee, H., Locat, J., Dartnell, P., Israel, K., and Wong, F., 1999. Regional variability of slope stability: application to the Eel Margin, California. Marine Geology, 154, 305–21.CrossRefGoogle Scholar
Lee, M. W. and Dillon, W. P., 2001. Amplitude blanking related to pore-filling of gas hydrate in sediments. Marine Geophysical Research, 22, 101–9.CrossRefGoogle Scholar
Lee, S. H. and Chough, S. K., 2003. Distribution and origin of shallow gas in deep-sea sediments of the Ulleung Basin, East Sea (Sea of Japan). Geo-Marine Letters, 22, 204–9.CrossRefGoogle Scholar
Lehner, P., 1969. Salt tectonics and Pleistocene stratigraphy on continental slope of northern Gulf of Mexico. American Association of Petroleum Geologists (Bulletin), 53, 2431–79.Google Scholar
Leifer, I. and Clark, J. F., 2002. Modelling trace gases in hydrocarbon seep bubbles: application to marine hydrocarbon seeps in the Santa Barbara Channel. Geologiya i Geofizika (Russian Geology and Geophysics), 43, 613–21 (Russian edn.) / 572–9 (English edn.).Google Scholar
Leifer, I. and Judd, A. G., 2002. Oceanic methane layers: the hydrocarbon seep bubble deposition hypothesis. Terra Nova, 14, 417–24.CrossRefGoogle Scholar
Leifer, I. and MacDonald, I. R., 2003. Dynamics of the gas flux from shallow gas hydrate deposits: interaction between oily hydrate bubbles and the oceanic environment. Earth & Planetary Science Letters, 210, 410–24.CrossRefGoogle Scholar
Leifer, I. and Patro, R. K., 2002. The bubble mechanism for methane transport from the shallow sea bed to the surface: a review and sensitivity study. Continental Shelf Research, 22, 2409–28.CrossRefGoogle Scholar
Leifer, I., Clarke, J. F., and Chen, R. F., 2000. Modifications of the local environment by natural hydrocarbon seeps. Geophysical Research Letters, 27, 3711–14.CrossRefGoogle Scholar
Leifer, I., Clark, J. F., Luyendyk, B., and Valentine, D., 2003. Identifying future directions for subsurface hydrocarbon migration research. EOS – Transactions of the American Geophysical Union, 84, 364.CrossRefGoogle Scholar
Leifer, I., Luyendyk, B. P, Boles, J., and Clark, J. F, 2006. Natural marine seepage blowout: contribution to atmospheric methane. Global Biogeochemical Cycles, 20, GB3008.10.1029/2005GB002668.
Lein, A. Yu., Pimenov, N. V., and Galchenko, V. F., 1997. Bacterial chemosynthesis and methanotrophy in the Manus and Lau basins ecosystems. Marine Geology, 142, 47–56.CrossRefGoogle Scholar
Lelieveld, J., Crutzen, P., and Dentener, F. J., 1998. Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus, 50B, 128–50.CrossRefGoogle Scholar
León, R., Somoza, L., Ivanov, M., et al., 2001. Seabed morphology and gas venting in the Gulf of Cadiz mud volcano area: imagery of multibeam data and ultra-high resolution seismic data. In Akhamanov, G. and Suzyumov, A. (eds), Geological Processes on Deep-Water European Margins. International Oceanographic Commission Workshop Report No. 175 on the International Conference and ninth post-cruise meeting of the Training Through Research Programme, Moscow-Mozhenka, Russia, 28 January–2 February 2001, Paris, UNESCO, 43–4.
Leroueil, S., Locat, J., Levesque, C., and Lee., C. F., 2003. Towards an approach for the assessment of risk associated with submarine mass movements. In Locat, J. and Mienert, J. (eds.), Submarine Mass Movements and Their Consequences. Dordrecht, Kluwer Academic Publishers, 59–68.CrossRef
Levin, L. A., James, D. W., Martin, C. M., et al., 2000. Do methane seeps support distinct macrofaunal assemblages? Observations on community structure and nutrition from the northern California slope and shelf. Marine Ecology Progress Series, 208, 21–39.CrossRefGoogle Scholar
Levy, E. M. and Lee, K., 1988. Potential contribution of natural hydrocarbon seepage to benthic productivity and the fisheries of Atlantic Canada. Canadian Journal of Fisheries and Aquatic Sciences, 45, 349–52.CrossRefGoogle Scholar
Lewis, D. W. and McConchie, D., 1994. Practical Sedimentology, 2nd edn. New York, Chapman & Hall.CrossRefGoogle Scholar
Lewis, K. B. and Marshall, B. C., 1996. Seep faunas and other indicators of methane-rich dewatering on New Zealand convergent margins. New Zealand Journal of Geology and Geophysics, 39, 181–200.CrossRefGoogle Scholar
Li, X. and Yortsos, Y. C., 1995. Theory of multiple bubble growth in porous media by solute diffusion. Chemical Engineering Science, 50, 1247–71.CrossRefGoogle Scholar
Lifland, J., 2002. Methane hydrates in Quaternary climate change: the clathrate gun hypothesis. EOS – Transactions of the American Geophysical Union, 83, 513, 516.Google Scholar
Lilley, M. D., Feeley, R. A, and Trefry, J. H., 1995. Chemical and biochemical transformations in hydrothermal plumes. In Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S., and Thomsen, R. E. (eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. American Geophysical Union, Geophysical Monograph 91, 369–91.CrossRefGoogle Scholar
Limonov, A. F., Woodside, J. M., Cita, M. B., and Ivanov, M. K., 1996. The Mediterranean Ridge and related mud diapirism: a background. Marine Geology, 132, 7–19.CrossRefGoogle Scholar
Limonov, A. F., Weering, T. C. E., Kenyon, N. H., Ivanov, M. K., and Meisner, L. B., 1997. Seabed morphology and gas venting in the Black Sea mud volcano area: observations with the MAK-1 deep-tow sidescan sonar and bottom profiler. Marine Geology, 137, 121–36.CrossRefGoogle Scholar
Limonov, A. F., Ivanov, M. K., and Foucher, J.-P., 1998. Deep-towed side-scan sonar surveys of the United Nations Rise, eastern Mediterranean. Geo-Marine Letters, 18, 115–26.CrossRefGoogle Scholar
Link, W. K., 1952. Significance of oil and gas seeps in world oil exploration. American Association of Petroleum Geologists (Bulletin), 36, 1505–40.Google Scholar
Lisitzin, A. P., Lukashsin, V. N., Gordeev, V. V., et al., 1997. Hydrological and geochemical anomalies associated with hydrothermal activity in SW Pacific marginal and back-arc basins. Marine Geology, 142, 7–45.CrossRefGoogle Scholar
Liss, P. S. and Slater, P. G., 1974. Flux of gases across the air–sea interface. Nature, 247, 181–4.CrossRefGoogle Scholar
Locat, J., 2001. Instabilities along ocean margins: a geomorphological and geotechnical perspective. Marine and Petroleum Geology, 18, 503–12.CrossRefGoogle Scholar
Locat, J. and Mienert, J., 2003. Submarine Mass Movements and Their Consequences. Dordrecht, Kluwer Academic Publishers.CrossRefGoogle Scholar
Loncke, L., Huguen, C., Mascle, J., et al., 2001. Pock-marks, mud volcanoes and gas chimneys: evidences from the Nile deep-sea fan. European Union of Geosciences EUG Ⅺ Journal of Conference, 6 (1), 517 (abstract).Google Scholar
Loncke, L., Mascle, J., and Fanil Scientific Parties, 2004a. Mud volcanoes, gas chimneys, pockmarks and mounds in the Nile deep-sea fan (eastern Mediterranean): geophysical evidences. Marine and Petroleum Geology, 21, 669–89.CrossRefGoogle Scholar
Loncke, L., Bayon, G., Duperron, S., and Mascle, J., 2004b. Pockmarks from the Nile Deep-Sea Fan: in situ observations from NAUTINIL Expedition. First General Assembly of the European Geosciences Union, Nice, 25–30 April (poster). (See Geophysical Research Abstracts, 6, 05559.)Google Scholar
Lonergan, L., Cartwright, J. A., and Jolly, R., 1998. The geometry of polygonal fault systems in Tertiary mudrocks of the North Sea. Journal of Structural Geology, 20, 529–48.CrossRefGoogle Scholar
Long, D., 1986. Seabed Sediments, Fladen Sheet 58° N– 00°. British Geological Survey, 1:250,000 map series.Google Scholar
Long, D., 1992. Devensian Late-glacial gas escape in the central North Sea. Continental Shelf Research, 12, 1097–110.CrossRefGoogle Scholar
Long, D., Lammers, S., and Linke, P., 1998. Possible hydrate mounds within large sea-floor craters in the Barents Sea. In Henriet, J.-P. and Mienert, J. (eds.), Gas Hydrates: Relevance to World Margin Stability and Climate Change. Geological Society of London, Special Publication 137, 223–37.
Longva, O. and Thorsnes, T. (eds.), 1997. Skagerrak in the Past and at the Present. An Integrated Study of Geology, Chemistry, Hydrography and Microfossil Ecology. Norges Geologiske Unders⊘kelse, Special Publication 8.Google Scholar
Longva, O., Thorsnes, T., Mauring, E., and Blikra, L. H., 1998. High-resolution seismic and bathymetric data from clay slides in fjords in northern Norway. Proceedings of the International Workshop on Sedimentary Processes and Palaeoenvironment in Fjords, University of Troms⊘, Norway, 22–24 April (abstract). See www.ibg.uit.no/geologi/spinof/ws-long.html
Longva, O., Janbu, N., Blikra, L. H., and B⊘e, R., 2003. The 1996 Finneidfjord slide: seafloor failure and slide dynamics. In Locat, J. and Mienert, J. (eds.), Submarine Mass Movements and their Consequences. Dordrecht, Kluwer Academic Publishers, 531–8.CrossRef
Lonsdale, P., 1977. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centres. Deep-Sea Research, 24, 857–63.CrossRefGoogle Scholar
Lonsdale, P., 1979. A deep hydrothermal site on a strike-slip fault. Nature, 281, 531–5.CrossRefGoogle Scholar
Lonsdale, P., 1986. A multibeam reconnaissance of the Tonga Trench axis and its intersection with the Louisville guyot chain. Marine Geophysical Research, 8, 295–327.CrossRefGoogle Scholar
Lonsdale, P. and Becker, K., 1985. Hydrothermal plumes, hot springs, and conductive heat flow in the Southern Trough of Guaymas Basin. Earth & Planetary Science Letters, 73, 211–25.CrossRefGoogle Scholar
Lonsdale, P. and Hawkins, J., 1985. Silicic volcanism at an off-axis geothermal field in the Mariana Trough Back-arc Basin. Geological Society of America (Bulletin), 96, 940–51.2.0.CO;2>CrossRefGoogle Scholar
Loreau, J. P., 1982. Sediments aragonitiques et leur genése. Mémoires du Museum National d'Histoire Naturelle, Série C, Sciences de la terre, vol. XⅬVII. (In French.)Google Scholar
Lorenson, T. D., Kvenvolden, K. A., Hostettler, F. D., et al., 2002. Hydrocarbon geochemistry of cold seeps in the Monterey Bay National Marine Sanctuary. Marine Geology, 181, 285–304.CrossRefGoogle Scholar
Lorenz, V., 1975. Formation of phreatomagmatic maardiatreme volcanoes and its relevances to kimberlite diatremes. Physics and Chemistry of the Earth, 9, 17–27.CrossRefGoogle Scholar
L⊘seth, H., Wensaas, L., Arnsten, B., et al., 2001. 1000 m long gas blow-out pipes. Extended Abstracts, 63rd EAGE Conference and Exhibition, Amsterdam, 11–15 June, 524–7 (abstract).
L⊘seth, H., Wensaas, L., Arnsten, B., and Hovland, M., 2003. Gas and fluid injection triggering shallow mud mobilization in the Hordaland Group, North Sea. In Rensbergen, P., Hillis, R. R., Maltmann, A. J., and Morley, C. K. (eds.), Subsurface Sediment Mobilization. Geological Society of London, Special Publication 216, 139–57.
Lowe, D. R., 1975. Water escape structures in coarsegrained sediments. Sedimentology, 22, 157–204.CrossRefGoogle Scholar
Lowell, R. P., Rona, P. A., and Herzen, R. P., 1995. Seafloor hydrothermal systems. Journal of Geophysical Research, 100, 327–52.CrossRefGoogle Scholar
Lucas, A. L., 1974. A high resolution marine seismic survey. Geophysical Prospecting, 22, 667–82.CrossRefGoogle Scholar
Lüdman, T. and Wong, H. K., 2003. Characteristics of gas hydrate occurrences associated with mud diapirism and gas escape structures in the northwestern Sea of Okhotsk. Marine Geology, 210, 269–86.CrossRefGoogle Scholar
Luff, R., Wallmann, K., and Aloisi, G., 2004. Numerical modeling of carbonate crust formation at cold vent sites: significance for fluid and methane budgets and chemosynthetic biological communities. Earth & Planetary Science Letters, 221, 337–53.CrossRefGoogle Scholar
Lukkien, H. B., 1985. Shallow gas: coping with its hazards offshore. World Oil, July, 59–63.Google Scholar
Lupton, J. E., 1995. Hydrothermal plumes: near and far field. In Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S., and Thomsen, R. E. (eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. American Geophysical Union, Geophysical Monograph 91, 317–46.
Lupton, J. E., Klinkhammer, G. P., Normark, W. R., et al., 1980. Helium-3 and manganese at the 210° N East Pacific Rise hydrothermal site. Earth & Planetary Science Letters, 50, 115–27.CrossRefGoogle Scholar
Lupton, J. E. and Craig, H., 1981. A major 3He source on the East Pacific Rise. Science, 214, 13–18.CrossRefGoogle Scholar
Luternauer, J. L., Barrie, J. V., Christian, H. A., et al., 1994. Fraser River delta: geology, geohazards and human impact. In Monger, J. W. H. (ed.), Geology and Geological Hazards of the Vancouver Region, Southwestern British Columbia. Geological Survey of Canada, Bulletin 481, 197–220.CrossRef
Luth, C., Luth, U., Gebruk, A. V., and Thiel, H., 1999. Methane gas seeps along the oxic/anoxic gradient in the Black Sea: manifestations, biogenic sediment compounds, and preliminary results on benthic ecology. Marine Ecology, 20, 221–49.CrossRefGoogle Scholar
Lutz, R. A., 2000. Deep sea vents. National Geographic Magazine, 198 (4) 116–27.Google Scholar
Lutz, R. A., Shank, T. M., Fornari, D. J., et al., 1994. Rapid growth at deep-sea vents. Nature, 371, 663–4.CrossRefGoogle Scholar
MacDonald, G. J., 1983. The many origins of natural gas. Journal of Petroleum Geology, 5, 341–62.CrossRefGoogle Scholar
MacDonald, G. J., 1990. Role of clathrates in past and future climate change. Climate Change, 16, 247–82.CrossRefGoogle Scholar
MacDonald, I. R., 1998. Natural oil spills. Scientific American, November, 30–35.Google Scholar
MacDonald, I. R and Leifer, I., 2002. Constraining rates of carbon flux from natural seeps on the northern Gulf of Mexico slope. In Gas in Marine Sediments, Seventh International Conference, Baku, Azerbaijan, 7th–12th October 2002. Baku, Nafta Press, 119.
MacDonald, I. R., Reilly, J. F., Guinasso, N. L., et al., 1990. Chemosynthetic mussels at a brine-filled pockmark in the northern Gulf of Mexico. Science, 248, 1096–9.CrossRefGoogle Scholar
MacDonald, I. R., Guinasso, N. R., jr, Ackleson, S. G., et al., 1993. Natural oil slicks in the Gulf of Mexico visible from space. Journal of Geophysical Research, 98, 16351–64.CrossRefGoogle Scholar
MacDonald, I. R., Guinasso, N. L., jr, Sassen, R., et al., 1994. Gas hydrate that breaches the sea floor on continental slope of the Gulf of Mexico. Geology, 22, 699–702.2.3.CO;2>CrossRefGoogle Scholar
MacDonald, I. R., Reilly, J. G., jr, Best, S. E., et al., 1996. Remote sensing inventory of active oil seeps and chemosynthetic communities in the northern Gulf of Mexico. In Schumacher, D. and Abrams, M. A. (eds.), Hydrocarbon Migration and its Near-Surface Expression. American Association of Petroleum Geologists, Memoir 66, 27–37.
MacDonald, I. R., Leifer, I., Sassen, R., et al., 2002. Transfer of hydrocarbons from natural seeps to the water column and atmosphere. Geofluids, 2, 95–107.CrossRefGoogle Scholar
MacDonald, I. R., Bohrmann, G., Escobar, E., et al., 2004. Asphalt volcanism and chemosynthetic life in the Campeche Knolls, Gulf of Mexico. Science, 304, 999–1002.CrossRefGoogle ScholarPubMed
MacKay, M. E., Jarrard, R. D., Westbrook, G. K., et al., 1995. Origin of bottom-simulating reflectors: geophysical evidence from the Cascadia accretionary prism. Geology, 22, 459–62.2.3.CO;2>CrossRefGoogle Scholar
MacLean, B., Falconer, R. K. H., and Levy, B. M., 1981. Geological, geophysical and chemical evidence for natural seepage of petroleum off the northeast coast of Baffin Island. Canadian Petroleum Geology, 29, 75–95.Google Scholar
Mahfoud, R. F. and Beck, J. N., 1995. Why the Middle East fields may produce oil for ever. Offshore, April, 58–64, 106.Google Scholar
Mahmood, A., Ehlers, C. J., Butenko, J., and Randall, A. G., 1980. Seafloor sediments in Orinoco delta, Venezuela. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 3774.
