Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-19T02:13:39.111Z Has data issue: false hasContentIssue false

3 - Sea Ice Observations

Published online by Cambridge University Press:  12 October 2017

Tom Carrieres
Affiliation:
Environment and Climate Change Canada
Mark Buehner
Affiliation:
Environment and Climate Change Canada
Jean-Franҫois Lemieux
Affiliation:
Environment and Climate Change Canada
Leif Toudal Pedersen
Affiliation:
Technical University of Denmark, Lyngby
Get access

Summary

Observations are crucial components in any automated prediction system for sea ice. Today, most sea ice observations are carried out by satellite-based instruments that measure emitted or scattered electromagnetic radiation. This chapter first describes the interaction between electromagnetic radiation and the physical components of the ice/ocean /atmosphere system. An understanding of these interactions is essential for appreciating how different types of satellite data can be used for retrieving information about sea ice. The most common instruments currently used for sea ice observations are introduced followed by a review of how key sea ice variables, including ice concentration, ice thickness and ice drift, can be derived using observations from these instruments. Throughout, the focus is on the elements that are important for the quality of the observations. Finally, methods that are commonly used in ice analysis to integrate information from multiple sources are introduced (ice charts and observation operators).
Type
Chapter
Information
Sea Ice Analysis and Forecasting
Towards an Increased Reliance on Automated Prediction Systems
, pp. 10 - 50
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C. and Gumley, L. E. (1998). Discriminating clear sky from clouds with MODIS. Journal of Geophysical Research, 103D, 3214132157.Google Scholar
Andersen, S., Pedersen, L. T., Heygster, G., Tonboe, R., and Kaleschke, L. (2007). Intercomparison of passive microwave sea ice concentration retrievals over the high concentration Arctic sea ice. Journal of Geophysical Research, 112, C08004. doi: 10.1029/2006JC003543.Google Scholar
Arndt, S. and Nicolaus, M. (2014). Seasonal cycle of long-term trend of solar energy fluxes through Arctic sea ice. The Cryosphere, 8, 22192233. doi: 10.5149/tc-8–2219-2014.Google Scholar
Barber, D. G., Fung, A. K., Grenfell, T. C., Nghiem, S. V., Onstott, R. G., Lytle, V. I., Perovich, D. K. and Gow, A. J. (1998). The role of snow on microwave emission and scattering over first-year sea ice. IEEE Transactions on Geoscience and Remote Sensing, 36(5), 17501763.Google Scholar
Carsey, F. D. (1992). Microwave Remote Sensing of Sea Ice. Published by the American Geophysical Union as part of the Geophysical Monograph Series, 68, 462 pages, ISBN: 9780875900339.Google Scholar
Cavalieri, D. J., Gloersen, P. and Campbell, W. J. (1984). Determination of sea ice parameters with the NIMBUS 7 SMMR. Journal of Geophysical Research, 89, D4, 53555369.Google Scholar
Comiso, J. C. (1986). Characteristics of arctic winter sea ice from satellite multispectral microwave observations. Journal of Geophysical Research, 91, 975994.Google Scholar
Connor, L. N., Laxon, S. W., Ridout, A. L., Krabill, W. B. and McAdoo, D. C. (2009). Comparison of Envisat radar and airborne laser altimeter measurements over Arctic sea ice. Remote Sensing of Environment, 113, 563570, 2009. doi: 10.1016/j.rse.2008.10.015.Google Scholar
