Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T06:49:44.527Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  08 March 2019

Trudy R. Turner
Affiliation:
University of Wisconsin, Milwaukee
Christopher A. Schmitt
Affiliation:
Boston University
Jennifer Danzy Cramer
Affiliation:
American Military University and American Public University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Savanna Monkeys
The Genus <I>Chlorocebus</I>
, pp. 263 - 332
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiello, L.C. & Wheeler, P. (1995). The expensive-tissue hypothesis: the brain and digestive system in human and primate evolution. Current Anthropology, 32(2), 199221.CrossRefGoogle Scholar
Akinyi, M.Y., Tung, J., Jeneby, M., Patel, N.B., Altmann, J. & Alberts, S.C. (2013). Role of grooming in reducing tick load in wild baboons (Papio cynocephalus). Animal Behaviour, 85, 559568.CrossRefGoogle ScholarPubMed
Alberts, S.C. (1999). Paternal kin discrimination in wild baboons. Proceedings of the Royal Society B, 266, 15011506.Google Scholar
Albrecht, G.H. (1980). Latitudinal, taxonomic, sexual, and insular determinants of size variation in pigtail macaques, Macaca nemestrina. International Journal of Primatology, 1, 141152.Google Scholar
Albrecht, G.H., Jenkins, P.D. & Godfrey, L.R. (1990). Ecogeographic size variation among the living and subfossil prosimians of Madagascar. American Journal of Primatology, 22, 150.CrossRefGoogle ScholarPubMed
Alexander, R.D. (1974). The evolution of social behavior. Annual Review Ecology, Evolution, and Systematics, 5, 325383.Google Scholar
Allal, N., Sear, R., Prentice, A.M. & Mace, R. (2004). An evolutionary model of stature, age at first birth and reproductive success in Gambian women. Proceedings of the Royal Society of London B: Biological Sciences, 271(1538), 465470.Google Scholar
Altmann, J. & Alberts, S. (1987). Body mass and growth rates in a wild primate population. Oecologia, 72(1), 1520.Google Scholar
Altmann, J. & Alberts, S.C. (2003). Variability in reproductive success viewed from a life-history perspective in baboons. American Journal of Human Biology, 15(3), 401409.Google Scholar
Altmann, J. (2005). Growth rates in a wild primate population, ecological influences and maternal effects. Behavioral Ecology and Sociobiology, 57, 490501.Google Scholar
Altmann, J., Altmann, S. & Hausfater, G. (1981). Physical maturation and age estimates of yellow baboons, Papio cynocephalus, in Amboseli National Park, Kenya. American Journal of Primatology, 1, 389399.Google Scholar
Altmann, J., Schoeller, D., Altmann, S.A., Muruthi, P. & Sapolsky, R.M. (1993). Body size and fatness of free-living baboons reflect food availability and activity levels. American Journal of Primatology, 30 (2), 149161.Google Scholar
Altmann, J., Alberts, S.C., Haines, S.A., Dubach, J., Muruthi, P., Coote, T., Geffen, E., Cheesman, H., Mututua, R.S., Saiyalel, S.N., Wayne, R.K., Lacy, R.C. & Bruford, M.W. (1996). Behavior predicts genetics structure in a wild primate group. Proceedings of the National Academy of Sciences of the USA, 93(12), 57975801.Google Scholar
Altmann, S.A. & Altmann, J. (1970). Baboon ecology. Bibliotheca Primatologica, 12, 1220.Google Scholar
Amato, K.R., Yeoman, C.J., Cerda, G., Schmitt, C.A., Cramer, J.D., Berg-Miller, M.E., Gomez, A., Turner, T.R., Wilson, B.A., Stumpf, R.M. Nelson, K.E., White, B.A., Knight, R. & Leigh, S.R. (2015). Variable responses of human and nonhuman primate gut microbiomes to a Western diet. Microbiome, 3, 53.Google Scholar
Amedee, A.M., Rychert, J., Lacour, N., Fresh, L. & Ratterree, M. (2004). Viral and immunological factors associated with breast milk transmission of SIV in rhesus macaques. Retrovirology, 1, 17.Google Scholar
Andelman, S.J. (1985). Ecology and reproductive strategies of vervet monkeys (Cercopithecus aethiops) in Amboseli National Park, Kenya (PhD dissertation). University of Washington at Seattle.Google Scholar
Andelman, S.J. (1987). Evolution of concealed ovulation in vervet monkeys (Cercopithecus aethiops). The American Naturalist, 129(6), 785799.Google Scholar
Andersson, M. (1994). Sexual Selection. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Andres, M., Solignac, M. & Perret, M. (2003). Mating system in mouse lemurs: theories and facts, using analysis of paternity. Folia Primatologica, 74, 355366.Google Scholar
Apetrei, C., Robertson, D.L. & Marx, P.A. (2004). The history of SIVs and AIDS: epidemiology, phylogeny and biology of isolates from naturally SIV infected non-human primates (NHP) in Africa. Frontiers in Bioscience, 9, 225254.Google Scholar
Apetrei, C., Gormus, B., Pandrea, I., Metzger, M., Haaft, P., Martin, L.N., Bohm, R., Alvarez, X., Koopman, G., Murphey-Corb, M., Veazey, R.S., Lackner, A.A., Baskin, G., Heeney, J. & Marx, P.A. (2004). Direct inoculation of simian immunodeficiency virus from sooty mangabeys in black mangabeys (Lophocebus aterrimus): first evidence of AIDS in a heterologous African species and different pathologic outcomes of experimental infection. Journal of Virology, 78, 1150611518.Google Scholar
Apetrei, C., Gautam, R., Sumpter, B., Carter, A.C., Gaufin, T., Staprans, S.I., Else, J., Barnes, M., Cao, R., Jr., Garg, S., Milush, J.M., Sodora, D.L., Pandrea, I. & Silvestri, G. (2007). Virus-subtype specific features of natural SIVsmm infection in sooty mangabeys. Journal of Virology, 81, 79137923.Google Scholar
Appleton, C.C. & Henzi, S.P. (1993). Environmental correlates of gastrointestinal parasitism in montane and lowland baboons in Natal, South Africa. International Journal of Primatology, 14(4), 623635.Google Scholar
Appleton, C.C., Krecek, R.C., Verster, A., Bruorton, M.R. & Lawes, M.J. (1994). Gastro-intestinal parasites of the Samango monkey, Cercopithecus mitis, in Natal, South Africa. Journal of Medical Primatology, 23(1), 5255.CrossRefGoogle ScholarPubMed
Archard, G.A. & Braithwaite, V.A. (2010). The importance of wild populations in studies of animal temperament. Journal of Zoology, 281, 149160.Google Scholar
Ashford, R.W., Reid, G.D.F. & Butynski, T.M. (1990). The intestinal faunas of man and mountain gorillas in a shared habitat. Annals of Tropical Medicine and Parasitology, 84(4), 337340.Google Scholar
Ashford, R.W., Reid, G.D.F. & Wrangham, R.W. (2000). Intestinal parasites of the chimpanzee Pan troglodytes in Kibale Forest, Uganda. Annals of Tropical Medicine and Parasitology, 94(2), 173179.Google Scholar
Ashton, E.H. (1960). The influence of geographic isolation on the skull of the green monkey (Cercopithecus aethiops sabaeus). Part V. Proceedings of the Royal Society of London. Series B, 151, 538.Google Scholar
Ashton, E.H. & Zuckerman, S. (1950). The influence of geographic isolation on the skull of the green monkey (Cercopithecus aethiops sabaeus). Part I. Proceedings of the Royal Society of London. Series B, 137, 212238.Google Scholar
Ashton, E.H. (1951a). The influence of geographic isolation on the skull of the green monkey (Cercopithecus aethiops sabaeus). Part II. Proceedings of the Royal Society of London. Series B, 138, 204213.Google Scholar
Ashton, E.H. (1951b). The influence of geographic isolation on the skull of the green monkey (Cercopithecus aethiops sabaeus). Part III. Proceedings of the Royal Society of London. Series B, 138, 213218.Google Scholar
Ashton, E.H. (1951c). The influence of geographic isolation on the skull of the green monkey (Cercopithecus aethiops sabaeus). Part IV. Proceedings of the Royal Society of London. Series B, 138, 354374.Google Scholar
Ashton, E.H., Flinn, R.M., Griffiths, R.K. & Moore, W.J. (1979). The results of geographic isolation on the teeth of the green monkey (Cercopithecus aethiops sabaeus) in St. Kitts – a multivariate retrospect. Journal of Zoology, 188, 533555.Google Scholar
Atkins, H.M., Wilson, C.J., Silverstein, M., Jorgensen, M., Floyd, E., Kaplan, J.R. & Appt, S.E. (2014). Characterization of ovarian aging and reproductive senescence in vervet monkeys (Chlorocebus aethiops sabaeus). Comparative medicine, 64, 5562.Google Scholar
Atkinson, E.G., Rogers, J., Mahaney, M.C., Cox, L.A. & Cheverud, J.M. (2015). Cortical folding of the primate brain, an interdisciplinary examination of the genetic architecture, modularity, and evolvability of a significant neurological trait in pedigreed baboons (genus Papio). Genetics, 200, 651665.Google Scholar
Avise, J.C. & BallJr., R.M. (1990). Principles of genealogical concordance in species concepts and biological taxonomy. Oxford Surveys in Evolutionary Biology, 7, 4567.Google Scholar
Backhed, F., Ding, H., Wang, T., Hooper, L.V., Koh, G.Y., Nagy, A., Semenkovich, C.F. & Gordon, J.I. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Science, 101, 1571815723.CrossRefGoogle ScholarPubMed
Baden, A.L., Brenneman, R.A. & LouisJr., E.E. (2008). Morphometrics of wild black-and-white ruffed lemurs (Varecia variegate; Kerr, 1792). American Journal of Primatology, 70(10), 913926.Google Scholar
Badyaev, A.V., Hill, G.E. & Weckworth, B.V. (2002). Species divergence in sexually selected traits: increase in song elaboration is related to decrease in plumage ornamentation in finches. Evolution, 56, 412419.Google Scholar
Bailes, E., Gao, F., Bibollet-Ruche, F., Courgnaud, V., Peeters, M., Marx, P.A., Hahn, B.H. & Sharp, P.M. (2003). Hybrid origin of SIV in chimpanzees. Science, 300, 1713.Google Scholar
Bailey, A. L., Lauck, M., Sibley, S.D. et al. (2015). Zoonotic potential of simian arteriviruses. Journal of Virology, 90, 630635.Google Scholar
Bailey, J.N., Breidenthal, S.E., Jorgensen, M.J., McCracken, J.T. & Fairbanks, L.A. (2007). The association of DRD4 and novelty seeking is found in a nonhuman primate model. Psychiatry & Genetics, 17, 2327.CrossRefGoogle Scholar
Bakuza, J.S. & Nkwengulilia, G. (2009). Variation over time in parasite prevalence among free-ranging chimpanzees at Gombe National Park, Tanzania. International Journal of Primatology, 30(1), 4353.Google Scholar
Baldellou, M. & Henzi, S.P. (1992). Vigilance, predator detection and the presence of supernumerary males in vervet monkey troops. Animal Behaviour, 43(3), 451461.Google Scholar