Maisey, G. H., Rokoengen, K., and Raaen, K., 1980. Pock-marks formed by seep of petrogenic gas in the southern part of the Norwegian Trench, IKU, Trondheim Report No. P-258/1/80.
Maldonado, A., Somoza, L., and Pallarés, L., 1999. The Betic orogen and the Iberian–African boundary in the Gulf of Cadiz: geological evolution (central North Atlantic). Marine Geology, 155, 9–43.CrossRefGoogle Scholar
Malmquist, L. and Kristiansson, K., 1981. Microflow of geogas – a possible formation mechanism for deep-sea nodules. Marine Geology, 40, M18.Google Scholar
Mandl, G., 1988. Mechanics of Tectonic Faulting. Amsterdam, Elsevier.Google Scholar
Manheim, F. T., 1967. Evidence for submarine discharge of water on the Atlantic continental slope of the southern United States, and suggestions for further research. Transactions of the New York Academy of Sciences (Series II), 29, 839–53.CrossRefGoogle Scholar
Manley, P. L. and Flood, R. D., 1988. Cyclic sediment deposition within Amazon Deep-Sea Fan. American Association of Petroleum Geologists (Bulletin), 72, 912–25.Google Scholar
Manley, P. L. and Flood, R. D., 1989. Anomalous sound velocities in near-surface, organic-rich, gassy sediments in the central Argentinian Basin. Deep-Sea Research I, 36, 611–23.CrossRefGoogle Scholar
Mart, Y. and Ross, D. A., 1987. Post-Miocene rifting and diapirism in the northern Red Sea. Marine Geology, 74, 173–90.CrossRefGoogle Scholar
Martens, C. S. and Klump, J. V., 1980. Biogeochemical cycling in an organic-rich coastal marine basin – I. Methane sediment–water exchange processes. Geochimica et cosmochimica acta, 44, 471–90.CrossRefGoogle Scholar
Martens, C. S. and Klump, J. V., 1984. Biogeochemical cycling in an organic-rich coastal marine basin – 4. An organic carbon budget for sediments dominated by sulfate reduction and methanogenesis. Geochimica et cosmochimica acta, 48, 1987–2004.CrossRefGoogle Scholar
Martens, C. S., Albert, D. B., and Alperin, M. J., 1998. Biogeochemical processes controlling methane in gassy coastal sediments – Part I. A model coupling organic matter flux to gas production, oxidation and transportation. Continental Shelf Research, 18, 1741–70.CrossRefGoogle Scholar
Martin, J. B., Kastner, M., Henry, P., Pichon, X., and Lallemant, S., 1996. Chemical and isotopic evidence for sources of fluids in a mud volcano field seaward of the Barbados accretionary wedge. Journal of Geophysical Research, 101, 20325–45.CrossRefGoogle Scholar
Martinelli, G. and Judd, A. G., 2004. Mud volcanoes of Italy. Geological Journal, 39, 49–61.CrossRefGoogle Scholar
Marty, B., Jambon, A., and Sano, Y., 1989. Helium isotopes and CO2 in volcanic gases of Japan. Chemical Geology, 76, 25–40.CrossRefGoogle Scholar
Marty, D. G., 1992. Ecology and metabolism of methanogens. In Vially, R. (ed.), Bacterial Gas. Paris, Editions Technip, 13–26.
Mascle, J., Huguen, C., Benkhelil, J., et al., 1999. Images may show start of European–African plate collision. EOS – Transactions of the American Geophysical Union, 80, 421, 425, 428.CrossRefGoogle Scholar
Masson, D. G., Bett, B. J., Billett, D. S. M., et al., 2003. The origin of deep-water, coral-topped mounds in the northern Rockall Trough, northeast Atlantic. Marine Geology, 194, 159–80.CrossRefGoogle Scholar
Massoth, G. J., Butterfield, D. A., Lupton, J. E., et al., 1989. Submarine venting of phase-separated hydrothermal fluids at Axial Volcano, Juan de Fuca Ridge. Nature, 340, 702–5.CrossRefGoogle Scholar
Matsumoto, R., Watanabe, Y., Satoh, M., et al., 1996. Distribution and occurrence of marine gas hydrates. Preliminary results of ODP Leg 164: Blake Ridge drilling. Journal Geological Society of Japan, 102, 932–44. (In Japanese with English abstract.)CrossRefGoogle Scholar
Matthews, M. D., 1996. Migration – a view from the top. In Schumacher, D. and Abrams, M. A. (eds.), Hydrocarbon Migration and its Near-Surface Expression. American Association of Petroleum Geologists, Memoir 66, 139–55.
Mattson, M. D. and Likens, G. E., 1990. Air pressure and methane fluxes. Nature, 347, 718–19.CrossRefGoogle Scholar
Matveeva, T. V., Kaulio, V. V., Mazurenko, L. L., et al., 2000. Geological and geochemical characteristics of near-bottom gas hydrate occurrence in the southern basin of the Lake Baikal, eastern Siberia. In Sixth International Conference on Gas in Marine Sediments. St Petersburg, VNIIOkeangeologia, 91–3.
Max, M. D., 2000a. Hydrate as a future energy resource for Japan. In Max, M. D. (ed.), Natural Gas Hydrates in Oceanic and Permafrost Environments. Dordrecht, Kluwer Academic Publishers, 225–38.CrossRef
Max, M. D., 2000b. Natural Gas Hydrates in Ocean and Permafrost Environments. Dordrecht, Kluwer Academic Publishers.CrossRefGoogle Scholar
Max, M. D., 2000c. Hydrate resource, methane fuel, and a gas-based economy? In Max, M. D. (ed.), Natural Gas Hydrates in Oceanic and Permafrost Environments, Dordrecht, Kluwer Academic Publishers, 361–70.CrossRef
Max, M. D. and Miles, P. R., 1999. Marine survey for gas hydrates. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 10769.
May, D. A. and Monaghan, J. J., 2003. Can a single bubble sink a ship?American Journal of Physics, 71, 842–9.CrossRefGoogle Scholar
Mayer, L., 1981. Erosional troughs in deep sea carbonates and their relationship to basement structure. Marine Geology, 39, 59–80.CrossRefGoogle Scholar
Mayer, L., 2004. New tools for fusion and visualization of ocean mapping data – the incubator of insights. Abstracts and Programme of the Seabed and Shallow Section Marine Geoscience: Shared Lessons and Technologies from Academia and Industry Conference, Geological Society of London, 24–26 February, 6.
Mayer, L. A., Shor, A. N., Clark, Hughes J., and Piper, D. J. W., 1988. Dense biological communities at 3850 m on the Laurentian Fan and their relationship to the deposits of the 1929 Grand Banks earthquake. Deep-Sea Research, 35, 1235–46.CrossRefGoogle Scholar
Mazurenko, L., Soloviev, V., Ivanov, M., Pinheiro, L., and Gardner, J., 2001. Geochemical features of gas hydrate-forming fluids of the Gulf of Cadiz. In Akhamanov, G. and Suzyumov, A. (eds.), Geological Processes on Deep-Water European Margins. International Oceanographic Commission Workshop Report No. 175 on the International Conference and ninth post-cruise meeting of the Training Through Research Programme, Moscow-Mozhenka, Russia, 28 January–2 February. Paris, UNESCO, 50.
Mazurenko, L. L. and Soloviev, V. A., 2003. Worldwide distribution of deep-water fluid venting and potential occurrences of gas hydrate accumulation. Continental Shelf Research, 23, 162–76.Google Scholar
Mazzini, A., Duranti, D., Jonk, R., et al., 2003. Palaeo-carbonate seep structures above an oil reservoir, Gryphon field, Tertiary, North Sea. Continental Shelf Research, 23, 323–39.Google Scholar
Mazzotti, L., Segantini, S., Tramontana, M., and Wezel, F.-C., 1987. Classification and distribution of pockmarks in the Jabuka Trough (central Adriatic). Bollettino de Oceanologia Teorica ed Applicata, 5, 237–50.Google Scholar
McAdoo, B. G., Orange, D. L., Silver, E. A., et al., 1996. Seafloor structural observations, Costa Rica Accretionary Prism. Geophysical Research Letters, 23, 883–6.CrossRefGoogle Scholar
McAdoo, B. G., Pratson, L. F., and Orange, D. L., 2000. Submarine landslide geomorphology, US Continental Slope. Marine Geology, 169, 103–36.CrossRefGoogle Scholar
McAuliffe, C. D., 1980. Oil and gas migration: chemical and physical constraints. In Roberts, W. H. III and Cordell, R. J. (eds.), Problems of Petroleum Migration. American Association of Petroleum Geologists, Studies in Geology No. 10, 89–107.
McClennen, C. E., 1989. Microtopography and surficial sediment patterns in the central Gulf of Maine: a 3.5 kHz survey and interpretation. Marine Geology, 89, 69–85.CrossRefGoogle Scholar
McClusky, S., Balassanian, S., Barka, A., et al., 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105, 5695–719.CrossRefGoogle Scholar
McConnell, D. R., 2000. Optimizing deepwater well locations to reduce the risk of shallow-water-flow using high-resolution 2D and 3D seismic data. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 11973.
McCulloch, D. S, 1989. Geologic map of the south-central California continental margin, Map N-4A. In Greene, H. G. and Kennedy, M. P. (eds.), Geologic Map Series of the California Continental Margin. Map Scale 1: 250000. California Division of Mines and Geology.
McCulloh, T. H., 1969. Geologic Characteristics of the Dos Cuadras Offshore Oil Field. United States Geological Survey, Professional Paper 679-c.Google Scholar
McDuff, R. E., 1995. Physical dynamics of deep-sea hydrothermal plumes. In Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S., and Thomsen, R. E. (eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. American Geophysical Union, Geophysical Monograph 91, 357–68.
McGee, T. M. and Woolsey, J. R., 1999. An installation in the northern Gulf of Mexico for monitoring interactions between the water column and sea-floor sediments containing gas hydrates. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 10771.
McHugh, D., 1997. Molecular evidence that echiurans and pogonophorans are derived Annelids, Proceedings of the National Academy of Sciences, USA, 94, 8006–9.CrossRefGoogle ScholarPubMed
McIver, R. D., 1981. Gas hydrate. In Meyer, R. F. and Olson, J. C. (eds.), Long-Term Energy Resources. Boston, MA, Pitman Publishing, 713–26.
McIver, R. D., 1982. Role of naturally occurring gas hydrates in sediment transport. American Association of Petroleum Geologists (Bulletin) 66, 789–92.Google Scholar
McKay, A. G., 1983. Acoustic observations in seabed materials. Ph. D. thesis, University of Durham.Google Scholar
McKenna, G. T., Luternauer, J. L., and Kostaschuk, R. A., 1992. Large-scale mass-wasting events on the Fraser River delta front near Sand Heads, British Columbia. Canadian Geotechnical Journal, 29, 151–6.CrossRefGoogle Scholar
McQuaid, J. and Mercer, A., 1990. Air pressure and methane fluxes. Nature, 351, 528.CrossRefGoogle Scholar
McQuillin, R. and Fannin, N. G. T., 1979. Explaining the North Sea's lunar floor. New Scientist, 83(1163), 90–2.Google Scholar
McQuillin, R., Fannin, N. G. T., and Judd, A. G., 1979. IGS Pockmark Investigations 1974–1978. Institute of Geological Sciences, Marine Geophysics Unit, Report No. 98.Google Scholar
MEDINAUT/MEDINETH Shipboard Scientific Parties (Aloisi, G., Asjes, S., Bakker, K., et al.), 2000. Linking Mediterranean brine pools and mud volcanism. EOS – Transactions of the American Geophysical Union, 81, 625, 631–3.Google Scholar
Meldahl, P., Heggland, R., Bril, A. H., and de Groot, P. F. M., 1999. The chimney cube, an example of semi-automated detection of seismic objects by directive attributes and neural networks. Part I: method. Expanded Abstracts, Society of Exploration Geophysicists 69th Annual Meeting, Houston, TX, 31 October – 5 November, 931–4.
Menard, H. W., 1964. Marine Geology of the Pacific. New York, NY, McGraw-Hill.Google Scholar
Merewether, R., Olsson, M. S., and Lonsdale, P., 1985. Acoustically detected hydrocarbon plumes rising from 2-km depths in Guaymas Basin, Gulf of California. Journal of Geophysical Research, 90, 3975–85.CrossRefGoogle Scholar
Merle, S., Embley, R., Baker, E., and Chadwick, W., 2003. Submarine Ring of Fire 2003 – Mariana Arc. R/V T. G. Thompson Cruise TN-153. Newport, OR, Cruise Report, NOAA.Google Scholar
Michaelis, W., 2000. Boreale Schwämme als marine Naturstoffquelle (BOSMAN). Hamburg, The University of Hamburg, Technical cruise report Pos 254. (In German.)
Michaelis, W., Jenisch, A., and Richnow, H. H., 1990. Hydrothermal petroleum generation in Red Sea sediments from the Kebrit and Shaban deeps. Applied Geochemistry, 5, 103–14.CrossRefGoogle Scholar
Mienert, J., Posewang, J., and Baumann, M., 1998. Gas hydrates along the northeastern Atlantic Margin: possible hydrate-bound margin instabilities and possible release of methane. In Henriet, J.-P. and Mienert, J. (eds.), Gas Hydrates: Relevance to World Margin Stability and Climate Change. Geological Society of London, Special Publication 137, 275–91.
Miles, J. A., 1994. Illustrated Glossary of Petroleum Geochemistry. Oxford, Clarendon Press.Google Scholar
Milkov, A. V., 2000. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology, 167, 29–42.CrossRefGoogle Scholar
Milkov, A. V. and Sassen, R., 2001. Estimate of gas hydrate resource, northwestern Gulf of Mexico continental slope. Marine Geology, 179, 71–83.CrossRefGoogle Scholar
Milkov, A. V. and Sassen, R., 2002. Economic geology of offshore gas hydrate accumulations and provinces. Marine and Petroleum Geology, 19, 1–11.CrossRefGoogle Scholar
Milkov, A. V., Sassen, R., Apanasovich, T. V., and Dadashev, F. G., 2003. Global gas flux from mud volcanoes: a significant source of fossil methane in the atmosphere and ocean. Geophysical Research Letters, 30, DOI: 10,1029/2002GL016358.CrossRefGoogle Scholar
Miller, D. C. and Ullman, W. J., 2001. Ecological consequences of estuarine groundwater discharge at Cape Henlopen, Delaware Bay, USA. Proceedings of the Geological Society of America Annual Meeting, Boston, MA, November 5–8 (abstract).
Miller, R. D., 1980. Freezing phenomena in soils. In Hillel, D. (ed.), Introduction to Soil Physics. San Diego, Academic Press, 254–99.
Milliman, J. D., 1974. Marine Carbonates. New York, NY, Springer-Verlag.Google Scholar
Milliman, J. D., Qin, Y. S., and Butenko, J., 1985. Geohazards in the Yellow Sea and East China Sea. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 4965.
Mills, R. A. and Elderfield, H., 1995. Hydrothermal activity and the geochemistry of metalliferous sediments. In Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S., and Thomsen, R. E. (eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. American Geophysical Union, Geophysical Monograph 91, 392–407.
Minshull, T. and White, R., 1989. Sediment compaction and fluid migration in the Makran Accretionary Prism. Journal of Geophysical Research, 94, 7387–402.CrossRefGoogle Scholar
Missiaen, T., Murphy, S., Loncke, L., and Henriet, J.-P., 2002. Very high resolution seismic mapping of shallow gas in the Belgian coastal zone. Continental Shelf Research, 22, 2291–302.CrossRefGoogle Scholar
MMS (US Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region), 2001. Gulf of Mexico Deepwater Operations and Activities: Environmental Assessment (May 2000). New Orleans, US Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region.
MMS (US Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region), 2003. Shallow Gas Blowout and Rig Evacuation. New Orleans, US Department of the Interior Minerals Management Service, Gulf of Mexico OCS Region, Safety Alert No. 214 (7 April).
