Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-16T15:33:21.429Z Has data issue: false hasContentIssue false

4 - Spatial Variability and Scale Invariance in Hydrologic Regionalization

Published online by Cambridge University Press:  18 January 2010

Garrison Sposito
Affiliation:
University of California, Berkeley
Get access

Summary

Problems of Scale and Regionalization in River Basins

The occurrence of the hydrologic cycle covers a very wide range of space and time scales, and involves physical, chemical, and ecological processes. Therefore, in modeling and making predictions, one is required to understand how various properties and measurements behave under a change of scale. At the spatial and temporal scales of interest in river basins, space–time variability and fluctuations are displayed in input, output, and storage elements of the components of the hydrologic cycle and in their interactions. This variability is part of the physics and in this sense is different from the measurement noise. We can use the term physical-statistical or statistical-dynamical to describe such systems. An understanding of the physics of these systems in the presence of variability and fluctuations through mathematical notions of randomness has been and continues to be one of the central challenges of hydrology and constitutes the main theme of this chapter.

A river basin contains a channel network, as shown in Figure 4.1, and systems of hills on both sides of the channels in the network. Rainfall and/or snowmelt are transformed into runoff, and sediments are eroded over hills, and these in turn are fed into a channel network for their journey toward an ocean. The hydrologic cycle on a hillside involves transformation of rainfall to surface runoff, infiltration through the near-surface unsaturated soils, and evapotranspiration from the soil surface into the atmosphere. The infiltrated water goes into recharging the soil moisture in the unsaturated zone, the aquifers, and some of it also appears as subsurface runoff in a channel network.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×