Barker, D.J.P., Eriksson, J.G., Forsen, T. & Osmond, C. (2002). Fetal origins of adult disease, strength of effects and biological basis. International Journal of Epidemiology, 31, 12351239.Google Scholar
Barnicot, N.A. & Hewett-Emmett, D. (1971). Red cell and serum proteins of talapoin, patas, and vervet monkeys. Folia Primatologica, 15, 6576.Google Scholar
Barnicot, N.A. (1972). Red cell and serum proteins of Cercocebus, Presbytis, Colobus and certain other species. Folia Primatologica, 17, 442457.Google Scholar
Barnicot, N.A, Jolly, C.J. & Wade, P.T (1967) Protein variations and primatology. American Journal of Physical Anthropology, 27, 343356.Google Scholar
Barr, C.S., Newman, T.K., Shannon, C., Parker, C., Dvoskin, R.L., Becker, M.L., Schwandt, M., Champoux, M., Lesch, K.P., Goldman, D., Sumoi, S.J. & Higley, J.D. (2004). Rearing condition and rh5-HTTLPR interact to influence limbic–hypothalamic–pituitary–adrenal axis response to stress in infant macaques. Biological Psychiatry, 55, 733738.Google Scholar
Barrett, A.S., Brown, L.R., Barrett, L. & Henzi, P. (2010). A floristic description and utilisation of two home ranges by vervet monkeys in Loskop Dam Nature Reserve, South Africa. Koedoe, 52, 112.Google Scholar
Barton, R.A. & Harvey, P.H. (2000). Mosaic evolution of brain structure in mammals. Nature, 405(6790), 10551058.Google Scholar
Basckin, D.R. & Krige, P.D. (1973). Some preliminary observations on the behaviour of an urban troop of vervet monkeys (Cercopithecus aethiops) during the birth season. Journal of Behavioral Science, 1, 287296.Google Scholar
Bateman, A.S. & Kelly, S.D. (2007). Fertilizer nitrogen isotope signatures. Isotopes in Environmental and Health Studies, 43, 237247.CrossRefGoogle ScholarPubMed
Baulu, J., Everard, C.O.R. & Everard, J.D. (1987a). Leptospires in vervet monkeys (Cercopithecus aethiops sabaeus) on Barbados. Journal of Wildlife Diseases, 23, 6066.Google Scholar
Baulu, J., Everard, C.O.R. (1987b). The African green monkey (Cercopithecus aethiops sabaeus) as a carrier of disease in Barbados. Laboratory Primate Newsletter, 26, 24.Google Scholar
Bayes, M.K., Smith, K.L., Alberts, S.C., Altmann, J. & Bruford, M.W. (2000). Testing the reliability of microsatellite typing from faecal DNA in the savannah baboon. Conservation Genetics, 1(2), 173176.Google Scholar
Bearder, S.K. (1987). Lorises, bushbabies, and tarsiers: diverse societies in solitary foragers. In Smuts, B.B., Cheney, D.L., Seyfarth, R.M., Wrangham, R.W. & Struhsaker, T.T., eds., Primate Societies. Chicago: University of Chicago Press, pp. 1124.Google Scholar
Bell, G. & Koufopanou, V. (1986). The cost of reproduction. In Dawkins, R., ed., Oxford Surveys of Evolutionary Biology. Oxford, UK: Oxford University Press, pp. 83131.Google Scholar
Benefit, B.R. (1999). Victoriapithecus, the key to Old World monkey and catarrhine origins. Evolutionary Anthropology, 7(5), 155174.Google Scholar
Benefit, B.R. & McCrossin, M.L. (2001). Craniodental comparisons of Mabokopithecus and Oreopithecus support and African origin of Oreopithecidae. American Journal of Physical Anthropology, 32, 3738.Google Scholar
Benefit, B.R., Gitau, S.N., McCrossin, M.L. & Palmer, A.K. (1998). A mandible of Mabokopithecus clarki sheds new light on oreopithecid evolution. American Journal of Physical Anthropology, S26, 109.Google Scholar
Berard, J.D., Nuernberg, P., Epplen, J.T. & Schmidtke, J. (1993). Male rank, reproductive behavior, and reproductive success in free-ranging rhesus macaques. Primates, 34(4), 481489.Google Scholar
Bercovitch, F.B., Widdig, A., Trefilov, A., Kessler, M.J., Schmidtke, J., Nuernberg, P. & Krawczak, M. (2003). A longitudinal study of age-specific reproductive output and body condition among male rhesus macaques, Macaca mulatta. Naturwissenschaften, 90 (7), 309312.Google Scholar
Berghänel, A., Schülke, O. & Ostner, J. (2015). Locomotor play drives motor skill acquisition at the expense of growth, a life history trade-off. Science Advances, 1, e1500451.Google Scholar
Bergman, T.J. & Beehner, J.C. (2008). A simple method for measuring colour in wild animals: validation and use on chest patch colour in geladas (Theropithecus gelada). Biological Journal of the Linnean Society, 94(2), 231240.Google Scholar
Bergman, T.J. & Kitchen, D.M. (2009). Comparing responses to novel objects in wild baboons (Papio ursinus) and geladas (Theropithecus gelada). Animal Cognition, 12, 6373.Google Scholar
Berkman, L.F. (1984). Assessing the physical health effects of social networks and social support. Annual Review of Public Health, 5, 413432.Google Scholar
Berkman, L.F., Glass, T., Brissette, I. & Seeman, T.E. (2000). From social integration to health, Durkheim in the new millennium. Social Science & Medicine, 51, 843857.Google Scholar
Bernstein, R.M., Leigh, S.R., Donovan, S.M. & Monaco, M.H. (2008). Hormonal correlates of ontogeny in baboons (Papio hamadryas anubis) and mangabeys (Cercocebus atys). American Journal of Physical Anthropology, 136, 156168Google Scholar
Bibollet-Ruche, F., Galat-Luong, A., Cuny, G., Sarni-Manchado, P., Galat, G., Durand, J.P., Pourrut, X. & Veas, F. (1996). Simian immunodeficiency virus infection in a patas monkey (Erythrocebus patas), evidence for cross-species transmission from African green monkeys (Cercopithecus aethiops sabaeus) in the wild. Journal of General Virology, 77, 773781.Google Scholar
Bielert, C., Czaja, J.A., Eisele, S., Scheffler, G., Robinson, J.A. & Goy, R.W. (1976). Mating in the rhesus monkey (Macaca mulatta) after conception and its relationship to oestradiol and progesterone levels throughout pregnancy. Journal of Reproduction and Fertility, 46, 179187.Google Scholar
Birky, C.W., Maruyama, T., & Fuerst, P. (1983). An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics, 103(3), 513527.Google Scholar
Blakeslee, J.R., Sowder, W.G. & Baulu, J. (1985). Wild African green monkeys of Barbados are HTLV negative. Lancet, 8427, 525.CrossRefGoogle Scholar
Blanckenhorn, W.U. (2000). The evolution of body size, what keeps organisms small? Quarterly Review of Biology, 75 (4), 385407.Google Scholar
Blaszczyk, M.B. (2017). Boldness towards novel objects predicts predator inspection in wild vervet monkeys. Animal Behaviour, 123, 91100. https://doi.org/10.1016/j.anbehav.2016.10.017.Google Scholar
Blomquist, G.E. (2009). Environmental and genetic causes of maturational differences among rhesus macaque matrilines. Behavioral Ecology & Sociobiology, 63, 13451352.Google Scholar
Blomquist, G.E. & Turnquist, J.E. (2011). Selection on adult female body size in rhesus macaques. Journal of Human Evolution, 60, 677683.Google Scholar
Bogin, B. (1999). Patterns of Human Growth, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Bolter, D.R. & Zihlman, A.L. (2003). Morphometric analysis of growth and development in wild-collected vervet monkeys (Cercopithecus aethiops), with implications for growth patterns across Old World monkeys, apes and humans. Journal of Zoology, 260(1), 99110.Google Scholar
Bonduriansky, R. (2007a). Sexual selection and allometry, a critical reappraisal of the evidence and ideas. Evolution, 61, 838849.Google Scholar
Bonduriansky, R. (2007b). The evolution of condition-dependent sexual dimorphism. American Naturalist, 169, 919.Google Scholar
Bones and Behavior Working Group (2015). Bones and Behavior Working Group. Retrieved from www.bonesandbehavior.orgGoogle Scholar
Bose, T., Voruganti, V.S., Tejero, M.E., Proffit, J.M., Cox, L.A., Vandeberg, J.L., Mahaney, M.C., Rogers, J., Freeland-Graves, J.H., Cole, S.A. & Comuzzie, A.G. (2010). Identification of a QTL for adipocyte volume and of shared genetic effects with aspartate aminotransferase. Biochemical Genetics, 48, 538547.Google Scholar
Bosinger, S.E., Li, Q., Gordon, S.N., Klatt, N.R., Duan, L., Xu, L., Francella, N., Sidahmed, A., Smith, A.J., Cramer, E.M., Zeng, M., Masopust, D., Carlis, J.V., Ran, L., Vanderford, T.H., Paiardini, M., Isett, R.B., Baldwin, D.A., Else, J.G., Staprans, S.I., Silvestri, G., Haase, A.T. & Kelvin, D.J. (2009). Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys. Journal of Clinical Investigation, 119, 35563572.Google Scholar
Botero, S., Stevenson, P.R., & Di Fiore, A. (2015). A primer on the phylogeography of Lagothrix lagotricha (sensu Fooden) in northern South America. Molecular Phylogenetics and Evolution, 82, 511517.Google Scholar
Boulton, A.M., Horrocks, J.A. & Baulu, J. (1995). Reevaluating the Barbados vervet monkey population and its role in crop damage. American Journal of Primatology, 36, 112.Google Scholar
Boulton, A.M., Horrocks, J.A. & Baulu, J. (1996). The Barbados vervet monkey, changes in population size and crop damage, 1980–1994. International Journal of Primatology, 17, 831844.Google Scholar
Bradford, A.P., Jones, K., Kechris, K., Chosich, J., Montague, M., Warren, W.C., May, M.C., Al-Safi, A., Kuokkanen, S., Appt, S.E. & Polotsky, A.J. (2015). Joint miRNA/mRNA expression profiling reveals changes consistent with development of dysfunctional corpus luteum after weight gain. PLoS One, 10, e0135163.Google Scholar
Bradley, B.J. & Lawler, R.R. (2011). Linking genotypes, phenotypes, and fitness in wild primate populations. Evolutionary Anthropology, 20, 104119.Google Scholar
Brain, C.K. (1965). Observations on the behavior of vervet monkeys (Cercopithecus aethiops). Zoologica Africana, 1, 1327.Google Scholar
Brain, C. & Mitchell, D. (1999). Body temperature changes in free-ranging baboons (Papio hamadryas ursinus) in the Namib Desert, Namibia. International Journal of Primatology, 20, 585598.Google Scholar
Bramblett, C.A., Bramblett, S.S., Bishop, D.A. & Coelho, A.M. (1982). Longitudinal stability in adult status hierarchies among vervet monkeys (Cercopithecus aethiops). American Journal of Primatology, 2, 4351.Google Scholar
Brenchley, J.M. & Douek, D.C. (2012). Microbial translocation across the GI tract. Annual Review of Immunology, 30, 149173.Google Scholar