M⊘ller, M. M., Nielsen, L. P., and J⊘rgensen, B. B., 1985. Oxygen responses and mat formation by Beggiatoa spp. Applied Environmental Microbiology, 50, 373–82.Google Scholar
Molnia, B. F., 1979. Origin of gas pockmarks and craters. Geological Society of America, Abstracts with Programs, 11, 481–2.Google Scholar
Molnia, B. F. and Rappeport, M. L., 1984. Mosaic of the Alsek Sediment Instability Area. USGS Open File Report, 84–397.Google Scholar
Molnia, B. F., Carlson, P. R., and Kvenvolden, K. A., 1978. Gas-charged sediment areas in the northern Gulf of Alaska. Geological Society of America, Abstracts with Programs, 10, 458–9.Google Scholar
Montagna, P. A., Bauer, J. E., Hardin, D., and Spies, R. B., 1989. Vertical distribution of microbial and meiofaunal populations in sediments of a natural coastal hydrocarbon seep. Journal of Marine Research, 47, 657–80.CrossRefGoogle Scholar
Moore, J. C., Mascle, A., Taylor, E., et al., 1987. Expulsion of fluids from depth along a subduction-zone decollement horizon. Nature, 326, 785–8.Google Scholar
Moore, W. S., 1996. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature, 380, 612–14.CrossRefGoogle Scholar
Morimoto, R., 1960. Submarine eruption of the Myojin Reef. Bulletin of Volcanology, 23, 151–60.CrossRefGoogle Scholar
Morrissey, M. M and Mastin, L. G, 2000. Phreatomagmatic fragmentation. In Sigurdsson, H. (ed.), Encyclopedia of Volcanoes. LondonAcademic Press, 431–45.CrossRef
Morse, J. W. and Mackenzie, F. T., 1990. Geochemistry of Sedimentary Carbonates. Developments in Sedimentology, 48. Amsterdam, Elsevier.Google Scholar
Mortensen, P. B., Hovland, M., Fossa, J. H., and Furevik, D. M., 1998. Size and abundance of Lophelia banks in mid-Norwegian waters. Bergen, Intergovernmental Oceanographic Commission Workshop Report 143.Google Scholar
Morton, J. L. and Sleep, N. H., 1985. A mid-ocean ridge thermal model: constraints on the volume of axial hydrothermal heat flux. Journal of Geophysical Research, 90, 11345–53.CrossRefGoogle Scholar
Mottl, M. J., Wheat, C. G., Fryer, P., Gharib, J., and Martin, J. B., 2004. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate. Geochimica et cosmochimica acta, 68, 4915–33.CrossRefGoogle Scholar
Muiños, S., Gaspar, L., Monteiro, J. H., et al., 2002. Ferromanganese deposits from the Nameless Seamount. In Cunha, M., Pinheiro, L., and Suzyumov, A. (eds.), Geosphere/Biosphere/Hydrosphere Coupling Processes, Fluid Escape Structures and Tectonics at Continental Margins and Ocean Ridges. International Conference Abstracts, Intergovernmental Oceanographic Commission. Paris, UNESCO, Workshop Report No. 183, 27–30.
Mukhopadhyay, R., Iyer, S. D., and Ghosh, A. K., 2002. The Indian Ocean Nodule Field: petrotectonic evolution and ferromanganese deposits. Earth-Science Reviews, 60, 67–130.CrossRefGoogle Scholar
Mukhtarov, A. Sh., Kadirov, F. A., Guliyev, I. S., Feyzullayev, A., and Lerche, I., 2003. Temperature evolution in the Lokbatan Mud Volcano crater (Azerbaijan) after the eruption of 25 October 2001. Energy Exploration & Exploitation, 21, 187–207.CrossRefGoogle Scholar
Mulder, T. and Cochonat, P., 1996. Classification of offshore mass movements. Journal of Sedimentary Research, 66, 43–57.Google Scholar
Mullineaux, L. S. and France, S., 1995. Dispersal of deep-sea hydrothermal vent fauna: mechanisms and implications for species distributions. In Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S., and Thomsen, R. E. (eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. American Geophysical Union, Geophysical Monograph 91, 408–24.
Muradov, Ch. and Javadova, R., 2002. Estimation of resources of gas in gas hydrate accumulations of southern Caspian Sea. In Gas in Marine Sediments, Seventh International Conference, Baku, Azerbaijan, 7th–12th October 2002. Baku, Nafta Press, 149–50.
Murray, J. and Renard, A. F., 1891. Report on deep-sea deposits. Challenger Expedition Reports, 3. London, HMSO.Google Scholar
Murthy, K. S. R. and Rao, T. C. S., 1990. Acoustic wipeouts over the continental margins off Krishna, Godavari and Mahanadi River basins, east coast of India. Journal of the Geological Society of India, 35, 559–68.Google Scholar
Musson, R. M. W., Pappin, J., Lubkowski, Z., Booth, E., and Long, D. 1997. UK Continental Shelf Seismic Hazard. Sudbury, HSE Books, Offshore Technology Report OTH 93./416.
Naehr, T. H., Rodriguez, N. M., Bohrman, G., Paull, C. K., and Botz, R., 2000. Methane-derived authigenic carbonates associated with gas hydrate decomposition and fluid venting above the Blake Ridge Diapir. Proceedings of the Ocean Drilling Program, Scientific Results, 164, 285–300.
Naeth, J., Primio, di R., Horsfield, B., et al., 2005. Hydrocarbon seepage and carbonate mound formation: a basin modelling study from the Porcupine Basin (offshore Ireland). Journal of Petroleum Geology, 28, 147–66.CrossRefGoogle Scholar
Naganuma, T., Otsuki, A., and Seki, H., 1989. Abundance and growth rate of bacterioplankton community in hydrothermal vent plumes of the North Fiji Basin. Deep-Sea Research, 36, 1379–90.CrossRefGoogle Scholar
Namsaraev, B. B., Zemskaya, T. I., Dagurova, O. P., et al., 2000. Biological communities in the sediments: regions of hydrothermal venting (northern Baikal) and near-surface occurrence of gas hydrates (southern Baikal). Abstracts of the Sixth International Conference on Gas in Marine Sediments. St Petersburg, VNIIOkeangeologia, 102–3.
Namsaraev, B. B., Zemskaya, T. I., Dagurova, O. P., et al., 2002. Bacterial communities of the bottom sediments near a hydrothermal source in Frolikha Bay, northern Baikal. Geologiya i Geofizika (Russian Geology and Geophysics), 43, 644–7 (Russian edn.) / 604–8 (English edn.).Google Scholar
Nardin, T. R. and Henyey, T. L., 1978. Pliocene–Pleistocene diastrophism of Santa Monica and San Pedro shelves, California continental borderland. American Association of Petroleum Geologists (Bulletin), 62, 247–72.Google Scholar
Neglia, S., 1979. Migration of fluids in sedimentary basins. American Association of Petroleum Geologists (Bulletin), 63, 573–97.Google Scholar
Nelson, C. H. and Johnson, K. R., 1987. Whales and walruses as tillers of the seafloor. Scientific American, 256(2), 74–81.CrossRefGoogle Scholar
Nelson, C. H., Thor, D. R., Sandstrom, M. W., and Kvenvolden, K A., 1979. Modern biogenic gas-generated craters (sea-floor ‘pockmarks’) on the Bering Shelf, Alaska. Geological Society of America (Bulletin), 90, 1144–52.2.0.CO;2>CrossRefGoogle Scholar
Nelson, C. S. and Healy, T. R., 1984. Pockmark-like structures on the Poverty Bay sea bed – possible evidence for submarine mud volcanism. New Zealand Geology and Geophysics, 27, 225–30.CrossRefGoogle Scholar
Newton, R. S., Cunningham, R. C., and Schubert, C. E., 1980. Mud volcanoes and pockmarks: seafloor engineering hazards or geological curiosities? Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 3729.
Nichols, R. J., Sparks, R. S. J., and Wilson, C. J. N, 1994. Experimental studies of the fluidization of layered sediments and the formation of fluid escape structures. Sedimentology, 41, 233–53.CrossRefGoogle Scholar
Niemann, H., Orcutt, B., Suck, I., et al., 2004. Methane seeps in the North Sea: Tommeliten revisited. First General Congress, European Geosciences Union, Nice, 25–30 April (poster). (See Geophysical Research Abstracts, 6, 06365.)Google Scholar
Niemann, J., Grace, G., Ropp, C., and Burch, D., 1998. Shallow water flow evaluation: current technology and capabilities. Proceedings of the 1998 Shallow Water Flow Forum, Woodlands, TX, 24–25 June (presentation).
Nisbet, E. G., 1989. Some northern sources of atmospheric methane: production, history and future implications. Canadian Journal of Earth Science, 26, 1603–11.CrossRefGoogle Scholar
Nisbet, E. G., 1990. The end of the ice-age. Canadian Journal of Earth Science, 27, 148–57.CrossRefGoogle Scholar
Nisbet, E. G., 2002. Have sudden large releases of methane from geological reservoirs occurred since the last glacial maximum, and could such releases occur again?Philosophical Transactions of the Royal Society of London, A, 360, 581–607.CrossRefGoogle Scholar
Nittrouer, C. A., 1999. STRATOFORM: overview of its design and synthesis of its results. Marine Geology, 154, 3–12.CrossRefGoogle Scholar
NPA Group, 2003. Offshore Basin Screening: Key features of OBS Methodology. NPA-TREICoL Join Venture documentation. Edenbridge, Kent, NPA Group.
Nummedal, D. and Prior, D. B., 1981. Generation of Martian chaos and channels by debris flows. Icarus, 45, 77–86.CrossRefGoogle Scholar
Nunn, J. A. and Muelbroek, P., 2002. Kilometer-scale upward migration of hydrocarbons in geopressured sediments by buoyancy-driven propagation of methane-filled fractures. American Association of Petroleum Geologists (Bulletin), 86, 907–18.Google Scholar
O'Brien, G. W., Lisk, M., Duddy, I. R., et al., 1999. Plate convergence, foreland development and fault reactivation: primary controls on brine migration, thermal histories and trap breach in the Timor Sea, Australia. Marine and Petroleum Geology, 16, 533–560.CrossRefGoogle Scholar
O'Brien, G. W., Glenn, K., Lawrence, G., et al., 2002. Influence of hydrocarbon migration and seepage on benthic communities in the Timor Sea, Australia. APPEA Journal, 2002, 1–14.Google Scholar
O'Connell, S., 1985. Anatomy of Modern Submarine Depositional and Distributary Systems. Unpublished thesis, Texas A&M University.Google Scholar
O'Hara, S. C. M., Dando, P. R., Schuster, U., et al., 1995. Gas seep induced interstitial water circulation: observations and environmental implications. Continental Shelf Research, 15, 931–48.CrossRefGoogle Scholar
Obzhirov, A., Suess, E., Salyuk, A., et al., 2000. Methane flares of the Okhotsk Sea. In Abstracts of the Sixth International Conference on Gas in Marine Sediments. St Petersburg, VNIIOkeangeologia, 104.
Obzhirov, A. I., Vereshchagina, O. F., Sosnin, V. A., et al., 2002. Methane monitoring in waters of eastern shelf and slope of Sakhalin. Geologiya i Geofizika (Russian Geology and Geophysics), 43, 605–12 (Russian edn.) / 564–71 (English edn.).Google Scholar
Obzhirov, A., Shakirov, R., Salyuk, A., et al., 2004. Relations between methane venting, geological structure and seismo-tectonics in the Okhotsk Sea. Geo-Marine Letters, 24, 135–9.CrossRefGoogle Scholar
Okusa, S., 1985a. Measurements of wave-induced pore pressure in submarine sediments under various marine conditions. Marine Geotechnology, 6, 119–44.CrossRefGoogle Scholar
Okusa, S., 1985b. Wave-induced stresses in unsaturated submarine sediments. Géotechnique, 35, 517–32.CrossRefGoogle Scholar
Olu, K., Duperret, A., Sibuet, M., Foucher, J.-P., and Fiala-Médiono, A., 1996. Structure and distribution of cold seep communities along the Peruvian active margin: relationship to geological and fluid patterns. Marine Ecology Progress Series, 132, 109–25.CrossRefGoogle Scholar
Olu, K., Lance, S., Sibuet, M., et al., 1997. Cold seep communities as indicators of fluid expulsion patterns through mud volcanoes seaward of the Barbados Accretionary Prism. Deep-Sea Research, 44, 811–41.CrossRefGoogle Scholar
Orange, D. L. and Breen, N. A., 1992. The effects of fluid escape on accretionary wedges, 2. Seepage force, slope failure, headless submarine canyons, and vents. Journal of Geophysical Research, 97, 9277–95.CrossRefGoogle Scholar
Orange, D. L., Greene, H. G., Reed, D., et al., 1999. Widespread fluid expulsion on a translational continental margin: mud volcanoes, fault zones, headless canyons, and organic-rich substrate in Monterey Bay, California. Geological Society of America (Bulletin), 111, 992–1009.2.3.CO;2>CrossRefGoogle Scholar
Orange, D. L., Yun, J., Maher, N., Barry, J., and Greene, G., 2002. Tracking California seafloor seeps with bathymetry, backscatter and ROVs. Continental Shelf Research, 22, 2273–90.CrossRefGoogle Scholar
Orange, D. L., Hovland, M., Greene, G. H., et al., 2003. The implications of hydrocarbon seepage, gas migration and fluid overpressures to frontier exploration and geohazards. American Association of Petroleum Geologists Annual Meeting, Salt Lake City, 11–14 May (abstract). See www.searchanddiscovery.com/documents/abstracts/annual2003/short/80432.PDF
Orcutt, B. N., Boetius, A., Lugo, S. J., et al., 2004. Life at the edge of methane ice: microbial cycling of carbon and sulfur in Gulf of Mexico hydrates. Chemical Geology, 205, 239–51.CrossRefGoogle Scholar
Oremland, R. S. and Miller, L. G., 1993. Biogeochemistry of natural gases in three alkaline, permanently stratified (meromictic) lakes. In Howell, D. G. (ed.), The Future of Energy Gases, United States Geological Survey Professional Paper 1570, 439–52.
Orphan, V. J., House, C. H., Hinrichs, K.-U., McKeegan, K. D., and DeLong, E. F., 2001. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science, 293, 484–7.CrossRefGoogle ScholarPubMed
Orpin, A. R., 1997. Dolomite chimneys as possible evidence of coastal fluid expulsion, upper most Otago Continental Slope, southern New Zealand. Marine Geology, 138, 51–67.CrossRefGoogle Scholar
Ostermeier, R. M., Pelletier, J. H., Winker, C. D., et al., 2000. Dealing with shallow-water flow in the deepwater Gulf of Mexico. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 11972.
Owens, N. J. P., Law, C. S., Mantoura, R. F. C., Burkill, P. H., and Llewellyn, C. A., 1991. Methane flux to the atmosphere from the Arabian Sea. Nature, 354, 293–6.CrossRefGoogle Scholar
Oxburgh, E. R., O'Nions, R. K., and Hill, R. I., 1986. Helium isotopes in sedimentary basins. Nature, 324, 632–5.CrossRefGoogle Scholar
Panieri, G., Ricchiuto, T., Martinenghi, C., and D'Onofrio, S., 2000a. Effects of hydrocarbon seepage on benthic foraminifera assemblage in Irish Rockall Trough. Abstracts of the Sixth International Conference on Gas in Marine Sediments, St Petersburg, VNIIOkeangeologia, Sept. 5–9, 107.
Panieri, G., Ricchiuto, T., D'Onofrio, S., et al., 2000b. Benthic foraminifera associated with methane seeps in Adriatic Sea. Abstracts of the Sixth International Conference on Gas in Marine Sediments, St Petersburg, VNIIOkeangeologia, 106.
Papatheodorou, G., Hasiotis, T., and Ferentinos, G., 1993. Gas-charged sediments in the Aegean and Ionian seas, Greece. Marine Geology, 112, 171–84.CrossRefGoogle Scholar
Papatheodorou, G., Lavrentaki, M., Mourelatos, P., Voutsinas, K., and Xenos, K., 2001. Pockmarks on the seabed of the Aetoliko Lagoon, Greece. Alieftika Nea (Fishing News), No. 238, April, 73–87. (In Greek.)
Papazachos, B. and Papazachou, K., 1989. Earthquakes in Greece. Thessaloniki, Ziti Publications. (In Greek.)Google Scholar
Park, A., Dewers, T., and Ortoleva, P., 1990. Cellular and oscillatory self-induced methane migration. Earth Science Reviews, 29, 249–65.CrossRefGoogle Scholar
Parkes, R. J., 1999. Oiling the wheels of controversy. A review of The Deep Hot Biosphere, by Thomas Gold. Nature, 401, 644.CrossRefGoogle Scholar
Patra, P. K., Lal, S., Venkataramani, S., Gauns, M., and Sarma, V. V. S. S., 1998. Seasonal variability in distribution and fluxes of methane in the Arabian Sea. Journal of Geophysical Research, 103, 1167–76.CrossRefGoogle Scholar
Paull, C. K., 1997. Drilling for gas hydrates: offshore drilling program Leg 164. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 8294.
Paull, C. K. and Dillon, W. P., 1981. Appearance and distribution of the gas hydrate reflection in the Blake Ridge region, offshore South Carolina. In US Geological Survey Miscellaneous Field Investigations Map MF-1252. Woods Hole, MA, USGS.
Paull, C. K. and Dillon, W. P., 2001. Natural Gas Hydrates. American Geophysical Union, Geophysical Monograph 124.CrossRefGoogle Scholar
Paull, C. K., Hecker, B., Commeau, R., et al., 1984. Biological communities at the Florida escarpment resemble hydrothermal vent taxa. Science, 226, 965–7.CrossRefGoogle ScholarPubMed
Paull, C. K., Ussler, W., III, Borowski, W. S., and Speiss, F. N., 1995. Methane-rich plumes on the Carolina Continental Rise: associations with gas hydrates. Geology, 23, 89–92.2.3.CO;2>CrossRefGoogle Scholar
Paull, C. K., Borowski, W. S., Rodriguez, N. M., and the ODP Leg 164 Shipboard Scientific Party, 1998. Marine gas hydrate inventory: preliminary results of ODP Leg 164 and implications for gas venting and slumping associated with the Blake Ridge gas hydrate field. In Henriet, J.-P. and Mienert, J. (eds.), Gas Hydrates: Relevance to World Margin Stability and Climate Change. Geological Society of London, Special Publication 137, 153–60.
