Skip to main content Accessibility help
  • Print publication year: 2012
  • Online publication date: January 2013

7 - The use of SEM to explore viral structure and trafficking

Related content

Powered by UNSILO

7.12 References

Arhel, N. J., Souquere-Besse, S., Munier, S., et al. (2007). HIV-1 DNA flap formation promotes uncoating of the pre-integration complex at the nuclear pore. The EMBO Journal, 26, 3025–3037.
Bennett, A. E., Narayan, K., Shi, D., et al. (2009). Ion-abrasion scanning electron microscopy reveals surface-connected tubular conduits in HIV-infected macrophages. PLoS Pathogens, 5, e1000591.
Bouamr, F., Houck-Loomis, B. R., De Los Santos, M., et al. (2007). The C-terminal portion of the Hrs protein interacts with Tsg101 and interferes with human immunodeficiency virus type 1 Gag particle production. Journal of Virology, 81, 2909–2922.
Briggs, J. A. G., Riches, J. D., Glass, B., et al. (2009). Structure and assembly of immature HIV. Proc. National Academy of Sciences of the USA, 106, 11090–11095.
Brown, G., Jeffree, C. E., Mcdonald, T., et al. (2004). Analysis of the interaction between respiratory syncytial virus and lipid-rafts in Hep2 cells during infection. Virology, 327, 175–185.
Bruce, E. A., Digard, P., and Stuart, A. D. (2010). The Rab11 pathway is required for influenza A virus budding and filament formation. Journal of Virology, 84, 5848–5859.
Casartelli, N., Sourisseau, M., Feldmann, J., et al. (2010). Tetherin restricts productive HIV-1 cell-to-cell transmission. PLoS Pathogens, 6, e1000955.
Clement, C., Tiwari, V., Scanlan, P. M., et al. (2006). A novel role for phagocytosis-like uptake in herpes simplex virus entry. The Journal of Cell Biology, 174, 1009–1021.
Felts, R. L., Narayan, K., Estes, J. D., et al. (2010). 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells. Proc. National Academy of Sciences of the USA, 107 (30), 13336–13341.
Gower, T. L., Pastey, M. K., Peeples, M. E., et al. (2005). RhoA signaling is required for respiratory syncytial virus-induced syncytium formation and filamentous virion morphology. Journal of Virology, 79 (9), 5326–5336.
Jeffree, C. E., Rixon, H. W. M., Brown, G., Aitken, J., and Sugrue, R. J. (2003). Distribution of the attachment (G) glycoprotein and GM1 within the envelope of mature respiratory syncytial virus filaments revealed using field emission scanning electron microscopy. Virology, 306, (2), 254–267.
Jorgenson, R. L., Vogt, V. M., and Johnson, M. C. (2009). Foreign glycoproteins can be actively recruited to virus assembly sites during pseudotyping. Journal of Virology, 83, 4060–4067.
Kaletsky, R. L., Francica, J. R., Agrawal-Gamse, C., and Bates, P. (2009). Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein. Proc. National Academy of Sciences of the USA, 106, 2886–2891.
Keller, P. W., Johnson, M. C., and Vogt, V. M. (2008). Mutations in the spacer peptide and adjoining sequences in Rous sarcoma virus Gag lead to tubular budding. Journal of Virology, 82, 6788–6797.
Lehmann, M. J., Sherer, N. M., Marks, C. B., Pypaert, M., and Mothes, W. (2005). Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. The Journal of Cell Biology, 170, 317–325.
Mccurdy, L. H. and Graham, B. S. (2003). Role of plasma membrane lipid microdomains in respiratory syncytial virus filament formation. Journal of Virology, 77, 1747–1756.
Meier, O., Boucke, K., Hammer, S. V., et al. (2002). Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. The Journal of Cell Biology, 158, 1119–1131.
Mercer, J., Schelhaas, M., and Helenius, A. (2010). Virus entry by endocytosis. Annual Review of Biochemistry, 79, 803–833.
Neil, S. J. D., Zang, T., and Bieniasz, P. D. (2008). Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature, 451, 425–430.
Noda, T., Ebihara, H., Muramoto, Y., et al. (2006). Assembly and budding of Ebolavirus. PLoS Pathogens, 2, e99.
Shukla, D., Liu, J., Blaiklock, P., et al. (1999). A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell, 99, 13–22.
Utley, T. J., Ducharme, N. A., Varthakavi, V., et al. (2008). Respiratory syncytial virus uses a Vps4-independent budding mechanism controlled by Rab11-FIP2. Proc. National Academy of Sciences of the USA, 105, 10209–10214.
Wild, P., Senn, C., Manera, C. L., et al. (2009). Exploring the nuclear envelope of herpes simplex virus 1-infected cells by high-resolution microscopy. Journal of Virology, 83, 408–419.
Wills, J. W., Craven, R. C., Weldon, R. A., Nelle, T. D., and Erdie, C. R. (1991). Suppression of retroviral MA deletions by the amino-terminal membrane-binding domain of p60src. Journal of Virology, 65, 3804–3812.
Wright, E. R., Schooler, J. B., Ding, H. J., et al. (2007). Electron cryotomography of immature HIV-1 virions reveals the structure of the CA and SP1 Gag shells. The EMBO Journal, 26, 2218–2226.