Brenchley, J.M., Price, D.A. & Douek, D.C. (2006). HIV disease, fallout from a mucosal catastrophe? Nature Immunology, 7, 235239.Google Scholar
Brenchley, J.M., Price, D.A., Schacker, T.W. et al. (2006). Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nature Medicine, 12, 13651371.Google Scholar
Breuer, T., Hockemba, M.B.N., Olejniczak, C., Parnell, R.J. & Stokes, E.J. (2009). Physical maturation, life-history classes and age estimates of free-ranging western gorillas – insights from Mbeli Bai, Republic of Congo. American Journal of Primatology, 71(2), 106119.Google Scholar
Bronikowski, A.M., Alberts, S.C., Altmann, J., Packer, C., Carey, K.D. & Tatar, M. (2002). The aging baboon: comparative demography in a non-human primate. Proceedings of the National Academy of Sciences of the United States of America, 99, 95919595.Google Scholar
Bronson, F.H. (1989). Mammalian Reproductive Biology. Chicago: University of Chicago Press.Google Scholar
Broussard, S.R., Staprans, S.I., White, R., Whitehead, E.M., Feinberg, M.B. & Allan, J.S. (2001). Simian immunodeficiency virus replicates to high levels in naturally infected African green monkeys without inducing immunologic or neurologic disease. Journal of Virology, 75, 22622275.Google Scholar
Brown, A.C. (2008). Status and range of introduced mammals on St. Martin, Lesser Antilles. Living World, Journal of the Trinidad and Tobago Field Naturalist Club, 1418.Google Scholar
Buchan, J.C., Alberts, S.C., Silk, J.B. & Altmann, J. (2003). True paternal care in a multi-male primate society. Nature, 425(6954), 179181.Google Scholar
Burness, G.P., Diamond, J. & Flannery, T. (2001). Dinosaurs, dragons and dwarfs, the evolution of maximum body size. Proceedings of the National Academy of Sciences of the United States of America, 98, 1451814523.Google Scholar
Busse, C.D. (1977). Chimpanzee predation as a possible factor in the evolution of red colobus monkey social organization. Evolution, 31, 907911.Google Scholar
Butynski, T.M. (1988). Guenon birth seasons and correlates with rainfall and food. In Gautier-Hion, A., Bourliere, F., Gautier-Hion, J.P. & Kingdon, J., eds., A Primate Radiation: Evolutionary Biology of the African Guenons. Cambridge: Cambridge University Press, pp. 284322.Google Scholar
Butynski, T.M., Kingdon, J. & Kalina, J. (2013). Mammals of Africa: Primates. London, UK: Bloomsbury.Google Scholar
Byles, R.H. & Sanders, M.F. (1981). Intertroop variation in the frequencies of ABO alleles in a population of olive baboons. International Journal of Primatology, 2, 3546.Google Scholar
Byrnes, J.P., Miller, D.C. & Schafer, W.D. (1999). Gender differences in risk taking: a meta-analysis. Psychological Bulletin, 125(3), 367.Google Scholar
Caillaud, D., Levrero, F., Cristescu, R., Gatti, S., Dewas, M., Douadi, M., Gautier-Hion, A., Raymond, M. & Menard, N. (2006). Gorilla susceptibility to Ebola virus, the cost of sociality. Current Biology, 16, R489R491.Google Scholar
Cameron, T.W. (1930). The species of Subulura Molin in primates. Journal of Helminthology, 8, 4957.Google Scholar
Campbell-Smith, G., Simanjorang, H.V., Leader-Williams, N. & Linkie, M. (2010). Local attitudes and perceptions toward crop-raiding by orangutans (Pongo abelii) and other nonhuman primates in northern Sumatra, Indonesia. American Journal of Primatology, 72, 866876.Google Scholar
Campos, F.A. & Fedigan, L.M. (2009). Behavioural adaptations to heat stress and water scarcity in white-faced capuchins (Cebus capucinus) in Santa Rosa National Park, Costa Rica. American Journal of Physical Anthropology, 138, 101111.Google Scholar
Carbone, L.L., Harris, R.A., Gnarre, S. et al. (2014). Gibbon genome and the fast karyotype evolution of small apes. Nature, 513, 195201.Google Scholar
Carmody, R.N. & Wrangham, R.W. (2009). The energetic significance of cooking. Journal of Human Evolution, 57(4), 379391.Google Scholar
Caro, T.M. (2005). Anti-Predator Defenses in Birds and Mammals. Chicago: University of Chicago Press.Google Scholar
Caughley, G. (1966). Mortality patterns in mammals. Ecology, 47, 906918.Google Scholar
Caughley, G. (1977). Analysis of Vertebrate Populations. New York: John Wiley.Google Scholar
Cerling, T.E., Wittemyer, G., Rasmussen, H.B., Vollrath, F., Cerling, C.E., Robinson, T.J. & Douglas-Hamilton, I. (2006). Stable isotopes in elephant hair document migration patterns and diet changes. Proceedings of the National Academy of the Sciences of United States of America, 103, 371373.Google Scholar
Chahroudi, A., Bosinger, S.E., Vanderford, T.H., Paiardini, M. & Silvestri, G. (2012). Natural SIV hosts, showing AIDS the door. Science, 335, 11881193.Google Scholar
Chakraborty, R. (1974). A note on Nei's measure of gene diversity in a substructured population. Humangenetik, 21(1), 8588.Google Scholar
Chan, J.L. & Mantzoros, C.S. (2001). Leptin and the hypothalamtic–pituitary regulation of the gonadotropin–gonadal axis. Pituitary, 4(1–2), 8792.CrossRefGoogle ScholarPubMed
Chancellor, R.L. & Isbell, L.A. (2008). Punishment and competition over food in captive rhesus macaques (Macaca mulatta). Animal Behaviour, 75, 19391947.Google Scholar
Chancellor, R.L. (2009). Food site residence time and female competitive relationships in wild gray-cheeked mangabeys (Lophocebus albigena). Behavioral Ecology and Sociobiology, 63, 14471458.Google Scholar
Chapman, C.A. (1985). The influence of habitat on behavior in a group of St. Kitts green monkeys. Journal of Zoology, 206, 311320.Google Scholar
Chapman, C.A. (1987). Selection of secondary growth areas by vervet monkeys (Cercopithecus aethiops). American Journal of Primatology, 12, 217221.Google Scholar
Chapman, C.A. & Balcomb, S.R. (1998). Population characteristics of howlers, ecological conditions or group history. International Journal of Primatology, 19(3), 385403.Google Scholar
Chapman, C. & Fedigan, L.M. (1984). Territoriality in the St Kitts vervet, Cercopithecus aethiops. Journal of Human Evolution, 13(8), 677686.Google Scholar
Chapman, C.A., Fedigan, L.M. & Fedigan, L. (1988). Ecological and demographic influences on the pattern of association in St. Kitts vervets. Primates, 29, 417421.Google Scholar
Chapman, C.A., Wrangham, R.W. & Chapman, L.J. (1995). Ecological constraints on group size, an analysis of spider monkey and chimpanzee subgroups. Behavioral Ecology and Sociobiology, 36, 5970.Google Scholar
Chapman, C.A., Wasserman, M.D., Gillespie, T.R., Speirs, M.L., Lawes, M.J., Saj, T.L. & Ziegler, T.E. (2006). Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments? American Journal of Physical Anthropology, 131(4), 525534.Google Scholar
Chapman, C. A., Friant, S., Godfrey, K. et al. (2016). Social behaviours and networks of vervet monkeys are influenced by gastrointestinal parasites. PLoS One, 11(8), e0161113.Google Scholar
Chapman, C.A., Gillespie, T.R. & Speirs, M.L. (2005). Parasite prevalence and richness in sympatric colobines: Effects of host density. American Journal of Primatology, 67(2), 259266.Google Scholar
Charnov, E.L. (1993). Life History Invariants. Oxford, UK: Oxford University Press.Google Scholar
Charpentier, M.J.E., Prugnolle, F., Giminez, P. & Widdig, A. (2008). Genetic heterozygosity and sociality in a primate species. Behavioural Genetics, 38(2), 151158.Google Scholar
Charpentier, M.J.E., Tung, J., Altmann, J. & Alberts, S.C. (2008). Age at maturity in wild baboons: genetic, environmental and demographic influences. Molecular Ecology, 17(8), 20262040.Google Scholar
Charpentier, M.J., Fontaine, M.C., Cherel, E., Renoult, J.P., Jenkins, T., Benoit, L., Barthes, N., Alberts, S.C. & Tung, J. (2012). Genetic structure in a dynamic baboon hybrid zone corroborates behavioural observations in a hybrid population. Molecular Ecology, 21 (3), 715731.Google Scholar
Chen, J.A., Fears, S.C., Jasinska, A.J. et al. (2018). Neurodegenerative disease biomarkers Aβ1–40, Aβ1–42, tau, and p-tau181 in the vervet monkey cerebrospinal fluid: Relation to normal aging, genetic influences, and cerebral amyloid angiopathy. Brain and Behavior, 8(2), e00903.Google Scholar
Cheney, D.L. (1981). Inter-group encounters among free-ranging vervet monkeys. Folia Primatologica, 35, 124146.Google Scholar
Cheney, D.L. (1983). Extrafamilial alliances among vervet monkeys. In Hinde, R.A., ed., Primate Social Relationships: An Integrated Approach. Sunderland, MA: Sineauer Associates, pp. 103111.Google Scholar
Cheney, D.L. (1987). Interactions and relationships between groups. In Smuts, B.B., Cheney, D.L. Seyfarth, R.M., Wrangham, R.W. & Struhsaker, T.T., eds., Primate Societies. Chicago: University of Chicago Press, pp. 267281.Google Scholar
Cheney, D.L. & Seyfarth, R.M. (1980). Vocal recognition in free-ranging vervet monkey. Animal Behavior, 28, 362367.Google Scholar
Cheney, D.L. (1981). Selective forces affecting the predator alarm calls of vervet monkeys. Behaviour, 76, 2561.Google Scholar
Cheney, D.L. (1982). How vervet monkeys perceive their grunts: field playback experiments. Animal Behavior, 30, 739751.Google Scholar
Cheney, D.L. (1983). Non-random dispersal in free-ranging vervet monkeys, social and genetic consequences. The American Naturalist, 122, 392412.Google Scholar
Cheney, D.L. (1986). The recognition of social alliances by vervet monkeys. Animal Behaviour, 34(6), 17221731.Google Scholar
Cheney, D.L. (1987). The influence of intergroup competition on the survival and reproduction of female vervet monkeys. Behavioral Ecology and Sociobiology, 21(6), 375386.Google Scholar
Cheney, D.L. (1989). Redirected aggression and reconciliation among vervet monkeys, Cercopithecus aethiops. Behaviour, 110(1–4), 258275.Google Scholar
Cheney, D.L. (1990a). How Monkeys See the World. Chicago: University of Chicago Press.Google Scholar
Cheney, D.L. (1990b). Attending to behaviour versus attending to knowledge: examining monkeys’ attribution of mental states. Animal Behaviour, 40, 742753.Google Scholar
Cheney, D.L. (1998). Why monkeys don’t have language. In Peterson, G, ed., The Tanner Lectures on Human Values. Salt Lake City, UT: University of Utah Press, p. 19.Google Scholar