Paull, C., Ussler, W., III, and Borowski, W. S., 1999. Freshwater ice rafting: an additional mechanism for the formation of some high-latitude submarine pockmarks. Geo-Marine Letters, 19, 164–8.CrossRefGoogle Scholar
Paull, C. K., Ussler, W., III, and Dillon, W. P., 2000. Potential role of gas hydrate decomposition in generating submarine slope failures. In Max, M. D. (ed.), Natural Gas Hydrate in Oceanic and Permafrost Environments. Dordrecht, Kluwer Academic Publishers, 149–56.CrossRef
Paull, C., Ussler, W., III, Maher, N., et al., 2002. Pockmarks off Big Sur, California. Marine Geology, 181, 323–35.CrossRefGoogle Scholar
Paull, C. K., Brewer, P. G., Ussler, W. III, et al., 2003. An experiment demonstrating that methane slumping is a mechanism to transfer methane from seafloor gas-hydrate deposits into the upper ocean and atmosphere. Geo-Marine Letters, 22, 189–203.Google Scholar
Pecher, I. A., Ranero, C. R., Huene, R., Minshull, T. A., and Singh, S. C., 1998. The nature and distribution of bottom simulating reflectors at the Costa Rican convergent margin. Geophysical Journal International, 133, 219–29.CrossRefGoogle Scholar
Pecher, I., Henrys, S., and Zhu, H., 2003. Methane focussing on the Hikurangi Margin, New Zealand – inferences from the reflection strength of BSRs. European Geophysical Society–American Geophysical Union–European Union of Geosciences Joint Assembly, Nice, 6–11 April, Abstract 8018.
Pecher, I., Kukowski, N., Chiswell, S., et al., 2004. Seafloor erosion from repeated dissociation and formation of gas hydrates? Evidence from the Hikurangi Margin, New Zealand. Geophysical Research Abstracts, 6, 01698.Google Scholar
Peckman, J., Thiel, V., Michaelis, W., et al., 1999. Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; northern Italy): microbially induced authigenic carbonates. International Journal of Earth Sciences, 88, 60–75.CrossRefGoogle Scholar
Peckmann, J., Reimer, A., Luth, U., et al., 2001. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Marine Geology, 177, 129–50.CrossRefGoogle Scholar
Perfit, M. R. and Davidson, J. P., 2000. Plate tectonics and volcanism. In Sigurdsson, H. (ed.), Encyclopedia of Volcanoes. New York, Academic Press, 89–131.CrossRef
Petford, N. and McCaffery, K. J. W., 2003. Hydrocarbons in Crystalline Rocks. Geological Society of London, Special Publication 214.Google Scholar
Pflüger, F., 1999. Matground structures and redox facies. Palaios, 14, 25–39.CrossRefGoogle Scholar
Pichler, T. and Dix, G. R., 1996. Hydrothermal venting within a coral reef ecosystem, Ambitle Island, Papua New Guinea. Geology, 24, 435–8.2.3.CO;2>CrossRefGoogle Scholar
Pieri, M. and Mattavelli, L., 1986. Geologic framework of Italian petroleum resources. American Association of Petroleum Geologists (Bulletin), 70, 103–30.Google Scholar
Pimenov, N. V., Rusanov, I. I., Poglazova, M. N., et al., 1997. Bacterial mats on coral-shaped carbonate structures in methane seep areas of the Black Sea. Mikrobiologiya, 66, 354–60. (In Russian.)Google Scholar
Pimenov, N., Savvichev, A., Lein, A., and Ivanov, M., 2000. Microbiology of North Atlantic cold seeps. Abstracts of the Sixth International Conference on Gas in Marine Sediments, St Petersburg VNIIOkeangeologia, 111.
Pinheiro, L., Ivanov, M., Sautkin, A., et al., 2003. Mud volcanism in the Gulf of Cadiz: results from the TTR-10 cruise. Marine Geology, 195, 131–51.CrossRefGoogle Scholar
Piper, D. J. W., Shor, A. N., Farre, J. A., O'Connell, S., and Jacobi, R., 1985. Sediment slides and turbidity currents on the Laurentian Fan: sidescan sonar investigations near the epicenter of the 1929 Grand Banks earthquake. Geology, 13, 538–41.2.0.CO;2>CrossRefGoogle Scholar
Planke, S., Svensen, H., Jamtveit, B., and Podladtchikov, Y., 2002. Seeps and sediment volcanism in volcanic basins, part II: marine seismic and borehole analysis in the V⊘ring and M⊘re basins, Norway. In Gas in Marine Sediments, Seventh International Conference, Baku, Azerbaijan, 7th-12th October 2002. Baku, Nafta Press, 159–60.
Planke, S., Svensen, H., Hovland, M., Banks, D. A., and Jamtveit, B., 2003. Mud and fluid migration in active mud volcanoes in Azerbaijan. Geo-Marine Letters, 23, 258–68.CrossRefGoogle Scholar
Platt, J., 1977. Significance of pockmarks for engineers. Offshore Engineer, August 1977, 45.Google Scholar
Playford, P. E., Cockbain, A. E., and Low, O. H., 1976. Geology of the Perth Basin, Western Australia. Geological Survey of Western Australia, Bulletin 124.Google Scholar
Pontoise, B. and Hello, Y., 2002. Monochromatic infra-sound waves recorded offshore Ecuador: possible evidence of methane release. Terra Nova, 14, 425–35.Google Scholar
Pontoppidan, E., 1752. Det f⊘rste fors⊘g paa Norges Naturlige Historie. (The first attempt on Norway's natural history.) Copenhagen. (In Norwegian.)Google Scholar
Popenoe, P., Schmuck, E. A., and Dillon, W. P., 1993. The Cape Fear landslide: slope failure associated with salt diapirism and gas hydrate decomposition. In Schwab, W. C., Lee, H. J., and Twichell, D. C. (eds.), Submarine Landslides: Selected Studies in the US Exclusive Economic Zone. United States Geological Survey, Bulletin, 2002, 40–53.
Popescu, I., Lericolais, G., Panin, N., et al., 2004. The Danube submarine canyon (Black Sea: morphology and sedimentary processes). Marine Geology, 206, 249–65.CrossRefGoogle Scholar
Porfir'ev, V. B., 1974. Inorganic origin of petroleum. American Association of Petroleum Geologists (Bulletin), 58, 3–33.Google Scholar
Potter, J. and Konnerup-Madison, J., 2003. Hydrocarbon occurrences in igneous rocks. In Petford, N. and McCaffery, K. J. W., 2003. Hydrocarbons in Crystalline Rocks. Geological Society of London, Special Publication 214, 151–73.Google Scholar
Powell, E. N. and Bright, T. J., 1981. A thiobios does exist – Gnathostomulid domination of the canyon community at the East Flower Garden Brine Seep. Internationale Revue der Gesamten Hydrobiologie, 66, 675–83.CrossRefGoogle Scholar
Powell, E. N., Bright, T. J., Woods, A., and Gittings, S., 1983. Meiofauna and the thiobios in the East Flower Garden Brine Seep. Marine Biology, 73, 269–83.CrossRefGoogle Scholar
Premchitt, J., Rad, N. S., To, P., Shaw, R., and James, J. W. C., 1992. A study of gas in marine sediments in Hong Kong. Continental Shelf Research, 12, 1251–64.CrossRefGoogle Scholar
Prince, P. K., 1990. Current drilling practice and the occurrence of shallow gas. In Ardus, D. A. and Green, C. D. (eds.), Safety in Offshore Drilling: the Role of Shallow Gas Surveys. Dordrecht, Kluwer Academic Publishers, 3–25.CrossRef
Prior, D. B. and Coleman, J. M., 1982. Active slides and flows in underconsolidated marine sediments on the slopes of Mississippi Delta. In Saxov, S. and Nieuwenhuis, J. K. (eds.), Marine Slides and Other Mass Movements. New York, Plenum Press, 21–49.CrossRef
Prior, D. B. and Hooper, J. R., 1999. Sea floor engineering geomorphology: recent achievements and future directions. Geomorphology, 31, 411–39.CrossRefGoogle Scholar
Prior, D. B., Doyle, E. H., and Kaluza, M. J., 1989. Evidence for sediment eruption on deep sea floor, Gulf of Mexico. Science, 243, 517–19.CrossRefGoogle ScholarPubMed
Pryor, T. A., 1995. New described super-nodule resource. Sea Technology, September, 15–18.Google Scholar
Querellou, J., 2003. Biotechnology of marine extremophiles. Book of Abstracts, International Conference on the sustainable development of the Mediterranean and Black Sea environment, Thessaloniki, Greece, 28 May – 1 June (extended abstract).
Quigley, D. C., Hornafius, J. S., Luyendyk, B. P., et al., 1999. Decrease in natural marine hydrocarbon seepage near Coal Oil Point, California, associated with offshore oil production. Geology, 27, 1047–50.2.3.CO;2>CrossRefGoogle Scholar
Rad, U., Rösch, H., Berner, U., et al., 1996. Authigenic carbonates derived from oxidized methane vented from the Makran accretionary prism off Pakistan. Marine Geology, 136, 55–77.Google Scholar
Rad, U., Berner, U., Delisle, G., et al., 2000. Gas and fluid venting at the Makran accretionary wedge off Pakistan. Geo-Marine Letters, 20, 10–19.Google Scholar
Ranero, C. R. and Huene, R., 2000. Subduction erosion along the Middle America Convergent Margin. Nature, 404, 748–52.CrossRefGoogle ScholarPubMed
Rao, Y. H., Subrahmanyam, C., Rastogi, A., and Deka, B., 2001. Anomalous seismic reflections related to gas/gas hydrate occurrences along the western continental margin of India. Geo-Marine Letters, 21, 1–8.Google Scholar
Rathburn, A. E., Levin, L. A., Held, Z., and Lohmann, K. C., 2000. Benthic foraminifera associated with cold methane seeps on the northern California margin: ecology and stable isotopic composition. Marine Micropaleontology, 38, 247–66.CrossRefGoogle Scholar
Raynaud, D., Chappellaz, J., and Blünier, T., 1998. Ice-core record of atmospheric methane changes: relevance to climatic changes and possible gas hydrate sources. In Henriet, J.-P. and Mienert, J. (eds.), Gas hydrates: Relevance to World Margin Stability and Climate Change. Geological Society of London, Special Publication 137, 293–302.
Raynaud, D., Jouzel, J., Barnola, J. M., et al., 1993. The ice record of greenhouse gases. Science, 259, 926–34.CrossRefGoogle Scholar
Reeburgh, W. S., 1969. Observations of gases in Chesapeake Bay sediments. Limnology and Oceanography, 14, 368–75.CrossRefGoogle Scholar
Reeburgh, W. S., 1980. Anaerobic methane oxidation: rate depth distribution in Skan Bay sediments. Earth & Planetary Science Letters, 47, 345–52.CrossRefGoogle Scholar
Reeburgh, W. S., 1996. ‘Soft spots’ in the global methane budget. In Lidstrom, M. F. and Tabita, F. R. (eds.), Microbial Growth on C1 Compounds. Dordrecht, Kluwer Academic Publishing, 334–42.CrossRef
Reeburgh, W. S., Whalen, S. C., and Alperin, M. J., 1993. The role of methylotrophy in the global methane budget. In Murrell, J. C. and Kelly, D. P. (eds.), Microbial Growth on C1 Compounds. Andover, Intercept, 1–14.
Rehder, G. and Suess, E., 2001. Methane and pCO2 in the Kuroshio and the South China Sea during maximum summer surface temperatures. Marine Chemistry, 75, 89–108.CrossRefGoogle Scholar
Rehder, G., Brewer, P. W., Pletzer, E. T., and Friederich, G., 2002. Enhanced lifetime of methane bubble stream within the deep ocean. Geophysical Research Letters, 29, DOI: 10.1029/2001GL013966.CrossRefGoogle Scholar
Rehder, G., Keir, R. S., Suess, E., and Pohlmann, T., 1998. The multiple sources and patterns of methane in North Sea waters. Aquatic Geochemistry, 4, 403–27.CrossRefGoogle Scholar
Rehder, G., Keir, R. S., Suess, E., and Rhein, M., 1999. Methane in the northern Atlantic controlled by oxidation and atmospheric history. Geophysical Research Letters, 26, 587–90.CrossRefGoogle Scholar
Reich, C., Shinn, E. A., Hickey, T. D., and Tihansky, A. B., 1998. Shallow groundwater transport in highly permeable limestones in the Florida Keys: a tracer experiment. National Ground Water Association National Convention, Association of Ground Water Scientists and Engineers, Programme, 179–80 (abstract).
Reid, R. P., Visscher, P. T., Decho, A. W., et al., 2000. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature, 406, 989–92.CrossRefGoogle ScholarPubMed
Reimer, A., Peckmann, J., and Reitner, J., 2002. Methane-derived carbonate mineralisation in the northwestern Black Sea. Gas Hydrates in the Geosystem, Status seminar. Geotechnologien Science Report No. 1. Kiel, GEOMAR, 105–6 (abstract).
Reston, T. J., Pennell, J., Stubenrauch, A., Walker, I., and Perez-Gussinye, M., 2001. Detachment faulting, mantle serpentinization, and serpentinite-mud volcanism beneath the Porcupine Basin, southwest of Ireland. Geology, 29, 587–90.2.0.CO;2>CrossRefGoogle Scholar
Reysenbach, A.-L. and Shock, E., 2002. Merging genomes with geochemistry in hydrothermal ecosystems. Science, 296, 1077–82.CrossRefGoogle ScholarPubMed
Reyss, J. L., Lemaitre, N., Bonte, P., and Franck, D., 1987. Anomalous 234U/238U ratios in deep-sea hydrothermal deposits. Nature, 325, 798–800.CrossRefGoogle Scholar
Rice, D. D., 1992. Controls, habitat, and resource potential of ancient bacterial gas. In Vially, R. (ed.), Bacterial Gas. Paris, Editions Technip, 91–118.
Rice, D. D., 1993. Biogenic gas: controls, habitat, and resource potential. In Howells, D. G. (ed.), The Future of Energy Gases. United States Geological Survey Professional Paper 1570, 583–606.
Rice, D. D. and Claypool, G. E., 1981. Generation, accumulation, and resource potential of biogenic gas. American Association of Petroleum Geologists, 65, 5–25.Google Scholar
Richardson, M. D. and Davis, A. M. (eds.), 1998. Modeling gassy sediment structure and behavior. Continental Shelf Research, 18, Nos. 14–15, 1669–964.Google Scholar
Richmond, W. C. and Burdick, D. J., 1981. Geologic hazards and constraints of offshore northern and central California. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 4117.
Riding, R., 2000. Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology, 47, Supplement 1, 179–214.CrossRefGoogle Scholar
Riding, R., 2002. Structure and composition of organic reefs and carbonate mud mounds: concepts and categories. Earth-Science Reviews, 58, 163–231.CrossRefGoogle Scholar
Riedel, M., Spence, G. D., Chapman, N. R., and Hyndman, R. D., 2002. Seismic investigations of a vent field associated with gas hydrates, offshore Vancouver Island. Journal of Geophysical Research, 107, 2200.CrossRefGoogle Scholar
Rise, L., Sættem, J., Fanavoll, S., et al., 1999. Seabed pockmarks related to fluid migration from Mesozoic bedrock strata in the Skagerrak offshore Norway. Marine and Petroleum Geology, 16, 619–31.CrossRefGoogle Scholar
Ritger, S., Carson, B., and Suess, E., 1987. Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin. Geological Society of America, (Bulletin), 98, 147–56.2.0.CO;2>CrossRefGoogle Scholar
Rivkin, R. B., Bosch, I., Pearse, J. S., and Lassard, E. J., 1986. Bacteriovory: a novel feeding mode for Asteroid larvae. Science, 233, 1311–14.CrossRefGoogle Scholar
Roberts, H. H. and Aharon, P., 1994. Hydrocarbon-derived carbonate build-ups of the northern Gulf of Mexico continental slope: a review of submersible investigations. Geo-Marine Letters, 14, 135–48.CrossRefGoogle Scholar
Roberts, H. H. and Carney, R. S., 1997. Evidence of episodic fluid, gas, and sediment venting on the northern Gulf of Mexico continental slope. Economic Geology, 92, 863–79.CrossRefGoogle Scholar
Roberts, H. H., Sassen, R., Carney, R., and Aharon, P., 1989. 13C-depleted authigenic carbonate buildups from hydrocarbon seeps, Louisiana Continental Slope. Transactions of the Gulf Coast Association of Geological Societies, XXXIX, 523–30.Google Scholar
Roberts, H. H., Aharon, P., Carney, R., Larkin, J., and Sassen, R., 1990. Seafloor responses to hydrocarbon seeps, Louisiana continental slope. Geo-Marine Letters, 10, 232–43.CrossRefGoogle Scholar
Roberts, H. H., Wiseman, W. J., jr, Hooper, J., and Humphrey, G. D., 1999a. Surficial gas hydrates of the Louisiana continental slope – initial results of direct observations and in situ data collection. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 10770.