Eastwood, S. (Ed.) (2012). Ocean & Sea Ice SAF (OSISAF) Sea Ice Product Manual. Version 3.8., available at: http://osisaf.met.no, last access.Google Scholar
Emery, W. J., Thomas, A. C., Collins, M. J., Crawford, W. R. and Mackas, D. L. (1986). An objective method for computing advective surface velocities from sequential infrared satellite images. Journal of Geophysical Research, 91, 1286512878.Google Scholar
Fetterer, F., Stewart, J. S. and Meier, W. N., (2015). MASAM2: Daily 4-Km Arctic Sea Ice Concentration. Boulder, CO: National Snow and Ice Data Center. doi: http://dx.doi.org/10.7265/N5ZS2TFT.Google Scholar
Fung, A. K. (1994). Microwave Scattering and Emission Models and Their Applications. Norwood, MA: Artech House. ISBN-13: 978-0890065235.Google Scholar
Grenfell, T. C., Cavalieri, D. J., Comiso, J. C., Drinkwater, M. R., Onstott, R. G., Rubinstein, I., Hallikainen, M., Ulaby, F. T. and Abdelrazik, M. (1986). Dielectric properties of snow in the 3 to 37 GHz range. IEEE Transactions on Antennas and Propagation 34(11), 13291340.Google Scholar
Geiger, C., Müller, H. R., Samluk, J. P., Bernstein, E. R. and Richter-Menge, J. (2015). Impact of spatial aliasing on sea-ice thickness measurements. Annals of Glaciology, 56(69), 353362. doi: 10.3189/2015AoG69A644.Google Scholar
Heygster, G., Huntemann, M., Ivanova, N., Saldo, R. and Pedersen, L. T. (2014). Response of passive microwave sea ice concentration algorithms to thin ice. Proceedings Of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2014, IEEE, 2014, 3618–21. doi: 10.1109/IGARSS.2014.6947266.Google Scholar
Hwang, B. (2013). Inter-comparison of satellite sea ice motion with drifting buoy data. International Journal of Remote Sensing, 34, 24, 2013.Google Scholar
Istomina, L., Heygster, G., Huntemann, M., Schwarz, P., Birnbaum, G., Scharien, R., Polashenski, C., Perovich, D., Zege, E., Malinka, A., Prikhach, A. and Katsev, I. (2015a). Melt pond fraction and spectral sea ice albedo retrieval from MERIS data – 1: Validation against in situ, aerial, and ship cruise data. The Cryosphere, 9, 15511566. doi: 10.5194/tc-9-1551-2015.Google Scholar
Istomina, L., Heygster, G., Huntemann, M., Marks, H., Melsheimer, C., Zege, E., Malinka, A., Prikhach, A. and Katsev, I., (2015b). Melt pond fraction and spectral sea ice albedo retrieval from MERIS data – Part 2: Case studies and trends of sea ice albedo and melt ponds in the Arctic for years 2002–2011. The Cryosphere, 9:4, 15671578. doi: 10.5194/tc-9-1567-2015.Google Scholar
Istomina, L., Melsheimer, C., Huntemann, M., Nicolaus, M. and Heygster, G. (2016). Retrieval of sea ice thickness during melt season from in situ, airborne and satellite imagery. IGARSS 2016 Proceedings, Paper FR2.L12.3, July 10–15, 2016, Beijing, China.Google Scholar
Istomina, L. G., von Hoyningen-Huene, W., Kokhanovsky, A. A., and Burrows, J. P. (2010). The detection of cloud-free snow-covered areas using AATSR measurements. Atmospheric Measurement Techniques, 3, 10051017. doi: 10.5194/amt-3-1005-2010.Google Scholar
Istomina, L., Nicolaus, M., and Perovich, D. (2013). Spectral albedo of sea ice and melt ponds measured during POLARSTERN cruise ARK XXII/3 (IceArc) in 2012. PANGAEA Dataset, Bremen: PANGAEA, Institut für Umweltphysik, Universität Bremen. doi: 10.1594/PANGAEA.815111.Google Scholar