Cheney, D.L. & Wrangham, R.W. (1987). Predation. In Smuts, B.B., Cheney, D.L. Seyfarth, R.M., Wrangham, R.W. & Struhsaker, T.T., eds., Primate Societies. Chicago: University of Chicago Press, pp. 227239.Google Scholar
Cheney, D.L., Lee, P.C. & Seyfarth, R.M. (1981). Behavioral correlates of non-random mortality among free-ranging female vervet monkeys. Behavioral Ecology and Sociobiology, 9, 153161.Google Scholar
Cheney, D.L., Seyfarth, R.M., Andelman, S.J. & Lee, P.A. (1988). Reproductive success in vervet monkeys. In Clutton-Brock, T.H, ed., Reproductive Success: Studies of Individual Variation in Contrasting Breeding Systems. Chicago: University of Chicago Press, pp. 384402.Google Scholar
Cheverud, J.M., Wilson, P. & Dittus, W.P.J. (1992). Primate population studies at Polonnaruwa. II. Heritability of body measurements in a natural population of toque macaques (Macaca sinica). American Journal of Primatology, 27(2), 145156.Google Scholar
Chiarelli, B. (1968). Chromosome polymorphism in the species of the genus Cercopithecus. Cytologia, 33, 116.Google Scholar
Chichester, L., Gee, M.K., Jorgensen, M.J. & Kaplan, J.R. (2015a). Hematology and clinical chemistry measures during and after pregnancy and age- and sex-specific reference intervals in African green monkeys (Chlorocebus aethiops sabaeus). Journal of the American Association for Laboratory Animal Science, 54, 359367.Google Scholar
Chichester, L., Wylie, A.T., Craft, S. & Kavanagh, K. (2015b). Muscle heat shock protein 70 predicts insulin resistance with aging. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 70, 155162.Google Scholar
Clarke, M.R. & Mayeaux, D.J. (1992). Aggressive and affiliative behavior in green monkeys with differing housing complexity. Aggressive Behavior, 18(3), 231239.Google Scholar
Clarke, A.S., Kammerer, C.M., George, K.P., Kupfer, D.J., McKinney, W.T., Spence, M.A. & Kraemer, G.W. (1995). Evidence for heritability of biogenic amine levels in the cerebrospinal fluid of rhesus monkeys. Biological Psychiatry, 38, 572577.Google Scholar
Clemente, J.C., Pehrsson, E.C., Blaser, M.J. et al. (2015). The microbiome of uncontacted Amerindians. Science Advances, 1(3), e1500183.CrossRefGoogle ScholarPubMed
Cloninger, C.R., Przybeck, T.R., Svrakic, D.M. & Wetzel, R.D. (1994). The Temperament and Character Inventory (TCI): A Guide to Its Development and Use. St. Louis, MI: Center for the Psychobiology of Personality.Google Scholar
Clutton-Brock, T.H. & Harvey, P.H. (1977). Primate ecology and social organization. Journal of Zoology, 183, 139.Google Scholar
Clutton-Brock, T.H., Albon, S.D. & Guinness, F.E. (1985). Parental investment and sex differences in juvenile mortality in birds and mammals. Nature, 313, 131133.Google Scholar
Clutton-Brock, T.H, Guinness, F.E. & Albon, S.D. (1982). Red Deer: Behaviour and Ecology of Two Sexes. Chicago: University of Chicago Press.Google Scholar
Clutton-Brock, T.H., Harvey, P.H. & Rudder, B. (1977). Sexual dimorphism, socionomic sex ratio and body mass in primates. Nature, 269, 797800.Google Scholar
Cockburn, A., Legge, S. & Double, M.C. (2002). Sex ratios in birds and mammals: can the hypotheses be disentangled? In Hardy, I.C.W., ed., The Sex Ratio Handbook. Cambridge: Cambridge University Press, pp. 266286.Google Scholar
Coelho, A.M. & Rutenberg, G.W. (1989). Neonatal nutrition and longitudinal growth in baboons: adiposity measured by skinfold thickness. American Journal of Human Biology, 1(4), 429442.Google Scholar
Coleman, B.T. & Hill, R.A. (2014). Living in a landscape of fear: the impact of predation, resource availability and habitat structure on primate range use. Animal Behaviour, 88, 165173.Google Scholar
Collins, N., Dunkel-Schetter, C., Lobel, M. & Scrimshaw, S. (1993). Social support in pregnancy: psychosocial correlates of birth outcomes and postpartum depression. Journal of Personality and Social Psychology, 65, 12431258.Google Scholar
Compton, A.A. & Emerman, M. (2013). Convergence and divergence in the evolution of the APOBEC3G–Vif interaction reveal ancient origins of simian immunodeficiency viruses. PLoS Pathogens, 9, e1003135.Google Scholar
CONVERGE Consortium (2015). Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature, 523, 588591.Google Scholar
Cormier, L.A. (2002). Monkey as food, monkey as child, Guaja symbolic cannibalism. In Fuentes, A. & Wolfe, L.D.., eds., Primates Face to Face: The Conservation Implications of Human and Nonhuman Primate Interconnections. Cambridge: Cambridge University Press, pp. 6384.Google Scholar
Cormier, L.A. (2003). Kinship with Monkeys: The Guaja Foragers of Eastern Amazonia. New York: Columbia University Press.Google Scholar
Coppenhaver, D. & Buettner-Janusch, J. (1970). Transferrins of Cercopithecinae. Folia Primatologica, 13, 2334.Google Scholar
Coppenhaver, D. & Olivier, T.J. (1986). Immunoglobulin allotypes of Kenyan olive baboons: troop frequencies, linkage disequilibria, and comparisons with other studies. International Journal of Primatology, 7(4), 335350.Google Scholar
Coppinger, R.P. & McGuire, J.P. (1980). Cercopithecus aethiops of St. Kitts, a population estimate based on human predation. Caribbean Journal of Science, 15, 17.Google Scholar
Cords, M. (1987). Mixed-species association in East African guenons: general patterns or a collection of specific examples? International Journal of Primatology, 8(5), 454.Google Scholar
Cords, M. (2000). The number of males in guenon groups. In Kappeler, P, ed., Primate Males: Causes and Consequences of Variation in Group Composition. Cambridge: Cambridge University Press, pp. 8496.Google Scholar
Cortes-Ortiz, L., Bermingham, E., Rico, C., Rodriguez-Luna, E., Sampaio, I. & Ruiz-Garcia, M. (2003). Molecular systematics and biogeography of the Neotropical monkey genus, Alouatta. Molecular Phylogenetics and Evolution, 26(1), 6481.Google Scholar
Costa, P.T., Terracciano, A. & McCrae, R.R. (2001). Gender differences in personality traits across cultures, robust and surprising findings. Journal of Personality and Social Psychology, 81, 322331.Google Scholar
Cowlishaw, G. (1997). Trade-offs between foraging and predation risk determine habitat use in a desert baboon population. Animal Behaviour, 53, 667686.Google Scholar
Cox, L.A., Comuzzie, A.G., Havill, L.M., Karere, G.M., Spradling, K.D., Mahaney, M.C., Nathanielsz, P.W., Nicolella, D.P., Shade, R.E., Voruganti, S. & VandeBerg, J.L. (2013). Baboons as a model to study genetics and epigenetics of human disease. ILAR Journal, 54, 106121.Google Scholar
Colyer, F. (1948). Variations of the teeth of the green monkey in St. Kitts. Journal of the Royal Society of Medicine, 41, 845848.Google Scholar
Craine, J.M., Elmore, A.J., Aidar, M.P.M., Bustamante, M., Dawson, T.E., Hobbie, E.A., Kahman, A., Mack, M., McLauchlan, K.K., Michelsen, A., Bardoto, G.B., Pardo, L.H., Penuela, J., Reich, P.B., Schuur, E.A.G., Stock, W.D, Templar, P.H., Virginia, R.S., Welker, J.M. & Wright, I.J. (2009). Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist, 183, 980992.Google Scholar
Cramer, J.D., Gaetano, T.J., Gray, J.P., Grobler, J.P., Lorenz, J., Freimer, N., Schmitt, C.A. & Turner, T.R. (2013). Variation in scrotal color among widely distributed vervet monkey populations (C. a. pygerythrus and C. a. sabaeus). American Journal of Primatology, 75, 752762.Google Scholar
Cramer, J.D., Gobler, J.P., Freimer, N., Turner, T.R. (2014). Blue sexual skin color and male dominance among South African vervet monkeys (Ch. a. pygerythrus). Paper presented at the biennial Congress of the International Primatological Society, Hanoi, Vietnam.Google Scholar
Cramer, A.E. & Gallistel, C.R. (1997). Vervet monkeys as travelling salesmen. Nature, 387, 464.Google Scholar
Crook, J.H. & Gartlan, J.S. (1966). Evolution of primate societies. Nature, 210, 12001203.Google Scholar
Cross, C.P., Cyrenne, D.M. & Brown, G.R. (2013). Sex differences in sensation-seeking, a meta-analysis. Scientific Reports, 3, 15.Google Scholar
Cuervo, J.J. & Møller, A.P. (2001). Components of phenotypic variation in avian ornamental and non-ornamental feathers. Evolutionary Ecology, 25, 5372.Google Scholar
Cuozzo, F.P. & Sauther, M.L. (2006). Temporal change in tooth size among ringtailed lemurs (Lemur catta) at the Beza Mahafaly Special Reserve, Madagascar: effects of an environmental fluctuation. In Jolly, A., Sussman, R.W., Koyama, N. & Rasamimanana, H., eds., Ringtailed Lemur Biology, Lemur catta, in Madagascar. New York: Springer, pp. 343366.Google Scholar
Dall, S.R.X. & Griffith, S.C. (2014). An empiricist guide to animal personality variation in ecology and evolution. Ecology & Evolution, 2, 17.Google Scholar
Dandelot, P. (1959). Note sur la classification des Cercopitheques du groups aethiops. Mammalia, 23, 357368.CrossRefGoogle Scholar
Dandelot, P. (1971). Order Primates. In Meester, J. & Setzer, H., eds., The Mammals of Africa. Washington, DC: Smithsonian Institution.Google Scholar
Danzy, J., Grobler, J.P., Freimer, N. & Turner, T.R. (2012). Sunbathing: a behavioral response to seasonal climatic change among South African vervet monkeys (Chlorocebus aethiops). African Primates, 7(2), 230237.Google Scholar
Darga, L.L., Goodman, M., Weiss, M.L., Moore, G.W., Prychodko, W., Dene, H., Tashian, R. & Koen, A. (1975). Molecular systematics and clinal variation in macaques. In Markert, C.L., ed., Isozymes, Volume 4, Genetics and Evolution. International Conference on Izozymes. New York: Academic Press, pp. 797812.Google Scholar
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection. London, UK: Murray.Google Scholar
Darwin, C.R. (1874). The Descent of Man, and Selection in Relation to Sex, 2nd edn. New York: Appleton.Google Scholar
Dausmann, K.H., Glos, J., Ganzhorn, J.U. & Heldmaier, G. (2004). Physiology: hibernation in a tropical primate. Nature, 429, 825826.Google Scholar
Davenport, M.D., Tiefenbacher, S., Lutz, C.K., Novak, M.A. & Meyer, J.S. (2006). Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. General and Comparative Endocrinology, 147(3), 255261.Google Scholar