Roberts, H. H., Menzies, D., and Humphrey, G. D., 1999b. Acoustic wipe-out zones – a paradox for interpreting seafloor geologic/geotechnical characteristics (an example from Garden Banks 161). Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 10921.
Roberts, J. M., Long, D., Wilson, J. B., Mortensen, P. B., and Gage, J. D., 2003. The cold-water coral Lophelia pertusa (Scleractinia) and enigmatic seabed mounds along the north-east Atlantic margin: are they related?Marine Pollution Bulletin, 46, 7–20.CrossRefGoogle ScholarPubMed
Robertson, A. H. F., Emeis, K.-C., Richter, C., et al., 1998. Collision-related break-up of a carbonate platform (Eratosthenes Seamount) and mud volcanism on the Mediterranean Ridge: preliminary synthesis and implications of tectonic results of ODP Leg 160 in the eastern Mediterranean Sea. In Cramp, A., MacLead, C. J., Lee, S. V., and Jones, E. J. W. (eds.), Geological Evolution of Ocean Basins: Results from the Ocean Drilling Program. Geological Society of London, Special Publication 131, 243–71.
Robigou, V., Delaney, J. R., and Stakes, D. S., 1993. Large massive sulphide deposits in a newly discovered active hydrothermal system, the High-Rise Field, Endeavour Segment, Juan de Fuca Ridge. Geophysical Research Letters, 20, 1887–90.CrossRefGoogle Scholar
Rogers, A. D., 1994. The biology of seamounts. Advances in Marine Biology, 30, 305–50.CrossRefGoogle Scholar
Rohde, K., 1992. Latitudinal gradients in species diversity: the search for the primary cause. Oikos, 65, 514–27.CrossRefGoogle Scholar
Rona, P. A., 1984. Hydrothermal mineralization at ocean ridges. Canadian Mineralogist, 26, 431–65.Google Scholar
Rona, P. A. and Scott, S. D., 1993. Preface to a special issue on sea-floor hydrothermal mineralization: new perspectives. Economic Geology, 88, 1935–76.CrossRefGoogle Scholar
Roseen, R., Brannaka, L., and Ballestero, T. P., 2001. Assessing estuarine groundwater nutrient loading by thermal imagery and field techniques verified by piezometric mapping: a methodology evaluation. Geological Society of America Annual Meeting, Boston, MA, November 5–8. (http://gsa.confrenc.com/gsa2001AM/finalprogram/)
Rougerie, F. and Wauthy, B., 1988. The endo-upwelling concept: a new paradigm for solving an old paradox. Proceedings of the 6th International Coral Reef Symposium, Australia, 3, 1–6.Google Scholar
Sadler, H. E. and Serson, H. V., 1981. Freshwater anchor ice along an arctic beach. Arctic, 34, 62–3.CrossRefGoogle Scholar
Saffer, D. M. and Bekins, B. A., 1998. Episodic fluid flow in the Nankai accretionary complex: timescale, geochemistry, flow rates, and fluid budget. Journal of Geophysical Research, 103, 30351–70.CrossRefGoogle Scholar
Sahimi, M., 1994. Applications of Percolation Theory. London, Taylor & Francis.Google Scholar
Sahling, H., Galkin, S. V., Salyuk, A., et al., 2003. Depth-related structure and ecological significance of cold-seep communities – a case study from the Sea of Okhotsk. Deep-Sea Research, 550, 1391–409.CrossRefGoogle Scholar
Sahling, H., Rickert, D., and Suess, E., 1999. Faunal community structure along a sulphide gradient: interrelationship between porewater chemistry and organisms associated with gas hydrates, Oregon subduction zone. EOS – Transactions of the American Geophysical Union, 80, Abstract F510.Google Scholar
Sain, K., Minshull, T. A., Singh, S. C., and Hobbs, R. W., 2000. Evidence for a thick free gas layer beneath the bottom simulating reflector in the Makran accretionary prism. Marine Geology, 164, 3–12.CrossRefGoogle Scholar
Sakai, H., Gamo, T., Ogawa, Y., and Boulegue, J., 1992. Stable isotope ratios and origins of carbonates associated with cold seepage at the eastern Nankai Trough. Earth & Planetary Science Letters, 109, 391–404.CrossRefGoogle Scholar
Salas, C. and Woodside, J., 2002. Lucinoma kazani n. sp. (Mollusca: Bivalvia): evidence of a living benthic community associated with a cold seep in the eastern Mediterranean Sea. Deep-Sea Research I, 49, 991–1005.CrossRefGoogle Scholar
Salisbury, R. S. K., 1990. Shallow gas reservoirs and migration paths over a central North Sea diapir. In Ardus, D. A. and Green, C. D. (eds.), Safety in Offshore Drilling: the Role of Shallow Gas Surveys. Dordrecht, Kluwer Academic Publishers, 167–80.CrossRef
Salisbury, R. S. K., Denley, M. R., and Douglas, G., 1996. The value of integrating existing 3D seismic into shallow gas studies. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 7990.
Sandstrom, M. W., Meredith, D., and Kaplan, I. R., 1983. Hydrocarbon geochemistry in surface sediments of Alaskan outer continental shelf: Part 2. Distribution of hydrocarbon gases. American Association of Petroleum Geologists (Bulletin), 67, 2047–52.Google Scholar
Sansone, F. J., 1993. Global carbon dioxide and methane fluxes from shallow-water marine carbonate frameworks. In Oremland, R. S. (ed.), Biogeochemistry of Global Change: Radiatively Active Trace Gases. New York, Chapman and Hall, 521–9.CrossRef
Sansone, F. J., Holmes, M. E., and Popp, B. N., 1999. Methane stable isotopic ratios and concentrations as indicators of methane dynamics in estuaries. Global Biogeochemical Cycles, 13, 463–74.CrossRefGoogle Scholar
Sarmiento, J. L., Broecker, W. S., and Biscaye, P. B., 1978. Excess bottom radon 222 distribution in deep ocean passages. Journal of Geophysical Research, 83, 5068–86.CrossRefGoogle Scholar
Sassen, R. and MacDonald, I., 1997. Hydrocarbons of experimental and natural gas hydrates, Gulf of Mexico continental slope. Organic Geochemistry, 26, 289–93CrossRefGoogle Scholar
Sassen, R., Brooks, J. M., MacDonald, I. R., Kennicut, M. C., II, and Guinasso, N. L., jr, 1993a. How oil seeps, discoveries relate in deepwater Gulf of Mexico. Oil and Gas Journal, 19 April, 64–9.Google Scholar
Sassen, R., Brooks, J. M., MacDonald, I. R., et al., 1993b. Association of oil seeps and chemosynthetic communities with oil discoveries, upper continental slope, Gulf of Mexico. Transactions of the Gulf Coast Association of Geological Societies, 43, 349–55.Google Scholar
Sassen, R., Cole, G. A., Drozd, R., and Roberts, H. H., 1994. Oligocene to Holocene hydrocarbon migration and salt-dome carbonates, northern Gulf of Mexico. Marine and Petroleum Geology, 11, 55–65.CrossRefGoogle Scholar
Saunders, D. F., Burston, K. R., and Thompson, C. K., 1999. Model for hydrocarbon microseepage and related near-surface alterations. American Association of Petroleum Geologists (Bulletin), 83, 170–85.Google Scholar
Sautkin, A., Talukder, A. R., Comas, M. C., Soto, J. I., and Alekseev, A., 2003. Mud volcanoes in the Alboran Sea: evidence from micropalaeontological and geophysical data. Marine Geology, 195, 237–61.CrossRefGoogle Scholar
Savidge, G., Forster, P., and Voltolina, D., 1984. Intense localised productivity in the Irish Sea. Estuarine, Coastal and Marine Sciences, 18, 157–64.CrossRefGoogle Scholar
Sawyer, W. K., Boyer, C. M., II, Frantz, J. H., jr, and Yost, A. B., II, 2000. Comparative assessment of natural gas hydrate production models. SPE/CERI Gas Technology Symposium, Calgary, Alberta, Canada, April 3–5 SPE Paper No. 62513.
Scanlon, K. M. and Knebel, H. J., 1985. Pockmarks on the floor of Penobscot Bay, Maine. Geological Society of America (Bulletin), 17, 62 (abstract).Google Scholar
Scanlon, K. and Knebel, H. J., 1989. Pockmarks in the floor of Penobscot Bay, Maine. Geo-Marine Letters, 9, 53–8.CrossRefGoogle Scholar
Schmaljohann, R. and Flügel, H. J., 1987. Methane-oxidizing bacteria in Pogonophora. Sarsia, 72, 91–8.CrossRefGoogle Scholar
Schmaljohann, R., Faber, E., Whiticar, M. J., and Dando, P. R., 1990. Co-existence of methane- and sulphur-based endosymbioses between bacteria and invertebrates at a site in the Skagerrak. Marine Ecology Progress Series, 61, 119–24.CrossRefGoogle Scholar
Schmidt, M., Botz, R., Faber, E., et al., 2003. High-resolution methane profiles across anoxic brine–seawater boundaries in the Atlantis-II, Discovery, and Kebrit deeps (Red Sea). Chemical Geology, 200, 359–75.CrossRefGoogle Scholar
Schmuck, E. A. and Paull, C. K., 1993. Evidence for gas accumulation associated with diapirism and gas hydrates at the head of the Cape Fear Slide. Geo-Marine Letters, 13, 145–52.CrossRefGoogle Scholar
Schmuck, E. A., Poponoe, P., and Paull, C. K., 1992. Gas venting at the head of the Cape Fear Slide?Geological Association of America, Southeastern Section, Abstracts with Programs, 24, 2 (abstract).Google Scholar
Schoell, M., 1980. The hydrogen and carbon isotope composition of methane from natural gases of various origins. Geochimica et cosmochimica acta, 44, 649–61.CrossRefGoogle Scholar
Scholwater, T. T., 1979. Mechanics of secondary hydrocarbon migration and entrapment. American Association of Petroleum Geologists (Bulletin), 63, 723–60.Google Scholar
Schroot, B. M. and Schüttenhelm, R. T. E., 2003. Expressions of shallow gas in the Netherlands North Sea. Netherlands Journal of Geoscience / Geologie en Mijnbouw, 82, 91–105.CrossRefGoogle Scholar
Schubert, C. J., Nürnberg, D., Scheele, N., Pauer, F., and Kriews, M., 1997. 13C isotope depletion in ikaite crystals: evidence for methane release from the Siberian shelves?Geo-Marine Letters, 17, 169–74.CrossRefGoogle Scholar
Schüler, F., 1952. Untersuchungen über die Machtigkeit von Schlikschichten mit Hilfe des Echographen. Deutsche Hydrographische Zeitschrift, 5, 220–31. (In German.)CrossRefGoogle Scholar
Schultz, G. and Pickering, S., 2002. Geohazard prediction from seismic applications helps prevent drilling losses. Offshore, October, 100.Google Scholar
Schulz, H.-M., Emeis, K.-C., and Volkman, N., 1997. Organic carbon provenance and maturity in the mud breccia from the Napoli mud volcano: indicators of origin and depth of burial. Earth & Planetary Science Letters, 147, 141–51.CrossRefGoogle Scholar
Schumacher, D., 2000. Surface geochemical exploration for oil and gas: new life for old technology. The Leading Edge, 19, 258–61.CrossRefGoogle Scholar
Schumm, S. A., 1970. Experimental studies on the formation of lunar surface features by fluidization. Geological Society of America (Bulletin), 81, 2539–52.CrossRefGoogle Scholar
Schüttenhelm, R. T. E., Kuijpers, A., and Duin, E. J. Th., 1985. The geology of some Atlantic abyssal plains and the engineering implications. In Advances in Underwater Technology and Offshore Engineering. London, Graham & Trotman, 3, 29–43.Google Scholar
Schwartz, H., Sample, J., Weberling, K. D., Minisini, D., and Moore, J. C., 2003. An ancient linked fluid migration system: cold seep deposits and sandstone intrusions in the Panoche Hills, California, USA. Geo-Marine Letters, 23, 340–50.CrossRefGoogle Scholar
Scoffin, T. P., 1988. The environments of production and deposition of calcareous sediments on the shelf west of Scotland. Sedimentary Geology, 60, 107–24.CrossRefGoogle Scholar
Scott, S. D., 1997. Submarine hydrothermal systems and deposits. In Barnes, H. K. (ed.), Geochemistry of Hydrothermal Ore Deposits, 3rd edn. New York, John Wiley, 797–876.
Scott, S. D., 2001. Deep ocean mining. Geoscience Canada, 28, 87–96.Google Scholar
Scranton, M. I. and McShane, K., 1991. Methane fluxes in the southern North Sea: the role of European rivers. Continental Shelf Research, 11, 37–52.CrossRefGoogle Scholar
Seach, J., 2001. Mud volcano offshore Trinidad. http://www.volcanolive.com (accessed June 2005).Google Scholar
Seibold, B. and Berger, W. H., 1982. The Sea Floor: an Introduction to Marine Geology. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Seiler, W. and Schmidt, U., 1974. Dissolved nonconservative gases in seawater. In Goldberg, E. (ed.), The Sea.New York, Wiley, vol. V, 219–43.
Seliverstov, N. I., Torokhov, P. I., Egorov, Yu. O., et al., 1994. Active seeps and carbonates from the Kamchatsky Gulf (east Kamchatka). Bulletin of the Geological Society of Denmark, 41, 50–4.Google Scholar
Selley, R. C., 1998. Elements of Petroleum Geology, 2nd edn. London, Academic Press.Google Scholar
Semiletov, I. P., 1999. Aquatic sources of CO2 and CH4 in the ploar regions. Journal of the Atmospheric Sciences, 56, 286–306.2.0.CO;2>CrossRefGoogle Scholar
Gupta, Sen B. K. and Aharon, P., 1994. Benthic foraminifera of bathyal hydrocarbon vents of the Gulf of Mexico: initial report on communities and stable isotopes. Geo-Marine Letters, 14, 88–96.CrossRefGoogle Scholar
Shakirov, R., Obzhirov, A., Suess, E., Salyuk, A., and Biebow, N., 2004. Mud volcanoes and gas vents in the Okhotsk Sea area. Geo-Marine Letters, 24, 140–9.CrossRefGoogle Scholar
Shanks, A. L., 1987. The onshore transport of an oil spill by internal waves. Science, 235, 1198–200.CrossRefGoogle ScholarPubMed
Sharp, A. and Samuel, A., 2004. An example study using conventional 3D seismic data to delineate shallow gas drilling hazards from the West Nile Delta Deep Marine Concession, offshore Nile Delta, Egypt. Petroleum Geoscience, 10, 121–9.CrossRefGoogle Scholar
Lollar, Sherwood B., Westgate, T. D., Ward, J. A., Slater, G. F., and Lacrampe-Couloume, G., 2002. Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs. Nature, 416, 522–4.CrossRefGoogle Scholar
Shinn, B. U., Steinen, R. P., Lidz, B. H., and Halley, R. B., 1985. Bahamian whitings – no fish story. American Association of Petroleum Geologists (Bulletin), 69, 307 (abstract).Google Scholar
Shinn, E. A., 1969. Submarine lithification of Holocene carbonate sediments in the Persian Gulf. Sedimentology, 12, 109–44.CrossRefGoogle Scholar
Shirayama, Y. and Ohta, S., 1990. Meiofauna in a cold-seep community off Hatsushima, central Japan. Journal of the Oceanographical Society of Japan, 46, 118–24.CrossRefGoogle Scholar
Sholkowitz, E., 1973. Interstitial water chemistry of the Santa Barbara Basin sediments. Geochimica et cosmochimica acta, 37, 2043–73.CrossRefGoogle Scholar
Showstack, R., 2000. Harnessing methane. EOS – Transactions of the American Geophysical Union, 81(20), 222.Google Scholar
Sibuet, M. and Olu, K., 1998. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Research II, 45, 517–67.CrossRefGoogle Scholar
Sibuet, M. and Olu-Le Roy, K., 2002. Peculiar benthic ecosystems of continental margins and recent discoveries: major ecological patterns of methane seeps and coral communities from submersible observations. In Cunha, M., Pinheiro, L., and Suzyumov, A. (eds.), Geosphere/Biosphere/Hydrosphere coupling processes, Fluid Escape Structures, and Tectonics at Continental Ridges. Paris, UNESCO, IOC Workshop Report No. 183.
Sibuet, M., Juniper, S. K., and Pautot, G., 1988. Cold-seep benthic communities in the Japan subduction zones: geological control of community development. Journal of Marine Research, 46, 333–48.CrossRefGoogle Scholar
Siddiquie, H. N., Rao, D. G., and Vora, K. H., 1985. An appraisal of the seabed conditions on the northwestern continental shelf of India. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 4966.
Sieburth, J. M., 1987. Contrary habits for redox-specific processes: methanogenesis in oxic waters and oxidation in anoxic waters. In Sleigh, M. A. (ed.), Microbes in the Sea. Chichester, Ellis Horwood, 11–38.
Sieck, H. C., 1973. Gas charged sediment cones pose a possible hazard to offshore drilling. Oil and Gas Journal, July 16, 148–63.Google Scholar
Sieck, H. C., 1975. High resolution geophysical studies for resource development and environmental protection. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 2179.