Ivanova, N., Pedersen, L.T., Tonboe, R. T., Kern, S., Heygster, G., Lavergne, T., Sørensen, A., Saldo, R., Dybkjaer, G., Brucker, L. and Shokr, M. (2015). Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations. The Cryosphere, 9, 17971817. doi: 10.5194/tc-9-1797-2015.Google Scholar
Kaleschke, L., Lüpkes, C., Vihma, T., Haarpaintner, J., Bochert, A., Hartmann, J., and Heygster, G. (2001). SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis. Canadian Journal of Remote Sensing, 27, 5, 526537, 2001.Google Scholar
Kaleschke, L., Tian-Kunze, X., Maaß, N., Beitsch, A., Wernecke, A., Miernecki, M., Müller, G., Fock, B. H., Gierisch, A. M. U., Schlünzen, K. H., Pohlmann, T., Dobrynin, M., Hendricks, S., Asseng, J., Gerdes, R., Jochmann, P., Reimer, N., Holfort, J., Melsheimer, C., Heygster, G., Spreen, G., Gerland, S., King, J., Skou, N., Søbjærg, S. S., Haas, C., Richter, F. and Casal, T. (2016). SMOS sea ice product: Operational application and validation in the Barents Sea marginal ice zone. Remote Sensing of Environment, 180, 264273, http://dx.doi.org/10.1016/j.rse.2016.03.009Google Scholar
Karvonen, J. (2016) Virtual radar ice buoys – a method for measuring fine-scale sea ice drift. The Cryosphere, 10, 2942. doi: 10.5194/tc-10-29-2016.Google Scholar
Kern, S., Ozsoy-Cicek, B. and Worby, A. P. (2016). Antarctic sea-ice thickness retrieval from ICESat: inter-comparison of different approaches. Remote Sensing, 8(7), 538, 2016. doi: 10.3390/rs8070538Google Scholar
Komarov, A. S. and Barber, D. G. (2014). Sea ice motion tracking from sequential dual-polarization RADARSAT-2 images. IEEE Transactions on Geoscience and Remote Sensing, 52(1), 121136. doi: 10.1109/TGRS.2012.2236845Google Scholar
Kræmer, T., Johnsen, H. and Brekke, C. (2015). Emulating sentinel-1 Doppler radial ice drift measurements using Envisat ASAR Data. IEEE Transactions on Geoscience and Remote Sensing, 53(12), 64076418. doi: 10.1109/TGRS.2015.2439044Google Scholar
Kwok, R. (2002). Sea ice concentration estimates from satellite passive microwave radiometry and openings from SAR ice motion. Geophysical Research Letters, 29, 1311. doi: 10.1029/2002GL014787.Google Scholar
Kwok, R. (2014). Declassifed high-resolution visible imagery for Arctic sea ice investigations: An overview. Remote Sensing of Environment, 142, 4456. doi: 10.1016/j.rse.2013.11.015Google Scholar
Kwok, R. and Cunningham, G. F. (2008). ICESat over Arctic sea ice: Estimation of snow depth and ice thickness. Journal of Geophysical Research, 113, C08010. doi: 10.1029/2008JC004753.Google Scholar
Kwok, R., Curlander, J. C., McConnel, R. and Pang, S. (1990). An ice motion tracking system at the Alaska SAR Facility. IEEE Journal of Oceanic Engineering, 15, 4454. doi: 10.1109/48.46835Google Scholar
Lavergne, T., Eastwood, S., Teffah, Z., Schyberg, H. and Breivik, L. A. (2010). Sea ice motion from low‐resolution satellite sensors: An alternative method and its validation in the Arctic. Journal of Geophysical Research, 115, C10032. doi: 10.1029/2009JC005958.Google Scholar
Liu, Y. H., Ackerman, S. A., Maddux, B. C., Key, J. R. and Frey, R. A. (2010). Errors in cloud detection over the Arctic using a satellite imager and implications for observing feedback mechanisms. Journal of Climate, 23(7), 18941907.Google Scholar
Liu, Y., Key, J. R., Frey, R. A., Ackerman, S. and Menzel, P. (2004). Nighttime polar cloud detection with MODIS. Remote Sensing of Environment, 92, 181194. doi: 10.1016/j.rse.2004.06.004.Google Scholar