de Jong, G., de Ruiter, J.R. & Harring, R. (1994). Genetic structure of a population with social structure and migration. In Loeschcke, V., Tomiuk, J. & Jain, S.K., eds., WXS 68, Conservation Genetics. Basel, Switzerland: Birkhauser Verlag, pp. 147164.Google Scholar
Delson, E. (1984). Cercopithecid biochronology of the African Plio-Pleistocene: correlation among eastern and southern hominid-bearing localities. Courier Forschungsinstitut Senckenberg, 69, 199218.Google Scholar
Delson, E. (1992). Evolution of Old World monkeys. In Jones, S., Martin, R. & Pilbeam, D., eds., The Cambridge Encyclopedia of Human Evolution. Cambridge: Cambridge University Press, pp. 217222.Google Scholar
De Moor, P.P. & Steffens, F.E. (1972). The movements of vervet monkeys (Cercopithecus aethiops) within their ranges as revealed by radio-tracking. Journal of Animal Ecology, 41(3), 677687.Google Scholar
Denham, W.W. (1971). Energy relations and some basic properties of primate social organization. American Anthropologist, 73, 7795.Google Scholar
Denham, W.W. (1982a). History of green monkeys in the West Indies part I. Migration from Africa. The Journal of the Barbados Museum and Historical Society, 36, 211228.Google Scholar
Denham, W.W. (1982b). History of green monkeys in the West Indies part II. Population dynamics of Barbadian monkeys. The Journal of the Barbados Museum and Historical Society, 36, 211228.Google Scholar
Denham, W.W. (1987). West Indian green monkeys, problems in historical biogeography. In Szalay, F.S., ed., Contributions to Primatology, vol. 24. Basel, Switzerland: Karger, pp. 178.Google Scholar
Deputte, B.L. (1992). Life history of captive gray-cheeked mangabeys: physical and sexual development. International Journal of Primatology, 13(5), 509531.Google Scholar
de Queiroz, K. (2005). Ernst Mayr and the modern concept of species. Proceedings of the National Academy of Sciences of the United States of America, 102, 66006607.Google Scholar
de Ruiter, J.R. (1992). Capturing wild long-tailed macaques (Macaca fascicularis). Folia Primatologica, 59(2), 89104.Google Scholar
de Ruiter, J.R. & Geffen, E. (1998). Relatedness of matrilines, dispersing males and social groups in long-tailed macaques (Macaca fascicularis). Proceedings, Biological Sciences, Royal Society, 265(1391), 7987.Google Scholar
Dethlefsen, L., Eckburg, P.B., Bik, E.M. & Relman, D.A. (2006). Assembly of the human intestinal microbiota. Trends in Ecology and Evolution, 21(9), 517523.Google Scholar
DeVries, T. (2003). Animal and human behaviour, genes, and environment in comparative ethology of primates. Revista de la Pontificia Universidad Catolica del Ecuador, 71, 217223.Google Scholar
Di Fiore, A. (2009). Genetic approaches to the study of dispersal and kinship in New World primates. In Garber, P.A., Estrada, A., Bicca-Marques, J.C., Heymann, E.W. & Strier, K.B, eds., South American Primates, Comparative Perspectives in the Study of Behavior, Ecology, and Conservation. New York: Springer, pp. 211250.Google Scholar
Di Fiore, A., Link, A.L., Schmitt, C.A. & Spehar, S.N. (2009). Dispersal patterns in sympatric woolly and spider monkeys: integrating molecular and observational data. Behaviour, 146, 437470.Google Scholar
Diop, O.M., Gueye, A., Dias-Tavares, M., Kornfeld, C., Faye, A., Ave, P., Huerre, M., Corbet, S., Barre-Sinoussi, F. & Muller-Trutwin, M.C. (2000). High levels of viral replication during primary simian immunodeficiency virus SIVagm infection are rapidly and strongly controlled in African green monkeys. Journal of Virology, 74, 75387547.Google Scholar
Disotell, T.R. (1996). The phylogeny of Old World monkeys. Evolutionary Anthropology, 5(1), 1824.Google Scholar
Disotell, T.R. (2000). Molecular systematic of the Cercopithecidae. In Whitehead, P.F. & Jolly, C.J., eds., Old World Monkeys. Cambridge: Cambridge University Press, pp. 2956.Google Scholar
Dixson, A.F. (1998). Primate Sexuality: Comparative Studies of the Prosimians, Monkeys, Apes and Human Beings. Oxford, UK: Oxford University Press.Google Scholar
Dobzhansky, T. (1937). Genetic nature of species differences. The American Naturalist, 71(735), 404420.Google Scholar
Dominguez-Bello, M.G., Costello, E.K., Contreras, M. et al. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats. Proceedings of the National Academy of Science of the United States of America, 107(26), 1197111975.Google Scholar
Dore, K.M. (2013). An Anthropological Investigation of the Dynamic Human–Vervet Monkey Interface in St. Kitts, West Indies. PhD Dissertation. Milwaukee, WI: University of Wisconsin-Milwaukee.Google Scholar
Dore, K.M. (2017a). Ethnophoresy. The International Encyclopedia of Primatology, 17.Google Scholar
Dore, K.M. (2017b). Vervets in the Caribbean. The International Encyclopedia of Primatology, 13.Google Scholar
Dore, K.M. (2017c). Navigating the methodological landscape: ethnographic data expose the nuances of “the monkey problem” in St. Kitts, West Indies. In Dore, K.M., Riley, E.P. & Fuentes, A., eds., Ethnoprimatology: A Practical Guide to the Human–Nonhuman Primate Interface. Cambridge: Cambridge University Press, pp. 219231.Google Scholar
Dore, K.M. (2018). Ethnoprimatology without conservation: the political ecology of farmer-green monkey (Chlorocebus sabaeus) relations in St. Kitts, West Indies. International Journal of Primatology, 39 (5), 918944.Google Scholar
Dore, K.M., Mill, A. & Gallagher, C. (2014). Preliminary report on the use of GPS/GSM tracking devices to estimate the vervet monkey (Chlorocebus aethiops sabaeus) population on the island of St. Kitts. American Journal of Physical Anthropology, 156(S60), 124.Google Scholar
Dore, K.M., Riley, E.P. & Fuentes, A. (2017). Ethnoprimatology: A Practical Guide to the Human–Nonhuman Primate Interface. Cambridge: Cambridge University Press.Google Scholar
Dore, K.M., Eller, A.R., & Eller, J.L. (2018). Identity construction and symbolic association in farmer–vervet monkey (Chlorocebus aethiops sabaeus) interconnections in St. Kitts. Folia Primatologica, 89, 6380.Google Scholar
Dore, K.M., Sewell, D. Mattenet, E. & Turner, T.R. (in press). GIS and GPS techniques in an ethnoprimatological investigation of St. Kitts vervet monkey (Chlorocebus aethiops sabaeus) crop-raiding behavior. In Shaffer, C.A., Dolins, F. & Hickey, J.R., eds., GIS and GPS in Primatology: A Practical Guide to Spatial Analysis. Cambridge: Cambridge University Press.Google Scholar
Douek, D.C., Betts, M.R., Hill, B.J., Little, S.J., Lempicki, R., Metcalf, J.A., Casazza, J., Yoder, C., Adelsberger, J.W., Stevens, R.A., Baseler, M.W., Keiser, P., Richman, D.D., Davey, R.T. & Koup, R.A. (2001). Evidence for increased T cell turnover and decreased thymic output in HIV infection. Journal of Immunology, 167, 66636668.Google Scholar
Douek, D.C., McFarland, R.D., Keiser, P.H., Gage, E.A., Massey, J.M., Haynes, B.F., Polis, M.A., Haase, A.T., Feinberg, M.B., Sullivan, J.L., Jamieson, B.D., Zack, J.A., Picker, L.J. & Koup, R.A. (1998). Changes in thymic function with age and during the treatment of HIV infection. Nature, 396, 690695.Google Scholar
Douglas, M. (1966). Purity and Danger: An Analysis of the Concepts of Pollution and Taboo. London, UK: Routledge and Kegan Paul.Google Scholar
Downing, H.J., Benimadho, S., Bolstridge, M.C. & Klomfass, H.J. (1973). The ABO blood groups in vervet monkeys (Cercopithecus pygerythrus F. Cuvier). Journal of Medical Primatology, 2(5), 290295.Google Scholar
Dracopoli, N.C. & Brett, F.L. (1982). Serum aminopeptidases in pregnant vervet monkeys (Cercopithecus aethiops). Biochemical Genetics, 20(9–10), 825831.Google Scholar
Dracopoli, N.C., Brett, F.L., Turner, T.R. & Jolly, C.J. (1983). Patterns of genetic variability in the serum proteins of the Kenyan vervet monkey (Cercopithecus aethiops). American Journal of Physical Anthropology, 61(1), 3949.Google Scholar
Dracopoli, N.C., Turner, T.R., Else, J.G., Jolly, C.J., Anthony, R., Gallo, R.C. & Saxinger, W.C. (1986). STLV-1 antibodies in feral populations of East African vervet monkeys (Cercopithecus aethiops). International Journal of Cancer, 38(4), 523529.Google Scholar
Drea, C.M. (2015). D’scent of man: a comparative survey of primate chemosignaling in relation to sex. Hormones & Behavior, 68, 117133.Google Scholar
Dubuc, C., Muniz, L., Hesitermann, M., Engelhardy, A. & Widdig, A. (2011). Testing the priority-of-access model in a seasonally breeding primate species. Behavioral Ecology and Sociobiology, 65, 16151627.Google Scholar
Duggelby, C. (1978). Blood group antigens and the population genetics of Macaca mulatta on Cayo Santiago I. Genetic differentiation of social groups. American Journal of Physical Anthropology, 48, 3540.Google Scholar
Ducheminsky, N., Henzi, S.P. & Barrett, L. (2014). Responses of vervet monkeys in large troops to terrestrial and aerial predator alarm calls. Behavioral Ecology, 25, 14741484.Google Scholar
Dunbar, R.I.M. (1974). Observations on the ecology and social organization of the green monkey, Cercopithecus sabaeus, in Senegal. Primates, 15, 341350.Google Scholar
Dunbar, R.I.M. (1991). Functional significance of social grooming in primates. Folia Primatologica, 57, 121131.Google Scholar
Dunbar, R.I.M. (2010). The social role of touch in humans and primates: behavioural function and neurobiological mechanisms. Neuroscience & Biobehavioral Reviews, 34, 260268.Google Scholar
Dunbar, R.I.M. & Dunbar, E.P. (1974). Ecological relations and niche separation between sympatric terrestrial primates in Ethiopia. Folia Primatologica, 21, 3660.Google Scholar
Dunbar, R. & Spoors, M. (1995). Social networks, support cliques, and kinship. Human Nature, 6, 273290.Google Scholar
Dunn, J.C., Halenar, L.B., Davies, T.G., Cristobal-Azkarate, J., Reby, D., Sykes, D., Dengg, S., Fitch, W.T. & Knapp, L.A. (2015). Evoluationary trade-off between vocal tract and testes dimensions in howler monkeys. Current Biology, 25, 28392844.Google Scholar
Durham, N.M. (1969). Sex differences in visual threat displays of West African vervets. Primates, 10, 9195.Google Scholar
Dutrillaux, B. (1986). The evolutionary role of chromosomes: a new interpretation. Annales de Genetique, 29(2), 6975.Google Scholar