Sills, G. C. and Gonzalez, R., 2001. Consolidation of naturally gassy soft soil. Géotechnique, 51, 629–39.CrossRefGoogle Scholar
Sills, G. C. and Nageswaran, S., 1984. Compressibility of gassy soil. Proceedings, Oceanology International Conference, Brighton, London, Society for Underwater Technology, Paper 012.6.
Sills, G. C. and Wheeler, S. J., 1992. The significance of gas for offshore operations. Continental Shelf Research, 12, 1239–50.CrossRefGoogle Scholar
Sills, G. C., Wheeler, S. J., Thomas, S. D., and Gardner, T. N., 1991. Behaviour of offshore soils containing gas bubbles. Géotechnique, 41, 227–41.CrossRefGoogle Scholar
Silver, E. A., 1996. Introduction to the special section on fluid flow in the Costa Rica accretionary prism. Geophysical Research Letters, 23, 881.CrossRefGoogle Scholar
Sim, R. H., 2001. The migration of gas through shallow marine sediments. Unpublished thesis, University of Sunderland.
Simoneit, B. R., 1993. Aqueous high-temperature and high-pressure organic geochemistry of hydrothermal vent systems. Geochimica et cosmochimica acta, 57, 3231–43.CrossRefGoogle ScholarPubMed
Simoneit, B. R., Lonsdale, P. F., Edmond, J. M., and Shanks, W. C., III, 1990. Deep-water hydrocarbon seeps in Guaymas Basin, Gulf of California. Applied Geochemistry, 5, 41–9.CrossRefGoogle Scholar
Sinton, J., 1997. The Manus spreading center near 3°22'S and the Worm Garden hydrothermal site: results of Mir2 submersible dive 15. Marine Geology, 142, 207–9.CrossRefGoogle Scholar
Skempton, A. W., 1954. The pore-pressure coefficients A and B. Géotechnique, 4, 143–7.CrossRefGoogle Scholar
Sloan, E. D., 1998. Clathrate Hydrates of Natural Gas, 2nd edn. New York, NY, Marcel Dekker.Google Scholar
Smetacek, V., Bodungen, B., Bröckel, K., and Zeitzschel, B., 1976. The plankton tower. II. Release of nutrients from sediments due to changes in the density of bottom water. Marine Biology, 34, 373–8.CrossRefGoogle Scholar
Smith, L., Zawadzki, W., and Findlater, L., 2001. Modeling of submarine groundwater discharge at Turkey Point, Florida. Geological Society of America, Annual Meeting, Boston, November 5–8. http://gsa.confex.com/gsa/2001AM/finalprogram/
Söderberg, P., 1993. Marine geological investigations in the Åland Sea and the Stockholm Archipelago, Sweden – seismic stratigraphy, tectonics and occurrences of gas related structures. Doctoral thesis, University of Stockholm.Google Scholar
Söderberg, P., 1997. Nature, origin and occurrences of hydrocarbons in a crystalline bedrock environment, Stockholm Archipelago, Sweden. Course Notes, Methane in Marine Sediments, Advanced Study Course, Longhirst, 7–25 July. Brussels, European Commission, MAST III Programme.
Söderberg, P. and Flodén, T., 1991. Pockmark developments along a deep crustal structure in the northern Stockholm Archipelago, Baltic Sea. Beiträge zur Meereskunde, 62, 79–102.Google Scholar
Söderberg, P. and Flodén, T., 1992. Gas seepages, gas eruptions and degassing structures in the seafloor along the Strömma tectonic lineament in the crystalline Stockholm Archipelago, east Sweden. Continental Shelf Research, 12, 1157–71.CrossRefGoogle Scholar
Sokolov, V. A., Buniat-Zade, Z. A., Goedekian, A. A., and Dadashev, F. G., 1969. The origin of gases of mud volcanoes and the regularities of their powerful eruptions. In Schenck, P. A. and Havemar, I. (eds.), Advances in Organic Geochemistry 1968. Oxford, Pergamon, 473–83.
Soley, J., 1910. The oilfields of the Gulf of Mexico. Scientific American, Supplement No. 1788, 9 April.Google Scholar
Solheim, A. and Elverh⊘i, A., 1985. A pockmark field in the central Barents Sea; gas from a petrogenic source?Polar Research, 3, 11–19.CrossRefGoogle Scholar
Solheim, A. and Elverh⊘i, A., 1993. Gas related sea-floor craters in the Barents Sea. Geo-Marine Letters, 13, 235–43.CrossRefGoogle Scholar
Soloviev, V. A., 2001. Gas-hydrate-prone areas of the ocean and gas hydrate accumulations. Journal of Conference Abstracts, 6(1), 158 (abstract/poster).Google Scholar
Soloviev, V. A., 2002. Global estimation of gas content in submarine gas hydrate accumulations. Geologiya i Geofizika (Russian Geology and Geophysics), 43, 648–61 (Russian edn.) / 609–24 (English edn.).Google Scholar
Soloviev, V. A. and Ginsburg, G. D., 1994. Formation of submarine gas hydrates. Bulletin of the Geological Society of Denmark, 41, 86–94.Google Scholar
Soloviev, V. A. and Ginsburg, G. D., 1997. Water segregation in the course of gas hydrate formation and accumulation in submarine gas-seepage fields. Marine Geology, 137, 59–68.CrossRefGoogle Scholar
Somoza, L., 2001. Hydrocarbon seeps, gas hydrate and carbonate chimneys in the Gulf of Cadiz: An example of interaction between tectonic and oceanographic controlling factors. Proceedings, Natural hydrocarbon seeps, global tectonics and greenhouse gas emissions, European Science Foundation, Exploratory Workshop, 27–28 August, 18 (abstract).
Somoza, L., Díaz-del-Río, V., León, R., et al., 2003. Seabed morphology and hydrocarbon seepage in the Gulf of Cadiz mud volcano area: acoustic imagery, multibeam and ultra-high resolution seismic data. Marine Geology, 195, 152–76.CrossRefGoogle Scholar
Soter, S., 1998. The Aigion earthquake of 1995: macroscopic anomalies. In Katsonopoulou, D., Schildardi, D., and Soter, S. (eds.), Helike II, Ancient Helike and Aigialeia. Aigion, Dora Katsonopoulou, 495–517.
Soter, S., 1999. Macroscopic seismic precursors and submarine pockmarks in the Corinth–Patras Rift, Greece. Tectonophysics, 308, 275–90.CrossRefGoogle Scholar
Soter, S. and Katsonopoulou, D., 1998. The search for ancient Helike, 1988–1995: geological, sonar and bore hole studies. In Katsonopoulou, D., Schildardi, D., and Soter, S. (eds.), Helike II, Ancient Helike and Aigialeia. Aigion, Dora Katsonopoulou, 67–116.
Southward, A. J., Southward, E. C., Dando, P. R., et al., 1981. Bacterial symbionts and low 13C/12C ratios in tissues of Pogonophora indicate unusual nutrition and metabolism. Nature, 293, 616–20.CrossRefGoogle Scholar
Spence, G. D., Chapman, N. R., Hyndman, R. D., and Cleary, C., 2001. Fishing trawler nets massive ‘catch’ of methane hydrates. EOS – Transactions of the American Geophysical Union, 82(50), 621, 627.CrossRefGoogle Scholar
Spies, R. B. and Davis, P. H., 1979. The infaunal benthos of a natural oil seep in the Santa Barbara Channel. Marine Biology, 50, 227–37.CrossRefGoogle Scholar
Spies, R. B. and Marais, Des D. J., 1983. Natural isotope study of trophic enrichment of marine benthic communities by petroleum seepage. Marine Biology, 73, 67–71.CrossRefGoogle Scholar
Spiess, V., Krastel, S., Wagner, M., and Ivanov, M., 2004. Seismoacoustic imaging of gas hydrate and fluid migration structures in the Sorokin Trough, Black Sea. METROL workshop on methane fluxes in ocean margin sediments, Utrecht, June.
Spivack, A. J., Kastner, M., and Ransom, B., 2002. Elemental and isotopic chloride geochemistry and fluid flow in the Nankai Trough. Geophysical Research Letters, 29, 1661–4.CrossRefGoogle Scholar
SRU (Seismic Research Unit, University of the West Indies), 2003. Kick 'em Jenny Submarine Volcano. http://www.uwiseismic.com/SRU_Site01/KeJ/kejhome.html (accessed 19 November 2003).
Stadnitskaia, A., Ivanov, M., and Gardner, J., 2000. Hydrocarbon gas composition and distribution in surface sediments of mud volcanic province, Gulf of Cadiz, NE Atlantic. Sixth International Conference on Gas in Marine Sediments, Abstracts Book. St Petersburg, VNIIOkeangeologia, 126–9 (abstract).
Stakes, D., Orange, D., Paduan, J. B., Salamy, K. A., and Maher, N., 1999. Cold-seeps and authigenic carbonate formation in Monterey Bay, California. Marine Geology, 159, 93–109.CrossRefGoogle Scholar
Stanley, D. J. and Warne, A. G., 1994. Worldwide initiation of Holocene marine deltas by deceleration of sea level rise. Science, 265, 228–31.CrossRefGoogle ScholarPubMed
Stanley-Wood, N. G., Obata, E., Takahasi, J., and Ando, K., 1990. Liquid fluidisation curves. Powder Technology, 60, 61–70.CrossRefGoogle Scholar
Stefanon, A., 1981. Pockmarks in the Adriatic Sea? In Ricci Lucchi, F. (ed.), Excursion Guide Book, International Association of Sedimentologists 2nd European Regional Meeting, Bologna. Bologna, Technoprint, 189–92 (abstract).
Stefansson, V., 1983. Physical environment of hydrothermal systems in Iceland and on submerged oceanic ridges. In Rona, P. A., Bostrom, K., Laubier, L., and Smith, K. L. jr (eds.), Hydrothermal Processes at Seafloor Spreading Centers. New York, Plenum Press, 321–60.CrossRef
Stewart, S. A., 1999. Seismic interpretation of circular geological structures. Petroleum Geoscience, 5, 273–85.CrossRefGoogle Scholar
Stoker, M. S., 1981. Pockmark Morphology: a Preliminary Description. Evidence for Slumping and Doming. Institute of Geological Sciences, Marine Geophysics Unit, Report 81/10.Google Scholar
Stoker, M. S., Hitchen, K., and Graham, C. C., 1993. The Geology of the Hebrides and West Shetland Shelves, and Adjacent Deep Water Areas. United Kingdom Offshore Regional Report. London, HMSO, for the British Geological Survey.Google Scholar
Stoll, R. D. and Bautista, E. O., 1998. Using the Biot theory to establish a baseline acoustic model for seafloor sediments. Continental Shelf Research, 18, 1839–58.CrossRefGoogle Scholar
Straughan, D., 1982. Observations on the effects of natural oil seeps in the Coal Oil Point area. Philosophical Transactions of the Royal Society of London, B, 297, 269–83.CrossRefGoogle Scholar
Strizhov, V. P., Ustinov, V. I., Nikolayev, S. D., and Isayeva, A. B., 1985. Conditions of formation of vein phosphates on Pacific Ocean seamounts as indicated by isotope data. Oceanology, 25, 90–4.Google Scholar
Strong, S. W. S., 1933. The Sponge Bay uplift, and the Hangaroa mud blowout. New Zealand Journal of Science and Technology, 15, 76–8.Google Scholar
Struckmeyer, H. I. M., Williams, A. K., Cowley, R., et al., 2002. Evaluation of hydrocarbon seepage in the Great Australian Bight. APPEA Journal, 2002, 371–85.CrossRefGoogle Scholar
Suess, E., 1977. Nutrients near the depositional interface. In McCave, J. (ed.), Benthic Boundary Layer. New York, Plenum Press, 57–9.CrossRef
Suess, E. and Massoth, G. J., 1984. Evidence for venting of pore waters from subducted sediments of the Oregon continental margin. EOS – Transactions of the American Geophysical Union, 65, 1089 (abstract).Google Scholar
Suess, E., Balzer, W., Hesse, K.-F., et al., 1982. Calcium carbonate hexahydrate from organic-rich sediments of the Antarctic Shelf: precursors of glendonites. Science, 216, 1128–31.CrossRefGoogle ScholarPubMed
Suess, E., Bohrmann, G., Huene, R., et al., 1998. Fluid venting in the eastern Aleutian Subduction Zone. Journal of Geophysical Research, 103, 2597–614.CrossRefGoogle Scholar
Suess, E., Bohrmann, G., Greinert, J., et al., 1999a. Giant cold vents and barite mineralization in the Derugin Basin. Fluid seeps on active continental margins. Convention Program, American Association of Petroleum Geologists, Pacific Section Convention, Monterey, CA, 28 April–1 May, 44 (abstract).
Suess, E., Torres, M. E., Bohrmann, G., et al., 1999b. Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia Convergent Margin. Earth & Planetary Science Letters, 170, 1–15.CrossRefGoogle Scholar
Sugisaki, R. and Mimura, K., 1994. Mantle hydrocarbons: abiotic or biotic?Geochimica et cosmochimica acta, 58, 2537–42.CrossRefGoogle ScholarPubMed
Suhayda, J. N., 1974. Determining nearshore infragravity wave spectra. Proceedings, International Symposium on Ocean Wave Measurement and Analysis. New Orleans, LA, September 9–11, 1974. New York, American Society of Civil Engineers, 54–63.
Sultan, N., Cochonat, P., Foucher, J.-P., et al., 2003. Effect of gas hydrate dissociation on seafloor slope stability. In Locat, J. and Mienert, J. (eds.), Submarine Mass Movements and Their Consequences. Dordrecht, Kluwer Academic Publishers, 103–11.CrossRef
Sumida, P. Y. G., Yoshinaga, M. Y., Madureira, L. A. S-P., and Hovland, M., 2004. Seabed pockmarks associated with deepwater corals off SE Brazilian continental slope, Santos Basin. Marine Geology, 207, 159–67.CrossRefGoogle Scholar
Sun, S.-C. and Liu, C.-S., 1993. Mud diapirs and submarine channel deposits in offshore Kaohsiung-Hengchun, southwest Taiwan. Petroleum Geology of Taiwan, 28, 1–14.Google Scholar
Svensen, H., Planke, S., Jamtveit, B., and Pedersen, T., 2003. Seep carbonate formation controlled by hydrothermal vent complexes: a case study from the V⊘ring Basin, the Norwegian Sea. Geo-Marine Letters, 23, 351–8.CrossRefGoogle Scholar
Sverdrup, H. U., Johnson, M. W., and Fleming, R. H., 1942. The Oceans, their Physics, Chemistry and General Biology. New York, NY, Prentice-Hall.Google Scholar
Swinbanks, D., 1985. Japan finds clams and trouble. Nature, 315, 624.CrossRefGoogle Scholar
Syvitski, J. P. M., Burrell, D. C., and Skei, J. M., 1987. Fjords; Processes and Products. New York, Springer-Verlag.Google Scholar
TANGANYDRO Group, 1992. Sublacustrine hydrothermal seeps in northern lake Tanganyika, east African Rift: 1991 Tanganydro expedition. BCREDP, Elf Aquitaine Production, 16, 55–81.
Taniguchi, M., Burnett, W. C., Cable, J. E., and Turner, J. V., 2002. Investigation of submarine groundwater discharge. Hydrological Processes, 16, 2115–29.CrossRefGoogle Scholar
Taniguchi, M., Wang, K., and Gamo, T., 2003. Land and Marine Hydrogeology. Amsterdam, Elsevier.Google Scholar
Tappin, D. R., Watts, P., McMurtry, G. M., Lafoy, Y., and Matsumotu, T., 2001. The Sissano, Papua New Guinea tsunami of July 1998 – offshore evidence on the source mechanism. Marine Geology, 175, 1–23.CrossRefGoogle Scholar
Tarasov, V. G., Propp, M. V., Propp, L. N., Blinov, S. V., and Kamenev, G. M., 1986. Shallow-water hydrothermal vents and a unique ecosystem of Kraternaya Caldera (Kurile Islands). Soviet Journal of Marine Biology, 2, 72–4. (In Russian.)Google Scholar
Tarasov, V. G., Propp, M. V., Propp, L. N., et al., 1990. Shallow-water gasohydrothermal vents of Ushishir Volcano and the ecosystem of Kraternaya Bight (the Kurile Islands). Marine Ecology, 11, 1–23.CrossRefGoogle Scholar
Tarasov, V. G., Sorokin, Y. I., Propp, M. V., et al., 1993. Structural and functional characteristics of marine ecosystems in zones of shallow-water gasohydrothermal activity in western Pacific Ocean. Izvestiya RAN, Seriya Biologicheskaya, 6, 914–26. (In Russian.)Google Scholar
Tarasov, V. G., Gebruk, A. V., Shulkin, V. M., et al., 1999. Effect of shallow-water hydrothermal venting on the biota of Matupi Harbour (Rabaul Caldera, New Britain Island, Papua New Guinea). Continental Shelf Research, 19, 79–116.CrossRefGoogle Scholar
Taylor, D. I., 1992. Nearshore shallow gas around the UK coast. Continental Shelf Research, 12, 1135–44.CrossRefGoogle Scholar
Taylor, J. C. M. and Illing, L. V., 1969. Holocene intertidal calcium carbonate cementation, Qatar, Persian Gulf. Sedimentology, 12, 69–107.CrossRefGoogle Scholar
Taylor, M. H., Dillon, W. P., and Pecher, I. A., 2000. Trapping and migration of methane associated with the gas hydrate stability zone at the Blake Ridge diapir: new insights from seismic data. Marine Geology, 164, 79–89.CrossRefGoogle Scholar
Taylor, R. K., 1984. Liquefaction of seabed sediments: Tri-axial test simulations. In Denness, B. (ed.), Seabed Mechanics. London, Graham and Trotman, 131–8.CrossRef
Tester, J., Holgate, H. R., Armellini, F. J., et al., 1993. Supercritical water oxidation technology. In Tedler, D. W. and Pohland, F. G. (eds.), Emerging Technologies in Hazardous Waste Management III. Washington, DC, American Chemical Society, 35–76.