Maaß, N., Kaleschke, L., Tian-Kunze, X. and Drusch, M. (2013). Snow thickness retrieval over thick Arctic sea ice using SMOS satellite data. The Cryosphere, 7, 19711989. doi: 10.5194/tc-7-1971-2013.Google Scholar
Markus, T. and Cavalieri, D. J. (1998). Snow depth distribution over sea ice in the Southern Ocean from satellite passive microwave data, in: Antarctic Sea Ice Physical Processes, Interactions and Variability. Antarctic Research Series, 74, edited by Jeffries, M.O., pp. 1940, Washington, DC: AGU, 1998.Google Scholar
Markus, T., and Cavalieri, D. J. (2000). An enhancement of the NASA team sea ice algorithm. IEEE Transactions on Geoscience and Remote Sensing, 38, 13871398.Google Scholar
Maslanik, J., Agnew, T., Drinkwater, M., Emery, W., Fowler, C., Kwok, R. and Liu, A. (1998). Summary of Ice‐Motion Mapping Using Passive Microwave Data, Special Publication 8, Boulder, CO: National Snow and Ice Data Center.Google Scholar
Meiners, K. M., Vancoppenolle, M., Thanassekos, S., Dieckmann, G. S, Thomas, D. N., Tison, J. -L., Arrigo, K. R., Garrison, D. L., McMinn, A., Lannuzel, D., van der Merwe, P., Swadling, K. M., Smith, W. O. Jr., Melnikov, I. and Raymond, B. (2012). Chlorophyll a in Antarctic sea ice from historical ice core data. Geophysical Research Letters, 39(21), L21602, 2012. doi: 10.1029/2012GL053478.Google Scholar
Meissner, T., and Wentz, F. (2012). The emissivity of the ocean surface between 6 – 90 GHz over a large range of wind speeds and Earth incidence angles. IEEE Transactions on Geoscience and Remote Sensing, 50(8), 3004 pp.Google Scholar
Melsheimer, C., Heygster, G. and Pedersen, L. T. (2009). Retrieval of Sea Ice Emissivity and Integrated Retrieval of Surface and Atmospheric Parameters over the Arctic from AMSR-E data. Journal of the Remote Sensing Society of Japan, 29(1), 236241.Google Scholar
Muckenhuber, S., Korosov, A. A. and Sandven, S. (2016). Open-source feature-tracking algorithm for sea ice drift retrieval from Sentinel-1 SAR imagery. The Cryosphere, 10, 913925. doi: 10.5194/tc-10-913-2016.Google Scholar
Mätzler, C. (1987). Applications of the interaction of microwaves with the natural snow cover. Remote Sensing Reviews, 2(2), 259391.Google Scholar
Mätzler, C. and Wiesmann, A. (1999). Extension of the microwave emission model of layered snowpacks to coarse-grained snow. Remote Sensing of Environment, 70, 317325.Google Scholar
Ninnis, R. M., Emery, W. J. and Collins, M. J. (1986). Automated extraction of pack ice motion from advanced very high‐resolution radiometry. Journal of Geophysical Research, 91, 1072510734. doi: 10.1029/JC091iC09p10725.Google Scholar
Pedersen, L.T. (1994). Merging microwave radiometer data and meteorological data for improved sea ice concentrations. EARSeL Advances in Remote Sensing, 3, 8189.Google Scholar
Perovich, D., Richter-Menge, J., Elder, B., Arbetter, T., Claffey, K. and Polashenski, C. (2013). Observing and understanding climate change: Monitoring the mass balance, motion, and thickness of Arctic sea ice. http://imb.erdc.dren.mil.Google Scholar
Ramseier, R. O. (1991). Sea Ice Validation, in: DMSP special sensor microwave/imager calibration/validation, edited by: Hollinger, J. P., Washington, DC: Naval Research Laboratory, 1991.Google Scholar