Eberhard, W.G. (2009). Static allometry and animal genitalia. Evolution, 63, 4866.Google Scholar
Eberhard, W.G., Huber, B.A., Rodríguez, R.L., Briceño, R.D., Salas, I. & Rodríguez, V. (1998). One size fits all? Relationships between the size and degree of variation in genitalia and other body parts in twenty species of insects and spiders. Evolution, 52, 415431.Google Scholar
Eberhard, W.G., Rodríguez, R.L., Huber, B.A., Speck, B., Miller, H., Buzatto, B.A., & Machado, G. (2018). Sexual selection and static allometry: the importance of function. Quarterly Review of Biology, 93, 207250.Google Scholar
Ebstein, R.P. (2006). The molecular genetic architecture of human personality, beyond self-report questionnaires. Molecular Psychiatry, 11, 427–45.Google Scholar
Ehleringer, J., Field, C., Lin, Z. & Kuo, C. (1986). Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. Oecologia, 70, 520526.Google Scholar
Eisenberg, J.F. (1981). The Mammalian Radiations. Chicago: University of Chicago Press.Google Scholar
Eley, R.M., Tarara, R.P., Worthman, C.M. & Else, J.G. (1989). Reproduction in the vervet monkey (Cercopithecus aethiops). III. The menstrual cycle. American Journal of Primatology, 17, 110.Google Scholar
Elliott, S.T., Wetzel, K.S., Francella, N., Bryan, S., Romero, D.C., Riddick, N.E., Shaheen, F., Vanderford, T., Derdeyn, C.A., Silvestri, G., Paiardini, M. & Collman, R.G. (2015). Dualtropic CXCR6/CCR5 simian immunodeficiency virus (SIV) infection of sooty mangabey primary lymphocytes, distinct coreceptor use in natural versus pathogenic hosts of SIV. Journal of Virology, 89, 92529261.Google Scholar
Emlen, S.T. & Oring, L.W. (1977). Ecology, sexual selection, and the evolution of mating systems. Science, 197(4300), 215223.Google Scholar
Emlen, D.J. (2008). The evolution of animal weapons. Annual Review of Ecology, Evolution, and Systematics, 39, 387413.Google Scholar
Emlen, D.J. (2014). Animal Weapons. New York: Henry Holt.Google Scholar
Engel, G., Hungerford, L.L., Jones-Engel, L., Travis, D., Eberle, R., Fuentes, A., Grant, R., Kyes, R. & Schillaci, M. (2006). Risk assessment: a model for predicting cross-species transmission of simian foamy virus from macaques (M. fascicularis) to humans at a monkey temple in Bali, Indonesia. American Journal of Primatology, 28(9), 934948.Google Scholar
Enstam, K.L. (2007). Effects of habitat structure on perceived risk of predation and anti-predator behavior of vervet (Cercopithecus aethiops) and patas (Erthyrocebus patas) monkeys. In Gursky, S. & Nekaris, K.A.I, eds., Primate Anti-Predator Strategies. New York: Springer Science and Business Media, pp. 306336.Google Scholar
Erhart, E.M., CoehloJr., A.M. & Bramblett, C.A. (1997). Kin recognition by paternal half-siblings in captive Papio cynocephalus. American Journal of Primatology, 43(2), 147157.Google Scholar
Essock-Vitale, S. & Seyfarth, R.M. (1987). Intelligence and social cognition. In Smuts, B.B., Cheney, D.L., Seyfarth, R.M., Wrangham, R.W. & Struhsaker, T.T., eds., Primate Societies. Chicago: University of Chicago Press, pp. 452461.Google Scholar
Estes, J.D., Gordon, S.N., Zeng, M., Chahroudi, A.M., Dunham, R.M., Staprans, S.I., Reilly, C.S., Silvestri, G. & Haase, A.T. (2008). Early resolution of acute immune activation and induction of PD-1 in SIV-infected sooty mangabeys distinguishes nonpathogenic from pathogenic infection in rhesus macaques. Journal of Immunology, 180, 67986807.Google Scholar
Estrada, A., Garber, P.A., Rylands, A.B., Roos, C., Fernandez-Duque, E., Di Fiore, A., Nekaris, K.A.I., Nijman, V., Heymann, E.W., Lambert, J.E. & Rovero, F. (2017). Impending extinction crisis of the world’s primates: why primates matter. Science Advances, 3, e1600946.Google Scholar
Fainman, J., Eid, M.D., Ervin, F.R. & Palmour, R.M. (2007). A primate model for Alzheimer’s disease, investigation of the apolipoprotein E profile of the vervet monkey of St. Kitts. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 144B, 818819.Google Scholar
Fairbanks, L.A. (1990). Reciprocal benefits of allomothering for female vervet monkeys. Animal Behaviour, 40(3), 553562.Google Scholar
Fairbanks, L.A. (2001). Individual differences in response to a stranger, social impulsivity as a dimension of temperament in vervet monkeys (Cercopithecus aethiops sabaeus). Journal of Comparative Psychology, 115, 2228.Google Scholar
Fairbanks, L.A. & Bird, J. (1978). Ecological correlates of interindividual distance in the St. Kitts vervet (Cercopithecus aethiops sabaeus). Primates, 19, 605614.Google Scholar
Fairbanks, L.A. & Hinde, K. (2013). Behavioral response of mothers and infants to variation in maternal condition: adaptation, compensation, and resilience. In Clancy, K.B.H., Hinde, K. & Rutherford, J.N., eds., Building Babies, Primate Development in Proximate and Ultimate Perspective. New York: Springer, pp. 281302.Google Scholar
Fairbanks, L.A. & Jorgensen, M.J. (2011). Objective behavioral tests of temperament in nonhuman primates. In Weiss, A.. King, J.E. & Murray, L., eds., Personality and Temperament in Nonhuman Primates. New York: Springer, pp. 103128.Google Scholar
Fairbanks, L.A. & McGuire, M.T. (1984). Determinants of fecundity and reproductive success in captive vervet monkeys. American Journal of Primatology, 7(1), 2738.Google Scholar
Fairbanks, L.A. (1985). Relationships of vervet mothers with sons and daughters from one through three years of age. Animal Behaviour, 33(1), 4050.Google Scholar
Fairbanks, L.A. (1986). Age, reproductive value, and dominance-related behaviour in vervet monkey females: cross-generational influences on social relationships and reproduction. Animal Behaviour, 34(6), 17101721.Google Scholar
Fairbanks, L.A. (1987). Mother–infant relationships in vervet monkeys, response to new adult males. International Journal of Primatology, 8, 351366.Google Scholar
Fairbanks, L.A. (1988). Long-term effects of early mothering behavior on responsiveness to the environment in vervet monkeys. Developmental Psychobiology, 21, 711724.Google Scholar
Fairbanks, L.A. & McGuire, M.T. (1993). Maternal protectiveness and response to the unfamiliar in vervet monkeys. American Journal of Primatology, 30, 119129.Google Scholar
Fairbanks, L.A., Bailey, J.N., Breidenthal, S.E., Laudenslager, M.L., Kaplan, J.R. & Jorgensen, M.J. (2011). Environmental stress alters genetic regulation of novelty seeking in vervet monkeys. Genes, Brain, and Behavior, 10, 683688.Google Scholar
Fairbanks, L.A., Fontenot, M.B., Phillips-Conroy, J.E., Jolly, C.J., Kaplan, J.R. & Mann, J.J. (1999). CSF monoamines, age and impulsivity in wild grivet monkeys (Cercopithecus aethiops aethiops). Brain, Behavior and Evolution, 53(5–6), 305312.Google Scholar
Fairbanks, L.A., Jorgensen, M.J., Huff, A., Blau, K., Hung, Y.Y. & Mann, J.J. (2004a). Adolescent impulsivity predicts adult dominance attainment in male vervet monkeys. American Journal of Primatology, 64, 117.Google Scholar
Fairbanks, L.A., Jorgensen, M.J., Bailey, J.N., Breidenthal, S.E., Grzywa, R. & Laudenslager, M.L. (2011). Heritability and genetic correlation of hair cortisol in vervet monkeys in low and higher stress environments. Psychoneuroendocrinology, 36(8), 12011208.Google Scholar
Fairbanks, L.A., Melega, W.P., Jorgensen, M.J., Kaplan, J.R. & McGuire, M.T. (2001). Social impulsivity inversely associated with CSF 5-HIAA and fluoxetine exposure in vervet monkeys. Neuropsychopharmacology, 24, 370378.Google Scholar
Fairbanks, L.A., Newman, T.K., Bailey, J.N., Jorgensen, M.J., Breidenthal, S.E., Ophoff, R.A., Comuzzie, A.G., Martin, L.J. & Rogers, J. (2004b). Genetic contributions to social impulsivity and aggressiveness in vervet monkeys. Biological Psychiatry, 55, 642647.Google Scholar
Fairbanks, L.A., Way, B.M., Breidenthal, S.E., Bailey, J.N. & Jorgensen, M.J. (2012). Maternal and offspring dopamine D4 receptor genotypes interact to influence juvenile impulsivity in vervet monkeys. Psychological Science, 23, 10991104.Google Scholar
Faith, J.J., McNulty, N.P., Rey, F.E. & Gordon, J.I. (2011). Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science, 333, 101104.Google Scholar
Faraone, S.V., Doyle, A.E., Mick, E. & Biederman, J. (2001). Meta-analysis of the association between the 7-repeat allele of the dopamine D4 receptor gene and attention deficit hyperactivity disorder. American Journal of Psychiatry, 158, 10521057.Google Scholar
Faucheux, B., Bertraud, M. & Bourliere, F. (1978). Some effects of living conditions upon the pattern of growth in the stumptailed macaque (Macaca arctoides). Folia Primatologica, 30, 220236.Google Scholar
Fedigan, L. & Fedigan, L. (1988). Cercopithecus aethiops: a review of field studies. In Gautier-Hion, A., Bourliere, F., Gautier-Hion, J.P. & Kingdon, J., eds., A Primate Radiation: Evolutionary Biology of the African Guenons. Cambridge: Cambridge University Press, pp. 389411.Google Scholar
Fedigan, L.M., Fedigan, L., Chapman, C. & McGuire, M.T. (1984). A demographic model of colonization by a population of St. Kitts vervets. Folia Primatologica, 42(3–4), 194202.Google Scholar
Finch, C.E. & Rose, M.R. (1995). Hormones and the physiological architecture of life history evolution. Quarterly Review of Biology, 70(1), 152.Google Scholar
Fish, K.D., Sauther, M.L., Loudon, J.E. & Cuozzo, F.P. (2007). Coprophagy by wild ring-tailed lemurs (Lemur catta) in human-disturbed locations adjacent to the Beza Mahafaly Special Reserve, Madagascar. American Journal of Primatology, 69(6), 713718.Google Scholar
Fooden, J. & Izor, R.J. (1983). Growth curves, dental emergence norms, and supplementary morphological observations in known-age captive orangutans. American Journal of Primatology, 5(4), 285301.Google Scholar
Fooden, J. & Albrecht, G.H. (1993). Latitudinal and insular variation of skull size in crab-eating macaques (Primates, Cercopithecidae, Macaca fascicularis). American Journal of Physical Anthropology, 92(4), 521538.Google Scholar
Fournier, D.A., Skaug, H.J., Ancheta, J. et al. (2012). AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods and Software, 27(2), 233249.Google Scholar