Thatje, S., Gerdes, D., and Rachor, E., 1999. A seafloor crater in the German Bight and its effects on the benthos. Helgoland Marine Research, 53, 36–44.CrossRefGoogle Scholar
Thiel, V., Peckmann, J., Seifert, R., et al., 1999. Highly isotopically depleted isoprenoids: molecular markers for ancient methane venting. Geochimica et cosmochimica acta, 63, 3959–66.CrossRefGoogle Scholar
Thiel, V., Peckmann, J., Richnow, H.-H., et al., 2001. Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat. Marine Chemistry, 73, 97–112.CrossRefGoogle Scholar
Thießen, O., Schmidt, M., Botz, R., Schmitt, M., and Stoffers, P., 2004. Methane venting into the water column above Pitcairn and the Society–Austral seamounts, South Pacific. In Hekinian, R., Stoffers, P., and Chemineé, J.-L. (eds.), Oceanic Hotpsots: Intraplate Submarine Magmatism and Tectonism. Berlin, Springer-Verlag, 407–29.
Thomas, B. M., M⊘ller-Pedersen, P., Whiticar, M. F., and Shaw, N. D., 1985. Organic facies and hydrocarbon distributions in the Norwegian North Sea. In Thomas, B. M.et al. (eds.), Petroleum Geochemistry in the Exploration of the Norwegian Shelf. London, Graham and Trotman, 3–26, for Norwegian Petroleum Society.CrossRef
Thomas, G. S. P. and Connell, R. J., 1985. Iceberg drop, dump, and grounding structures from Pleistocene Glacio-lacustrine sediments, Scotland. Journal of Sedimentary Petrology, 55, 243–9.Google Scholar
Thor, D. R. and Nelson, C. H., 1979. A summary of interacting, surficial geologic processes and potential geologic hazards in the Norton Basin, northern Bering Sea. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 3400.
Thor, D. R. and Nelson, C. H., 1980. Ice gouging on the subarctic Bering Shelf. In United States Geological Survey Open File Report 80–979.
Thorarinsson, S., 1967. Some problems of volcanism in Iceland. Geologische Rundschau, 57, 1–20.CrossRefGoogle Scholar
Thrasher, J., Fleet, A. J., Hay, S., Hovland, M., and Düppenbecker, S., 1996. Understanding geology as the key to using seepage in exploration: the spectrum of seepage styles. In Schumacher, D. and Abrams, M. A. (eds.), Hydrocarbon Migration and its Near-Surface Expression. American Association of Petroleum Geologists, Memoir 66, 223–41.
Thurman, H. V., 1993. Essentials of Oceanography, 4th edn. New York, Macmillan.Google Scholar
Tilbrook, B. D. and Karl, D. M., 1995. Methane sources, distributions and sinks from California coastal waters to the oligotrophic North Pacific gyre. Marine Chemistry, 49, 51–64.CrossRefGoogle Scholar
Tinivella, U., Lodolo, E., Camerlenghi, A., and Boehm, G., 1998. Seismic tomography study of a bottom simulating reflector off the south Shetland Islands (Antarctica). In Henriet, J-P. and Mienert, J. (eds.), Gas Hydrates: Relevance to World Margin Stability and Climate Change. Geological Society of London, Special Publication 137, 141–51.
Tissot, B. and Pelet, R., 1971. Nouvelles données sur les méchanismes de genèse et de migration de pétrole: simulation mathématique et application à la prospection. In Proceedings of the 8th World Petroleum Congress. London, Applied Science Publishers, 35–46. (In French.)Google Scholar
Tissot, B. P. and Welte, D. H., 1984. Petroleum Formation and Occurrence, 2nd edn. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Tkeshelashvili, G. I., Egorov, V. N., Mestrivishvili, Sh. A., et al., 1997. Methane emissions from the Black Sea bottom in the mouth zone of the Supsa River at the coast of Georgia. Geochemistry International, 35, 284–8.Google Scholar
Tohno, I. and Shamoto, Y., 1986. Liquefaction damage to the ground during the 1983 Nihonkai-Chubu (Japan Sea) earthquake in Aomori prefecture, Tohoku, Japan. Natural Disaster Science, 8, 85–116.Google Scholar
Torokhov, P. V. and Taran, Y. A., 1994. Hydrothermal fields of the Piip Submarine Volcano, Komandorsky Back-arc Basin: chemistry and origin of vent mineralization and bubbling gas. Bulletin of the Geological Society of Denmark, 41, 55–64.Google Scholar
Torres, M. E., Bohrmann, G., and Suess, E., 1996. Authigenic barites and fluxes of barium associated with fluid seeps in the Peru subduction zone. Earth & Planetary Science Letters, 144, 469–81.CrossRefGoogle Scholar
Torres, M. E., Linke, P., Trehu, A., Brown, K. M., and Heeschen, K., 1999. Gas hydrate dynamics at Hydrate Ridge, Cascadia. EOS – Transactions of the American Geophysical Union, 80, Abstract F527.Google Scholar
Torres, M. E., McManus, J., and Huh, C.-A., 2002. Fluid seepage along the San Clemente Fault scarp: basin-wide impact on barium cycling. Earth & Planetary Science Letters, 203, 181–94.CrossRefGoogle Scholar
Tóth, J., 1980. Cross-formational gravity-flow of groundwater: a mechanism of the transport and accumulation of petroleum (the generalized hydraulic theory of petroleum migration). In Roberts, W. H. III and Cordell, R. J. (eds.), Problems of Petroleum Migration. American Association of Petroleum Geologists, Studies in Geology No. 10, 121–67.
Townsend, A. R. and Armstrong, T. L., 1990. Shallow gas detection using AVO processing of high resolution seismic data. In Ardus, D. A. and Green, C. D. (eds.), Safety in Offshore Drilling: the Role of Shallow Gas Surveys. Dordrecht, Kluwer Academic Publishers, 133–65.CrossRef
Trager, G. C. and Niro, M. J., 1990. Chemoautotrophic sulfur bacteria as a food source for mollusks at intertidal hydrothermal vents: evidence from stable isotopes. The Veliger, 33, 359–62.Google Scholar
Traynor, J. J. and Sladen, C., 1997. Seepage in Vietnam – onshore and offshore examples. Marine and Petroleum Geology, 14, 345–62.CrossRefGoogle Scholar
Treude, T., Nauhaus, K., Knittel, K., et al., 2002. A carbonate landscape in the anoxic Black Sea formed by massive mats of methane oxidising Archeae. In Gas in Marine Sediments, Seventh International Conference, Baku, Azerbaijan, 7th–12th October 2002. Baku, Nafta Press, 1185–6.
Trofimuk, A. A., Cherskiy, N. V., and Tsarev, V. P., 1973. Osobennosti nakopleniya prirodnykh gazov v zonakh gidratoobrazovaniya Mirovogo okeana. (Accumulation features of natural gases in zones of hydrate development of the ocean.)Doklady Akademii Nauk SSSR, 212, 931–4. (In Russian.)Google Scholar
Tryon, M., Brown, K., Dorman, L., and Sauter, A., 2001. A new benthic aqueous flux meter for very low to moderate discharge rates. Deep-Sea Research I, 48, 2121–46.CrossRefGoogle Scholar
Tryon, M. D., Brown, K. M., Torres, M. E., et al., 1999. Measurements of transience and downward fluid flow near episodic methane gas vents, Hydrate Ridge, Cascadia. Geology, 27, 1075–8.2.3.CO;2>CrossRefGoogle Scholar
Tucker, M. E. and Bathurst, R. G. C., 1990. Marine diagenesis: modern and ancient. In Tucker, M. E. and Bathurst, R. G. C. (eds.), Carbonate Diagenesis. International Association of Sedimentologists, Reprint series, 1, 1–9.
Tucker, M. E. and Wright, V. P., 1990. Carbonate Sedimentology. Oxford, Blackwell Scientific.CrossRefGoogle Scholar
Tunnicliffe, V., 1991. The biology of hydrothermal vents: ecology and evolution. Oceanography and Marine Biology Annual Review 1991, 29, 319–407.Google Scholar
Tunnicliffe, V. and Fowler, C. M. R., 1996. Influence of sea-floor spreading on the global hydrothermal vent fauna. Nature, 379, 531–3.CrossRef
Tunnicliffe, V., Juniper, S. K., and de Burgh, M. E., 1985. The hydrothermal vent community on Axis Seamount, Juan de Fuca Ridge. In Jones, M. L. (ed.), Hydrothermal Vents of the Eastern Pacific: an Overview. Biological Society of Washington, Bulletin No. 6, 453–64.
Uchida, T., 2002. Detection and evaluation of subsurface natural gas hydrates in the Nankai Trough, offshore Japan: a future energy resource? Proceedings, 2002 Denver Annual Meeting, Geological Society of America. Denver, CO, October, Paper No. 156-2 (abstract).
Uchupi, E., Swift, S. A., and Ross, D. A., 1996. Gas venting and late Quaternary sedimentation in the Persian (Arabian) Gulf. Marine Geology, 129, 237–69.CrossRefGoogle Scholar
Uenzelmann-Neben, G., Spiess, V., and Bleil, U., 1997. A seismic reconnaissance survey of the northern Congo Fan. Marine Geology, 140, 283–306.CrossRefGoogle Scholar
Ujiié, Y., 2000. Mud diapirs observed in two piston cores from the landward slope of the northern Ryukyu Trench, northwestern Pacific Ocean. Marine Geology, 163, 149–67.CrossRefGoogle Scholar
UKOOA (United Kingdom Offshore Operators Association), 1997. Guidelines for the Conduct of Mobile Drilling Rig Site Surveys. United Kingdom Offshore Operators Association, Report OPS13.
UNDESA (United Nations Department of Economic and Social Affairs), 2005. Plan of Implementation of the World Summit on Sustainable Development. New York, Division for Sustainable Development, United Nations Department of Economic and Social Affairs.
Upstill-Goddard, R., Barnes, J., and Owens, N. J. P., 1999. Nitrous oxide and methane during the 1994 SW monsoon in the Arabian Sea/northwestern Indian Ocean. Journal of Geophysical Research, 104, 30067–84.CrossRefGoogle Scholar
Upstill-Goddard, R., Barnes, J., Frost, T., Punshon, S., and Owens, N. J. P., 2000. Methane in the southern North Sea: low-salinity inputs, estuarine removal, and atmospheric flux. Global Biogeochemical Cycles, 14, 1205–17.CrossRefGoogle Scholar
USGS (United States Geological Survey), 1999. Natural Oil and Gas Seeps in California. http://seeps.wr.usgs.gov/ (accessed 23rd January 2004).
Usui, A., Nishimura, A., Tanahashi, M., and Terashima, S., 1987. Local variability of manganese nodule facies on small abyssal hills of the Central Pacific Basin. Marine Geology, 74, 237–75.CrossRefGoogle Scholar
Vacelet, J. N., Boury-Esnault, N., Fiala-Médioni, A., and Fisher, C. R., 1995. A methanotrophic carnivorous sponge. Nature, 377, 296.CrossRefGoogle Scholar
Vacelet, J. N., Fiala-Médioni, A., Fisher, C. R., and Boury-Esnault, N., 1996. Symbiosis between methane-oxidising bacteria and a deep-sea carnivorous cladorhizid sponge. Marine Ecology Progress Series, 145, 77–85.CrossRefGoogle Scholar
Valyaev, B., 1998. Earth hydrocarbon degassing and oil/gas/condensate field genesis. Gas Industry, 6–10.Google Scholar
Dam, T. M. and Wahr, J. M., 1987. Displacements of the Earth's surface due to atmospheric loading: effects on gravity and baseline measurements. Journal of Geophysical Research, 92, 1281–6.Google Scholar
Dover, C. L., 2000. The Ecology of Deep-Sea Hydrothermal Vents. Princeton, NJ, Princeton University Press.Google Scholar
Dover, C. L., Szuts, E. Z., Chamberlain, S. C., and Cann, J. R., 1989. A novel eye in ‘eyeless’ shrimp from hydrothermal vents of the mid-Atlantic Ridge. Nature, 337, 458–60.CrossRefGoogle ScholarPubMed
Dover, C. L., Desbruyères, D., Segonzac, M., et al., 1996. Biology at the Lucky Strike hydrothermal field. Deep-Sea Research, 43, 1509–29.CrossRefGoogle Scholar
Dover, C. L., Humphris, S. E., Fornaria, D., et al., 2001. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science, 294, 818–23.CrossRefGoogle ScholarPubMed
Dover, C. L., Aharon, P., Bernhard, J. M., et al., 2003. Blake Ridge methane seeps: characterization of a soft-sediment, chemosynthetically based ecosystem. Deep-Sea Research, 50, 281–300.CrossRefGoogle Scholar
van Rensbergen, P., and Morley, C. K., 2001. Fluid expulsion from overpressured shale, an alternative for shale diapirism. Examples from offshore Brunei. Conference Proceedings, Subsurface Sediment Mobilization Conference, University of Gent, September 11–13, 73 (abstract).
van Rensbergen, P., de Batist, M., Klerkx, J., et al., 2000. Side-scan sonar evidence of cold seeps in Lake Baikal, Siberia. In Abstracts of the Sixth International Conference on Gas in Marine Sediments. St Petersburg, VNIIOkeangeologia, 138–9.
van Rensbergen, P., Hills, R. R., Maltman, A. J., and Morley, C. K. (eds.), 2003. Surface Sediment Mobilization. Geological Society of London, Special Publication 216.Google Scholar
Weering, Tj., Jansen, J. H. F., and Eisma, D., 1973. Acoustic reflection profiles of the Norwegian Channel between Oslo and Bergen. Netherlands Journal of Sea Research, 6, 214–63.Google Scholar
van Weering, Tj. C. E., de Haas, H., Akhmetzanov, A. M., and Kenyon, N. H., 2003a. Giant carbonate mounds along the Porcupine and SW Rockall Trough margins. In Mienert, J. and Weaver, P. (eds.), European Margin Sediment Dynamics, Side-Scan Sonar and Seismic Images. Berlin, Springer-Verlag, 211–16.
Weering, Tj. C. E., Dullo, C., and Henriet, J.-P., 2003. Geosphere–biosphere coupling: cold seep related carbonate and mound formation and ecology. Marine Geology, 198, 1–2.Google Scholar
Vanneste, M., Batist, M., Golmshtok, A., Kremlev, A., and Versteeg, W., 2001. Multi-frequency seismic sudy of gas hydrate-bearing sediments in Lake Baikal, Siberia. Marine Geology, 172, 1–21.CrossRefGoogle Scholar
Vasshus, S., 1998. A system for automatic detection of pockmarks in digital terrain models. M. Sc. Thesis, Kingston University.Google Scholar
Vassilev, A. and Dimitrov, L. I., 2000. Spatial and quantity evaluation of the Black Sea gas hydrates. Abstracts of the Sixth International Conference on Gas in Marine Sediments. St Petersburg, September 5–9, 140.