Ricker, R., Hendricks, S., Perovich, D. K., Helm, V. and Gerdes, R. (2015). Impact of snow accumulation on CryoSat-2 range retrievals over Arctic sea ice: An observational approach with buoy data. Geophysical Research Letters, 42, 44474455. doi: 10.1002/2015GL064081.Google Scholar
Rösel, A., Kaleschke, L. and Birnbaum, G. (2012). Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network. The Cryosphere, 6, 431446. doi: 10.5194/tc-6-431-2012.Google Scholar
Schanda, E. (1986, 2012). Physical Fundamentals of Remote Sensing, Springer, 1986 & 2012, 187 pp.Google Scholar
Shi, T., Clothiaux, E. E., Yu, B., Braverman, A. J. and Groff, D. N. (2007). Detection of daytime arctic clouds using MISR and MODIS data. Remote Sensing of Environment, 107 (1–2), pages 172184, ISSN 0034-4257, http://dx.doi.org/10.1016/j.rse.2006.10.015.Google Scholar
Schmetz, J., Holmlund, K., Hoffman, J., Strauss, B., Mason, B., Gærtner, V., Koch, A. and Berg, L. V. D. (1993). Operational cloud‐motion winds from Meteosat infrared images. Journal of Applied Meteorology, 32, 12061225.Google Scholar
Scott, K. A., Buehner, M., Caya, A. and Carrieres, T. (2012) Direct assimilation of AMSR-E brightness temperatures to estimate sea ice concentration. Monthly Weather Review, 140, 9971013.Google Scholar
Scott, K. A., Ashouri, Z., Buehner, M., Pogson, L. and Carrieres, T. (2015). Assimilation of ice and water observations from SAR imagery to improve estimates of sea ice concentration. Tellus A, 67, 27218, http://dx.doi.org/10.3402/tellusa.v67.27218.Google Scholar
Shokr, M. E. (1998). Field Observations and model calculations of dielectric properties of Arctic sea ice in the microwave C-band. IEEE Transactions on Geoscience and Remote Sensing, 36(2), 463478.Google Scholar
Shokr, M. and Sinha, N. K. (2015). Sea Ice – Physics and Remote Sensing, Hoboken, NJ: AGU/Wiley & Sons, 600 pp, ISBN: 978-1-119-02789-8.Google Scholar
Smith, D. M. (1996). Extraction of winter total sea ice concentration in the Greenland and Barents Seas from SSM/I data. International Journal of Remote Sensing, 17, 26252646.Google Scholar
Spreen, G., Kaleschke, L. and Heygster, G. (2008). Sea ice remote sensing using AMSR-E 89 GHz channels. Journal of Geophysical Research, 113, C02S03. doi: 10.1029/2005JC003384.Google Scholar
Sumata, H., Kwok, R., Gerdes, R., Kauker, F. and Karcher, M. (2015). Uncertainty of Arctic summer ice drift assessed by high-resolution SAR data. Journal of Geophysical Research, 120, 52855301. doi: 10.1002/2015JC010810.Google Scholar
Svendsen, E., Matzler, C. and Grenfell, T. (1987). A model for retrieving total sea ice concentration from a spaceborne dual-polarized passive microwave instrument operating near 90 GHz. International Journal of Remote Sensing, 8(10), 14791487.Google Scholar
Thomas, M., Geiger, C. A. and Kambhamettu, C. (2008). High resolution (400 m) motion characterization of sea ice using ERS-1 SAR imagery. Cold Regions Science and Technology, 52, 207223.Google Scholar
Tonboe, R. T., Eastwood, S., Lavergne, T., Sørensen, A. M., Rathmann, N., Dybkjær, G., Pedersen, L. T., Høyer, J. L. and Kern, S. (2016). The EUMETSAT sea ice concentration climate data record. The Cryosphere, 10, 22752290. doi: 10.5194/tc-10-2275-2016.Google Scholar
Tonboe, R. T., Heygster, G., Pedersen, L. T. and Andersen, S. (2006). Sea ice emission modelling, in: Thermal Microwave Radiation: Applications for Remote Sensing, edited by: Mätzler, C., IET Electromagnetic Wave Series 52, London, UK, 382400.Google Scholar