Franceschini, M., Ziegler, T.E., Scheffler, G., Kaufman, G.E. & Sollod, A. (1997). A comparative analysis of fecal cortisol concentrations between four populations of woolly monkeys (Lagothrix lagotricha) living under different environmental conditions. American Association of Zoo Veterinarians Annual Conference Proceedings, 1997, 303305.Google Scholar
Freeman, A.S., Kinsella, J.M., Cipolletta, C., Deem, S.L. & Karesh, W.B. (2004) Endoparasites of western lowland gorillas (Gorilla gorilla gorilla) at Bai Hokou, Central African Republic. Journal of Wildlife Diseases, 40(4), 775781.Google Scholar
Freimer, N.B. Service, S.K., Ophoff, R.A., Jasinska, A.J., McKee, K., Villeneuve, A., Belisle, A., Bailey, J.N., Breidenthal, S.E., Jorgensen, M.J., Mann, J.J., Cantor, R.M., Dewar, K. & Fairbanks, L.A. (2007). A quantitative trait locus for variation in dopamine metabolism mapped in a primate model using reference sequences from related species. Proceedings of the National Academy of Sciences of the United States of America, 104, 1581115816.Google Scholar
Frisancho, A.R. (1978). Human growth and development among high-altitude populations. In Baker, P.T., ed., The Biology of High Altitutude Peoples. Cambridge, UK: Cambridge University Press, pp. 117171.Google Scholar
Frisancho, A.R. & Baker, P.T. (1970). Altitude and growth: a study of the patterns of physical growth of a high altitude Peruvian Quechua population. American Journal of Physical Anthropology, 32(2), 279292.Google Scholar
Frost, S.R. & Delson, E. (2002). Fossil Cercopithecidae from the Hadar Formation and surrounding areas of the Afar Depression, Ethiopia. Journal of Human Evolution, 43(5), 687748.Google Scholar
Frost, S.R. & Kullmer, O. (2008). Cercopithecidae from the Pliocene Chiwondo beds, Malawi-rift. Geobios, 41(6), 743749.Google Scholar
Frost, S.R., Jablonski, N.G. & Haile-Selassie, Y. (2014). Early Pliocene Cercopithecidae from Woranso-Mille (Central Afar, Ethiopia) and the origins of the Theropithecus oswaldi lineage. Journal of Human Evolution, 76, 3953.Google Scholar
Fruteau, C., Voelkl, B., Van Damme, E. & Noë, R. (2009). Supply and demand determine the market value of food providers in wild vervet monkeys. Proceedings of the National Academy of Sciences, 106(29), 1200712012.Google Scholar
Fuentes, A. (2006). Human culture and monkey behavior: assessing the contexts of potential pathogen transmission between macaques and humans. American Journal of Primatology, 68(9), 880896.Google Scholar
Fuentes, A. (2010). Naturecultural encounters in Bali: monkeys, temples, tourists, and ethnoprimatology. Cultural Anthropology, 25, 600624.Google Scholar
Fuentes, A. (2012). Ethnoprimatology and the anthropology of the human–primate interface. Annual Review of Anthropology, 41, 101117.Google Scholar
Fuentes, A. (2014). Social minds and social selves: the human–alloprimate interface. In Corbey, R & Lanjouw, A., eds., The Politics of Species: Reshaping Our Relationships with Other Animals. Cambridge: Cambridge University Press, pp. 179188.Google Scholar
Fuentes, A. & Hockings, K.J. (2010). The ethnoprimatological approach in primatology. American Journal of Primatology, 72(10), 841847.Google Scholar
Fuentes, A., Southern, M. & Suaryana, K.G. (2005). Monkey forests and human landscapes: Is extensive sympatry sustainable for Homo sapiens and Macaca fascicularis in Bali? In Patterson, J.D. & Wallis, J., eds., Commensalism and Conflict: The Primate–Human Interface. Norman, OK: American Society of Primatology Publications, pp. 168195.Google Scholar
Fuentes, A. & Wolf, L. (2002). Primates Face to Face: Conservation Implications of Human–Nonhuman Primate Interconnections. New York: Cambridge University Press.Google Scholar
Fukasawa, M., Miura, T., Hasegawa, A., Morikawa, S., Tsujimoto, H., Miki, K., Kitamura, T. & Hayami, M. (1988). Sequence of simian immunodeficiency virus from African green monkey, a new member of the HIV/SIV group. Nature, 333, 457461.Google Scholar
Fuller, A., Mitchell, D., Maloney, S.K. & Hetem, R.S. (2016). Towards a mechanistic understanding of the responses of large terrestrial mammals to heat and aridity associated with climate change. Climate Change Responses, 3, 10.Google Scholar
Gaetano, T.J., Danzy Cramer, J., Mtshali, M.S., Theron, N., Schmitt, C.A., Grobler, J.P., Freimer, N. & Turner, T.R. (2014). Mapping correlates of parasitism in wild South African vervet monkeys (Chlorocebus aethiops). South African Journal of Wildlife Research, 44(1), 5670.Google Scholar
Gage, T.B. (1998). The comparative demography of primates: with some comments on the evolution of life histories. Annual Review of Anthropology, 27, 197221.Google Scholar
Gagneux, P., Gonder, M.K., Goldberg, T.L. & Morin, P.A. (2001). Gene flow in wild chimpanzee populations: what genetic data tells us about chimpanzee movement over space and time. Philosophical Transactions of the Royal Society of London B, 356(1410), 889897.Google Scholar
Galbany, J., Stoinski, T.S., Abavandimwe, D., Breuer, T., Rutkowski, W., Batista, N.V., Ndagijimana, F. & McFarlin, S.C. (2016). Validation of two independent photogrammetric techniques for determining body measurements of gorillas. American Journal of Primatology, 78, 418431.Google Scholar
Galef, B.G. (2012). Social learning and traditions in animals: evidence, definitions, and relationship to human culture. Wiley Interdisciplinary Reviews – Cognitive Science, 3, 581592.Google Scholar
Gao, F., Bailes, E., Robertson, D.L., Chen, Y., Rodenburg, C.M., Michael, S.F., Cummins, L.B., Arthur, L.O., Peeters, M., Shaw, G.M., Sharp, P.M. & Hahn, B.H. (1999). Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature, 397, 436441.Google Scholar
Gartlan, J.S. (1969). Sexual and maternal behavior of the vervet monkey, Cercopithecus aethiops. Journal of Reproduction and Fertility, Supplement, 6(1), 137150.Google Scholar
Gartlan, J.S. & Brain, C.K. (1968). Ecology and social variability in Cercopithecus aethiops and C. mitis. In Jay, P.C., ed., Primates: Studies in Adaptation and Variability. New York: Rinehart and Winston, pp. 253292.Google Scholar
Gaulin, S.J.C. (1978). Activity, diet and dietary choice in an Andean population of Alouatta seniculus. American Journal of Physical Anthropology, 48, 397.Google Scholar
Gaulin, J.C. & Konner, M. (1977). On the natural diet of primates, including humans. Nutrition and the Brain, 1, 186.Google Scholar
Gautier, J.P. (1988). Interspecific affinities among guenons as deduced from vocalizations. In Gautier-Hion, A., Bourliere, F., Gautier-Hion, J.P. & Kingdon, J., eds., A Primate Radiation: Evolutionary Biology of the African Guenons. Cambridge: Cambridge University Press, pp. 452476.Google Scholar
Gautier, J.P. & Gautier-Hion, A. (1968). Polyspecific associations among the Cercopithecidae in Gabon. Terre et la Vie, 23, 164201.Google Scholar
Gautier-Hion, A., Bourliére, F. & Gautier, J.P. (1988). A Primate Radiation: Evolutionary Biology of the African Guenons. Cambridge: Cambridge University Press.Google Scholar
Gavan, J.A. & Swindler, D.R. (1966). Growth rates and phylogeny in primates. American Journal of Physical Anthropology, 24, 181190.Google Scholar
Gebo, D.L. & Sargis, E.J. (1994). Terrestrial adaptations in the postcranial skeletons of guenons. American Journal of Physical Anthropology, 93(3), 341371.Google Scholar
Gemmill, A. & Gould, L. (2008). Microhabitat variation and its effects on dietary composition and intragroup feeding interactions between adult female Lemur catta during the dry season at Beza Mahafaly Special Reserve, southwestern Madagascar. International Journal of Primatology, 29, 15111533.Google Scholar
Genoud, M. (2002). Comparative studies of basal rate of metabolism in primates. Evolutionary Anthropology, 11(S1), 108111.Google Scholar
Gerald, M.S. (1999). Scrotal Color in Vervet Monkeys (Cercopithecus aethiops sabaeus): The Signal Functions and Potential Proximate Mechanisms of Color Variation. PhD dissertation. Los Angeles, CA: University of California, Los Angeles.Google Scholar
Gerald, M.S. (2001). Primate colour predicts social status and aggressive outcome. Animal Behaviour, 61, 559566.Google Scholar
Gerald, M.S., Ayala, J., Ruiz-Lambides, A., Waitt, C. & Weiss, A. (2010). Do females pay attention to secondary sexual coloration in vervet monkeys (Chlorocebus aethiops)? Naturwissenschaften, 97(1), 8996.Google Scholar
Gerloff, U., Hartung, B., Fruth, B., Hohmann, G. & Tautz, D. (1999). Intracommunity relationships, dispersal pattern and paternity success in a wild living community of bonobus (Pan paniscus) determined from DNA analysis of faecal samples. Proceedings of the Royal Society of London B, 266(1424), 11891195.Google Scholar
German, R.Z. (2004). The ontogeny of sexual dimorphism, the implications of longitudinal vs. cross-sectional data for studying heterochrony in mammals. In Anapol, F. & Jablonski, N.G., eds., Shaping Primate Evolution. Cambridge: Cambridge University Press, pp. 1123.Google Scholar
Gilbert, C.C., Frost, S.R. & Delson, E. (2016). Reassessment of Olduvai Bed I cercopithecoids: a new biochronological and biogeographical link to the South African fossil record. Journal of Human Evolution, 92, 5059.Google Scholar
Gillespie, T.R. & Chapman, C.A. (2006). Prediction of parasite infection dynamics in primate metapopulations based on attributes of forest fragmentation. Conservation Biology, 20(2), 441448.Google Scholar
Gillespie, T.R., Greiner, E.C. & Chapman, C.A. (2004). Gastrointestinal parasites of the guenons of western Uganda. Journal of Parasitology, 90(6), 13561360.Google Scholar
Gillespie, T.R, Greiner, E.C. & Chapman, C.A. (2005). Gastrointestinal parasites of the colobus monkeys of Uganda. Journal of Parasitology, 91(3), 569573.Google Scholar
Glassman, D.M., CoelhoJr., A.M., Carey, K.D. & Bramblett, C.A. (1984). Weight growth in savannah baboons: a longitudinal study from birth to adulthood. Growth, 48(4), 425433.Google Scholar