Venkatesan, M. I., Kaplan, I. R., and Ruth, E., 1983. Hydrocarbon geochemistry in surface sediments of Alaskan outer continental shelf: Part 1. C15+ hydrocarbons. American Association of Petroleum Geologists (Bulletin), 67, 831–40.Google Scholar
Vernon, J. W. and Slater, R. A., 1963. Submarine tar mounds, Santa Barbara County, California. American Association of Petroleum Geologists (Bulletin), 47, 1624–7.Google Scholar
Vilks, G. and Rashid, M. A., 1975. Foraminifera and organic geochemistry of two sedimentary cores from a pockmarked basin of the Scotian Shelf. In Report of Activities, Part C. Geological Survey of Canada, Paper 75–1C, 5–8.Google Scholar
Vogt, P. R. and Jung, W.-Y., 2002. Holocene mass wasting on upper non-Polar continental slopes – due to post-Glacial ocean warming and hydrate dissociation. Geophysical Research Letters, 29, 551–4.CrossRefGoogle Scholar
Vogt, P. R., Cherkashev, G., Ginsburg, G., et al., 1997. Hakon Mosby mud volcano provides unusual example of venting. EOS – Transactions of the American Geophysical Union, 78, 556–7.CrossRefGoogle Scholar
Vogt, P. R., Gardner, J., and Crane, K., 1999a. The Norwegian–Barents–Svalbard (NBS) Continental Margin: introducing a natural laboratory of mass wasting, hydrates, and ascent of sediment, pore water, and methane. Geo-Marine Letters, 19, 2–21.CrossRefGoogle Scholar
Vogt, P. R., Crane, K., Sundvor, E., et al., 1999b. Ground-truthing 11- to 12-kHz side-scan sonar imagery in the Norwegian–Greenland Sea. Part II: probable diapirs on the Bear Island Fan slide valley margins and the V⊘ring Plateau. Geo-Marine Letters, 19, 111–30.CrossRefGoogle Scholar
Damm, K. L., 2001. Lost City found. Nature, 412, 127–8.CrossRefGoogle Scholar
Damm, K. L., Brockington, M., Bray, A. M., et al., 2003. Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise. Earth & Planetary Science Letters, 206, 365–78.CrossRefGoogle Scholar
Völker, H., Schweisfurth, R., and Hirsch, P., 1977. Morphology and ultrastructure of Crenothrix polyspora Cohn. Journal of Bacteriology, 131, 306–13.Google ScholarPubMed
Walker, P., 1990. UKOOA recommended procedures for mobile drilling rig site surveys (geophysical and hydrographic) – shallow gas aspects. In Ardus, D. A. and Green, C. D. (eds.), Safety in Offshore Drilling: the Role of Shallow Gas Surveys. Dordrecht, Kluwer Academic Publishers, 257–89.CrossRef
Wallmann, K., Linke, P., Suess, E., et al., 1997. Quantifying fluid flow, solute mixing, and biogeochemical turnover at cold vents of the eastern Aleutian subduction zone. Geochimica et cosmochimica acta, 61, 5209–19.CrossRefGoogle Scholar
Wang, K., Davis, E. E., and Kamp, G. van der, 1998. Theory for the effects of free gas in subsea formations in tidal pore pressure variations and seafloor displacements. Journal of Geophysical Research, 103, 12339–53.CrossRefGoogle Scholar
Wanninkof, R., 1992. Relationship between windspeed and gas exchange over the ocean. Journal of Geophysical Research, 97, 7373–82.CrossRefGoogle Scholar
Warren, J. K., 1982. The hydrological significance of Holocene tepees, stromatolites, and boxwork limestones in coastal salinas in South Australia. Journal of Sedimentary Petrology, 52, 1171–201.Google Scholar
Watkins, D. J. and Kraft, L. M., jr, 1978. Stability of continental shelf and slope of Louisiana and Texas: geotechnical aspects. In Bouma, A. H. (ed.), Framework, Facies and Oil-Trapping Characteristics of the Upper Continental Margin. American Association of Petroleum Geologists, Studies in Geology No. 7, 267–86.
Watkins, J. S. and Worzel, J. L., 1978. Serendipity gas seep area, south Texas offshore. American Association of Petroleum Geologists (Bulletin), 62, 1067–74.Google Scholar
Wattrus, N. J., Rausch, D. E., Cartwright, J. A., and Bolton, A., 2001. Lake Superior's rings: an expression of soft-sediment deformation? Conference Proceedings, Subsurface Sediment Mobilisation Conference, University of Gent, September 11–13, 2 (abstract).
Webb, M., 1964. Additional notes on Sclerolinum brattstromi (Pogonophora) and the establishment of a new family, Sclerolinidae. Sarsia, 15, 33–6.CrossRefGoogle Scholar
Weberling, K., Moore, C., Sample, J., Schwartz, H., and Vrolijk, P., 2002. Clastic intrusions and cold seeps in the Cretaceous–Paleocene Great Valley forearc basin, Panoche Hills, CA: structural context of a linked fluid system. In Gas in Marine Sediments, Seventh International Conference, Baku, Azerbaijan, 7th–12th, October 2002. Baku, Nafta Press, 192–4 (abstract).
Weeks, S. J., Currie, B., Bakun, A., and Peard, K. R., 2004. Hydrogen sulphide eruptions in the Atlantic Ocean off southern Africa: implications of a new view based on SeaWiFS satellite imagery. Deep-Sea Research I, 51, 153–72.CrossRefGoogle Scholar
Weiland, C. M., Barth, G. A., Chadwick, B., Embley, R. W., and Getsiv, J., 2000. Virtual exploration of the New Millennium Observatory (NeMO) at Axial Volcano, Juan de Fuca Ridge. EOS – Transactions of the American Geophysical Union, 81, Supplement, 1265–6.Google Scholar
Welhan, J. A. and Craig, H., 1983. Methane, hydrogen, and helium in hydrothermal fluids at 21° N, East Pacific Rise. In Rona, P. A., Bostrom, K., and Smith, K. L. (eds.), Hydrothermal Processes at Seafloor Spreading Centres. New York, NY, Plenum, 225–78.
Welhan, J. A. and Lupton, J. E., 1987. Light hydrocarbon gases in Guaymas Basin hydrothermal fluids: thermogenic versus abiogenic origin. American Association of Petroleum Geologists (Bulletin), 71, 215–23.Google Scholar
Wells, R. E., Engebretson, D. C., Snavely, P. D., jr, and Coe, R. S., 1984. Cenozoic plate motions and the volcanotectonic evolution of western Oregon and Washington. Tectonics, 3, 275–94.CrossRefGoogle Scholar
Wellsbury, P., Goodman, K., Cragg, B. A., and Parkes, R. J., 2000. The geomicrobiology of deep marine sediments from Blake Ridge containing methane hydrate (Sites 994, 995, and 997). In Paull, C. K., Matsumoto, R., Wallace, P. J., and Dillon, W. P. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 164, 379–91.CrossRef
Wendt, J., Belka, Z., Kaufmann, B., Kostrewa, R., and Hayer, J., 1997. The world's most spectacular carbonate mounds (Middle Devonian, Algerian Sahara). Journal of Sedimentary Research, 67, 424–36.Google Scholar
Werne, J. P., Pancost, R. D., Hopmans, E. C., and Damsté, J. S. S., 2001. Spatial variability in the anaerobic methane-oxidizing microbial community in Mediterranean mud volcanoes: evidence from lipid biomarkers and carbon isotopic compositions. Procedings of the European Union of Geologists 11th Conference, Strasbourg, 8–12 April. (See Journal of Conference Abstracts, 6(1), 161.)
Wernecke, G., Flöser, G., Korn, S., Weitkamp, C., and Michaelis, W., 1994. First measurements of the methane concentration with a new in-situ device. Bulletin of the Geological Society of Denmark, 41, 5–11.Google Scholar
Werner, F., 1978. Depressions in mud sediments (Eckernförde Bay, Baltic Sea), related to sub-bottom and currents. Meyniana, 30, 99–104.Google Scholar
Westbrook, G. K., Carson, B., Musgrave, R. J., and Suess, E., 1994. Proceedings of the Ocean Drilling Program, Initial Reports, 146.Google Scholar
Wever, T. F. and Fiedler, H. M., 1995. Variability of acoustic turbidity in Eckernförde Bay (southwest Baltic Sea) related to the annual temperature cycle. Marine Geology, 125, 21–7.CrossRefGoogle Scholar
Wever, Th. F., Abegg, F., Fiedler, H. M., Fechner, G., and Stender, I. H., 1998. Shallow gas in the muddy sediments of Eckernförde Bay, Germany. Continental Shelf Research, 18, 1715–40.CrossRefGoogle Scholar
Wheeler, S. J., 1988. A conceptual model for soils containing large gas bubbles. Géotechnique, 38, 389–97.CrossRefGoogle Scholar
Wheeler, S. J., Sham, W. K., and Thomas, S. D., 1990. Gas pressure in unsaturated offshore soils. Canadian Geotechnical Journal, 27, 79–89.CrossRefGoogle Scholar
White, K., 2002. Leg 204 Ocean Drilling Program explores large gas hydrate field offshore Oregon. http://www.oceandrilling.org/Newsroom/Releases/204_hydrates.html (accessed December 2002).Google Scholar
White, W. M., Patchett, J., and Othman, Ben D., 1986. Hf isotope ratios of marine sediments and Mn nodules: evidence for a mantle source of Hf in seawater. Earth & Planetary Science Letters, 79, 46–54.CrossRefGoogle Scholar
Whitfield, J., 1999. Mercurial vents. Nature, 401, 755.CrossRefGoogle Scholar
Whiticar, M. J., 1978. Relationships of interstitial gases and fluids during early diagenesis in some marine sediments. Doctoral thesis, University of Kiel.Google Scholar
Whiticar, M. J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161, 291–314.CrossRefGoogle Scholar
Whiticar, M. J., 2002. Diagenetic relationships of methanogenesis, nutrients, acoustic turbidity, pockmarks and freshwater seepages in Eckernförde Bay. Marine Geology, 182, 29–53.CrossRefGoogle Scholar
Whiticar, M. J. and Werner, F., 1981. Pockmarks: submarine vents of natural gas or freshwater seeps?Geo-Marine Letters, 1, 193–9.CrossRefGoogle Scholar
Whiticar, M. J., Suess, B., and Wehner, H., 1985. Thermogenic hydrocarbons in surface sediments of the Bransfield Strait, Antarctic Peninsula. Nature, 314, 87–90.CrossRefGoogle Scholar
Whiticar, M. J., Faber, E., and Schoell, M., 1986. Biogenic methane formation in marine and freshwater environments: CO1/2 reduction vs acetate fermentation; isotope evidence. Geochimica et cosmochimica acta, 50, 693–709.CrossRefGoogle Scholar
Wiedicke, M., Neben, S., and Spiess, V., 2001. Mud volcanoes at the front of the Makran accretionary complex, Pakistan. Marine Geology, 172, 57–73.CrossRefGoogle Scholar
Wiese, K. and Kvenvolden, K. A., 1993. Introduction to microbial and thermal methane. In Howell, D. G. (ed.), The Future of Energy Gases, United States Geological Survey Professional Paper 1570, 13–20.
Wilcock, W. S. D., Delong, E. F., Kelley, D. S., Barross, J. A., and Carry, S. C. (eds.), 2004. The Subseafloor Biosphere at Mid-Ocean Ridges, American Geophysical Union, Geophysical Monograph 144.CrossRefGoogle Scholar
Wilken, R. T. and Barnes, H. L., 1996. Pyrite formation by reactions of iron monosulphides with dissolved inorganic and organic sulphur species. Geochimica et cosmochimica acta, 60, 4167–79.CrossRefGoogle Scholar
Wilken, R. T. and Barnes, H. L., 1997. Formation processes of framboidal pyrite. Geochimica et cosmochimica acta, 61, 323–39.CrossRefGoogle Scholar
Wilkens, R. H. and Richardson, M. D., 1998. The influence of gas bubbles on sediment acoustic properties: in situ, laboratory, and theoretical results from Eckernförde Bay, Baltic Sea. Continental Shelf Research, 18, 1859–92.CrossRefGoogle Scholar
Williams, A. and Lawrence, G., 2002. The role of satellite seep detection in exploring the South Atlantic's ultradeep water. In Schumacher, D. and LeSchack, L. A. (eds.), Surface Exploration Case Histories: Applications of Geochemistry, Magnetics, and Remote Sensing. American Association of Petroleum Geologists, Studies in Geology No. 48 and SEG Geophysical References Series No. 11, 327–44.
Williams, M. O., 1946. Bahrain: port of pearls and petroleum. National Geographic, 89, 194–210.Google Scholar
Williams, P. R., Pingram, C. J., and Dow, C. B., 1984. Mélange production and the importance of shale diapirism in accretionary terranes. Nature, 309, 145–6.CrossRefGoogle Scholar
Wilson, R. D., Monaghan, P. H., Osanik, A., Price, L. C., and Rogers, M. A., 1974. Natural marine oil seepage. Science, 184, 857–65.CrossRefGoogle ScholarPubMed
Winn, C. D., Karl, D. M., and Massoth, G. J., 1986. Microorganisms in deep-sea hydrothermal plumes. Nature, 320, 744–6.CrossRefGoogle Scholar
Withjack, M. O. and Schemer, C., 1982. Fault patterns associated with domes - an experimental and analytical study. American Association of Petroleum Geologists (Bulletin), 66, 302–16.Google Scholar
Wittenberg, J. B., 1985. Oxygen supply to intracellular bacterial symbionts. In Jones, M. L. (ed.), Hydrothermal Vents of the Eastern Pacific: An Overview. Bulletin of the Biological Society of Washington, No. 6, 301–10.
Wittenberg, J. B., Morris, R. J., Gibson, Q. H., and Jones, M. L., 1981. Hemoglobin kinetics of the Galapagos Rift vent worm, Riftia pachyptila Jones (Pogonophora: Vestimentifera). Science, 213, 344–6.CrossRefGoogle Scholar
Wood, G. A., Orren, R. J., and Conway, A. M., 2000. 3D high resolution seismic; case study deepwater west Africa. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 12068.
Wood, W. T., Gettrust, J. F., Chapman, N. R., Spence, G. D., and Hyndman, R. D., 2002. Decreased stability of methane hydrates in marine sediments owing to phase-boundary roughness. Nature, 420, 656–60.CrossRefGoogle ScholarPubMed
Woodside, J. and Ivanov, M., 2002. Is there a shallow BSR in the eastern Mediterranean? In Gas in Marine Sediments, Seventh International Conference, Baku, Azerbaijan, 7th–12th October 2002. Baku, Nafta Press, 189–91.
Woodside, J. M. and Shipboard Scientists of the MEDINAUT / MEDINETH Projects, 2001. Nautile observations of eastern Mediterranean mud volcanoes and gas seeps – results from the MEDINAUT and MEDINETH projects. In Akhamanov, G. and Suzyumov, A. (eds.), Geological processes on deep-water European margins. Paris, UNESCO, International Oceanographic Commission Workshop Report No. 175 on the International Conference and ninth post-cruise meeting of the Training Through Research Programme, Moscow-Mozhenka, Russia, 28 January–2 February, 39–40.
Woodside, J. M, Ivanov, M. K, and Limonov, A. F (eds.), 1997. Neotectonics and Fluid Flow through Seafloor Sediments in the Eastern Mediterranean and Black Seas. Intergovernmental Oceanographic Commission Technical Series, 48 (parts I and II).
Woodside, J. M., Ivanov, M. K., Limonov, A. F. and Shipboard Scientists of the Anaxiprobe Expeditions, 1998. Shallow gas and gas hydrates in the Anaximander Mountains regions, eastern Mediterranean Sea. In Henriet, J.-P. and Mienert, J. (eds.), Gas Hydrates: Relevance to World Margin Stability and Climate Change. Geological Society of London, Special Publication 137, 177–93.
Woolsey, T. S., McCallum, M. E., and Schumm, S. A., 1975. Modelling of diatreme emplacement by fluidization. Physics and Chemistry of the Earth, 9, 29–42.CrossRefGoogle Scholar
Worzel, J. L. and Watkins, J. S., 1974. Location of a lost drilling platform. Proceedings of the Offshore Technology Conference, Houston, TX, OTC Paper 2016.
Wuebbles, D. J. and Hayhoe, K., 2002. Atmospheric methane and global change. Earth-Science Reviews, 57, 177–210.CrossRefGoogle Scholar
Xu, W. and Ruppel, C., 1999. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments. Journal of Geophysical Research, 104, 5081–95.CrossRefGoogle Scholar
Yassir, N. A., 1989. Mud volcanoes and the behaviour of overpressured clays and silts. Ph. D. thesis, University of London.Google Scholar
Yellowless, J., 1987. Ancient wreck in the belly of a live volcano. Diver, July, 16–17.Google Scholar
Yuan, F., Bennell, J. D., and Davis, A. M., 1992. Acoustic and physical characteristics of gassy sediments in the western Irish Sea. Continental Shelf Research, 12, 1121–34.CrossRefGoogle Scholar
Yun, J. W., Orange, D. L., and Field, M. E., 1999. Subsurface gas offshore of northern California and its link to submarine geomorphology. Marine Geology, 154, 357–68.CrossRefGoogle Scholar
Zektzer, I. S., Ivanov, V. A., and Meskheteli, A. V., 1973. The problem of groundwater discharge to the seas. Journal of Hydrology, 20, 1–36.CrossRefGoogle Scholar
Zhao, W.-L., Davis, D. M., Dahlen, F. A., and Suppe, J., 1986. Origin of convex accretionary wedges: evidence from Barbados. Journal of Geophysical Research, 91, 10246–58.CrossRefGoogle Scholar
Zhou, Y., Goldfinger, C., Johnson, J. E., et al., 1999. Distribution and morphology of venting-related carbonates near Hydrate Ridge, Oregon Margin, based on sidescan sonar and multibeam imagery. EOS – Transactions of the American Geophysical Union, 80, Abstract F510.Google Scholar
Zierenberg, R. A., Fouquet, Y., Miller, D. J., et al., 1998. The deep structure of a sea-floor hydrothermal deposit. Nature, 392, 485–8.CrossRefGoogle Scholar
Zimmer, C., 2001. ‘Inconvincible’ bugs eat methane on the ocean floor. Science, 293, 418–19.CrossRefGoogle ScholarPubMed
Zonenshayn, L. P., Murdmaa, I. O., Baranov, B. V., et al., 1988. An underwater gas source in the Sea of Okhotsk west of Paramushir Island. Oceanology, 27, 598–602.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Alan Judd, Martin Hovland, Statoil, Norway
  • Book: Seabed Fluid Flow
  • Online publication: 14 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535918.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Alan Judd, Martin Hovland, Statoil, Norway
  • Book: Seabed Fluid Flow
  • Online publication: 14 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535918.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Alan Judd, Martin Hovland, Statoil, Norway
  • Book: Seabed Fluid Flow
  • Online publication: 14 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535918.014
Available formats
×