Tonboe, R. T., Pedersen, L. T. and Haas, C. (2010). Simulation of the Cryosat-2 satellite radar altimeter sea ice thickness retrieval uncertainty. Canadian Journal of Remote Sensing, 36(1), 5567.Google Scholar
Toyota, T., Haas, C. and Tamura, T. (2010). Size distribution and shape properties of relatively small sea-ice floes in the Antarctic marginal ice zone in late winter. Deep–Sea Research II. doi: 10.1016/j.dsr2.2010.10.034.Google Scholar
Tsang, L. and Kong, J. A. (2001). Scattering of Electromagnetic Waves: Advanced Topics, 432 pages, Wiley, ISBN: 978-0-471-38801-2.Google Scholar
Tucker, W. B., Grenfell, T. C., Onstott, R. G., Perovich, D. K., Gow, A. J., Shuchman, R. A. and Sutherland, L. (1991). Microwave and physical properties of sea ice in the winter marginal ice zone. Journal of Geophysical Research, 96(C3), 45734587.Google Scholar
Ulaby, F. (2013). Microwave Radar and Radiometric Remote Sensing, University of Michigan Press, 1116 pages, ISBN-13: 978-0472119356.Google Scholar
Untersteiner, N. (Ed.) (1986). The Geophysics of Sea Ice. NATO ASI series, series B: Physics Vol. 146, New York & London: Plenum Press.Google Scholar
Wadhams, P. (2000). Ice in the Ocean. Gordon & Breach Science Publishers.Google Scholar
Wang, L., Scott, K. A., Xu, L. and Clausi, D. A. (2016a). Sea ice concentration estimation during melt from dual-pol SAR scenes using deep convolutional neural networks: A case study. IEEE Transactions on Geoscience and Remote Sensing, 54(8), 45244533. doi: 10.1109/TGRS.2016.2543660.Google Scholar
Wang, L., Scott, K. A. and Clausi, D. (2016b). Improved sea ice concentration estimation through fusing classified SAR imagery and AMSR-E data. Canadian Journal of Remote Sensing, 42(1). doi: 10.1080/07038992.2016.1152547.Google Scholar
Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin, N. T., Alexandrov, I. and Colony, R. (1999). Snow depth on Arctic sea ice. Journal of Climate 12, 18141829.Google Scholar
Wentz, F. and Meissner, T. (2000). AMSR Ocean Algorithm Theoretical Basis Document (Version 2), RSS Tech. Proposal 121599A-1, Santa Rosa, CA: Remote Sensing Systems, December 1999, revised 2000.Google Scholar
Wentz, F. and Meissner, T. (2007). AMSR Ocean Algorithm Theoretical Basis Document Supplement-1, RSS Tech. Rpt. 051707, Santa Rosa, CA: Remote Sensing Systems, May 2007.Google Scholar
Wiesmann, A. and Mätzler, C. (1999). Microwave emission model of layered snowpacks. Remote Sensing of Environment, 70, 307316.Google Scholar
Worby, A. and Allison, I. (1999). A technique for making ship-based observations of Antarctic sea ice thickness and characteristics: PART I observational technique and results. Research Report 14, pp. 123, Hobart, Tasmania, Australia: Antarctic Cooperative Research Centre, University of Tasmania.Google Scholar
Worby, A. P., Geiger, C. A., Paget, M. J., Van Woert, M. L., Ackley, S. F. and DeLiberty, T. L. (2008). Thickness distribution of Antarctic sea ice. Journal of Geophysical Research: Oceans, 113(C5), C05S92. doi: 10.1029/2007JC004254.Google Scholar
Zygmuntowska, M., Rampal, P., Ivanova, N. and Smedsrud, L. H. (2014). Uncertainties in Arctic sea ice thickness and volume: new estimates and implications for trends. The Cryosphere, 8, 705720, 2014. doi: 10.5194/tc-8-705-2014.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×