Glenn, M.E. & Cords, M. (2002). The Guenons: Diversity and Adaptation in African Monkeys (Vol. 2). New York: Springer Science & Business Media.Google Scholar
Gokcumen, O., Tischler, V. & Tica, J. (2013). Primate genome architecture influences structural variation mechanisms and functional consequences. Proceedings of the National Academy of Sciences of the United States of America, 110, 1576415769.Google Scholar
Goldman, E.N. & Loy, J. (1997). Longitudinal study of dominance relations among captive patas monkeys. American Journal of Primatology, 42, 4151.Google Scholar
Goldberg, T.L. & Wrangham, R.W. (1997). Genetic correlates of social behavior in wild chimpanzees: evidence from mitochondrial DNA. Animal Behaviour, 54(3), 559570.Google Scholar
Goldstein, S., Brown, C.R., Ourmanov, I., Pandrea, I., Buckler-White, A., Erb, C., Nandi, J.S., Foster, G.J., Autissier, P., Schmitz, J.E. & Hirsch, V.M. (2006). Comparison of simian immunodeficiency virus SIVagmVer replication and CD4+ T-cell dynamics in vervet and sabaeus African green monkeys. Journal of Virology, 80, 48684877.Google Scholar
Goldstein, S., Ourmanov, I., Brown, C.R., Beer, B.E., Elkins, W.R., Plishka, R., Buckler-White, A. & Hirsch, V.M. (2000). Wide range of viral load in healthy African green monkeys naturally infected with simian immunodeficiency virus. Journal of Virology, 74, 1174411753.Google Scholar
Gommery, D., Thackeray, J.F., Sénégas, F., Potze, S. & Kgasi, L. (2008). The earliest primate (Parapapio sp.) from the Cradle of Humankind World Heritage site (Waypoint 160, Bolt’s Farm, South Africa). South African Journal of Science, 104(9–10), 405408.Google Scholar
Goodman, M. & Poulik, E. (1961). Serum transferrins in the genus Macaca: species distribution of nineteen phenotypes. Nature, 191, 14071408.Google Scholar
Goodman, M., Kulkarni, A., Poulik, E. & Reklys, E. (1965). Species and geographic differences in the transferrin polymorphism of macaques. Science, 147, 884886.Google Scholar
Gordon, A.D. (2006). Scaling of size and dimorphism in primates II: macroevolution. International Journal of Primatology, 27, 63105.Google Scholar
Gordon, D., Huddleston, J. & Chaisson, M.J. (2016). Long-read sequence assembly of the gorilla genome. Science, 352, aae0344.Google Scholar
Gordon, S., Klatt, N.R., Bosinger, S.E., Brenchley, J.M., Milush, J.M., Engram, J.C., Dunham, R.M., Paiardini, M., Klucking, S., Danesh, A., Strobert, E.A., Apetrei, C., Pandrea, I.V., Kelvin, D., Douek, D.C., Staprans, S.I., Sodora, D.L. & Silvestri, G. (2007). Severe depletion of mucosal CD4+ T cells in AIDS-free SIV-infected sooty mangabeys. Journal of Immunology, 179, 30263034.Google Scholar
Grobler, J.P. & Turner, T.R. (2010). A novel trap design for the collection and sedation of vervet monkeys (Chlorocebus aethiops). South African Journal of Wildlife Research, 40, 163168.Google Scholar
Grobler, P., Jacquier, M., deNys, H., Blair, M., Whitten, P. L. & Turner, T. R. (2006). Primate sanctuaries, taxonomy and survival: a case study from South Africa. Ecological and Environmental Anthropology (University of Georgia), 2.Google Scholar
Grobler, J.P., Coetzer, G., Dore, K., Lorenz, J., Schmitt, C.A., Freimer, N. & Turner, T.R. (2012). Genetic differentiation in populations of vervet monkeys (Chlorocebus aethiops) in South Africa. Paper presented at the Congress of the International Primatological Society, Cancun, Mexico.Google Scholar
Groman, S.M., James, A.S. & Seu, E. (2014). In the blink of an eye, relating positive-feedback sensitivity to striatal dopamine D2-like receptors through blink rate. Journal of Neuroscience, 34, 1444314454.Google Scholar
Grossman, Z., Meier-Schellersheim, M., Paul, W.E. & Picker, L.J. (2006). Pathogenesis of HIV infection: what the virus spares is as important as what it destroys. Nature Medicine, 12, 289295.Google Scholar
Groves, C.P. (1989). A Theory of Human and Primate Evolution. Oxford, UK: Oxford Clarendon Press.Google Scholar
Groves, C.P. (2000). The phylogeny of the Ceropithecoidea. In Whitehead, P.F. & Jolly, C.J., eds., Old World Monkeys. Cambridge, UK: Cambridge University Press, pp. 7798.Google Scholar
Groves, C.P. (2001). Primate Taxonomy. Washington, DC: Smithsonian Institution Press.Google Scholar
Groves, C.P. (2005). Order Primates. In Wilson, D.E. & Reeder, D.M., eds., Mammal Species of the World. Baltimore, MD: The Johns Hopkins University Press, pp. 111184.Google Scholar
Grubb, P. (2006). Geospecies and superspecies in the African primate fauna. Primate Conservation, 20, 7578.Google Scholar
Grubb, P., Butynski, T.M., Oates, J.F., Beader, S.K., Disotell, T.R., Groves, C.P. & Struhsaker, T.T. (2003). Assessment of the diversity of African primates. International Journal of Primatology, 24(6), 13011357.Google Scholar
Guschanski, K., Krause, J., Sawyer, S., Valenta, L.M., Bailey, S., Finstermeier, K., Sabin, R., Gilissen, E., Sonet, G., Nagy, Z.T., Georges, L., Mayer, F. & Savolainen, V. (2013). Next-generation museomics disentangles one of the largest primate radiations. Systems Biology, 62(4), 539554.Google Scholar
Guy, A.J., Curnoe, D. & Banks, P.B. (2013). A survey of current mammal rehabilitation and release practices. Biodiversity and Conservation, 22(4), 825837.Google Scholar
Guy, A.J., Stone, O.M.L. & Curnoe, D. (2011). The release of a troop of rehabilitated vervet monkeys (Chlorocebus aethiops) in KwaZulu-Natal, South Africa: outcomes and assessment. Folia Primatologica, 82(6), 308320.Google Scholar
Guy, A.J., Stone, O.M.L. (2012). Assessment of the release of rehabilitated vervet monkeys into the Ntendeka Wilderness Area, KwaZulu-Natal, South Africa: a case study. Primates, 53(2), 171179.Google Scholar
Hahn, N.E., Proulx, D., Muruthi, P.M., Alberts, S. & Altmann, J. (2003). Gastrointestinal parasites in free-ranging Kenyan baboons (Papio cynocephalus and P. anubis). International Journal of Primatology, 24(2), 271279.Google Scholar
Hahn, B.H. (1994). Infection of yellow baboon with simian immunodeficiency virus from African green monkeys: evidence for cross-species transmission in the wild. Journal of Virology, 68(12), 84548460.Google Scholar
Hales, C.N. & Barker, D.J. (2001). The thrifty phenotype hypothesis. British Medical Bulletin, 60, 520.Google Scholar
Hamada, Y., Iwamoto, M. & Watanabe, T. (1986). Somatometrical features of Japanese monkeys in the Koshima Islet: in viewpoint of somatometry, growth, and sexual maturation. Primates, 27(4), 471484.Google Scholar
Hamilton, W.D. (1971). Geometry for the selfish herd. Journal of Theoretical Biology, 31, 295311.Google Scholar
Hannah, A.C. & McGrew, W.C. (1991). Rehabilitation of captive chimpanzees. In Box, H.O., ed., Primate Responses to Environmental Change. London, UK: Chapman & Hall, pp. 167186.Google Scholar
Hanya, G. (2009). Effects of food type and number of feeding sites in a tree on aggression during feeding in wild Macaca fuscata. International Journal of Primatology, 30, 569581.Google Scholar
Harcourt, A.H. (1987). Dominance and fertility among female primates. Journal of Zoology, 213, 471487.Google Scholar
Hardin, R. & Remis, M.J. (2006). Biological and cultural anthropology of a changing tropical forest, a fruitful collaboration across subfields. American Anthropologist, 108, 273285.Google Scholar
Harris, L.D., Tabb, B., Sodora, D.L., Paiardini, M., Klatt, N.R., Douek, D.C., Silvestri, G., Muller-Trutwin, M., Vasile-Pandrea, I., Apetrei, C., Hirsch, V., Lifson, J., Brenchley, J.M. & Estes, J.D. (2010). Downregulation of robust acute type I interferon responses distinguishes nonpathogenic simian immunodeficiency virus (SIV) infection of natural hosts from pathogenic SIV infection of rhesus macaques. Journal of Virology, 84, 78867891.Google Scholar
Harrison, G.A., Tanner, J.M., Pilbeam, D.R. & Baker, P.T. (1988). Human Biology: An Introduction to Human Evolution, Variation, Growth, and Adaptibility, 3rd edn. Oxford, UK: Oxford University Press.Google Scholar
Harrison, M.J.S. (1983). Age and sex differences in the diet and feeding strategies of the green monkey, Cercopithecus sabaeus. Animal Behaviour, 31(4), 969977.Google Scholar
Harrison, T. (1989). New postcranial remains of Victoriapithecus from the middle Miocene of Kenya. Journal of Human Evolution, 18(1), 354.Google Scholar
Haus, T., Akom, E., Agwanda, B., Hofreiter, M., Roos, C. & Zinner, D. (2013). Mitochondrial diversity and distribution of African green monkeys (Chlorocebus gray, 1870). American Journal of Primatology, 75, 350360.Google Scholar
Haus, T., Ferguson, B., Rogers, J., Doxiadis, G., Certa, U., Rose, N.J., Teepe, R., Weinbauer, G.F. & Roos, C. (2014). Genome typing of nonhuman primate models: implications for biomedical research. Trends in Genetics, 30, 482487.Google Scholar
Hausfater, G. & Meade, B.J. (1982). Alternation of sleeping groves by yellow baboons (Papio cynocephalus) as a strategy for parasite avoidance. Primates, 23(2), 287297.Google Scholar
Harwich, M.D., Serrano, M.G., Fettweis, J.M., Alves, J.M.P., Reimers, M.A., Buck, G.A. & Jefferson, K.K. (2012). Genomic sequence analysis and characterization of Sneathia amnii sp. nov. BMC Genomics, 13, S4.Google Scholar
Hawkes, K., Smith, K.R. & Robson, S.L. (2009). Mortality and fertility rates in humans and chimpanzees, how within-species variation complicates cross-species comparisons. American Journal of Human Biology, 21, 578586.Google Scholar
Hector, A., Seyfarth, R. & Raleigh, M.J. (1989). Male parental care, female mate choice, and the effect of an audience in vervet monkeys. Animal Behavior, 38(2), 262271.Google Scholar
Hellerstein, M.K., Hoh, R.A., Hanley, M.B. et al. (2003). Subpopulations of long-lived and short-lived T cells in advanced HIV-1 infection. Journal of Clinical Investigation, 112, 956966.Google Scholar
Henzi, S.P. (1985). Genital signaling and the coexistence of male vervet monkeys (Cercopithecus aethiops pygerythrus). Folia Primatologica, 45, 129147.Google Scholar
Henzi, S.P. & Lucas, J.W. (1980). Observations on the inter-troop movement of adult vervet monkeys (Cercopithecus aethiops). Folia Primatologica, 33, 220235.Google Scholar
Henzi, S.P., Forshaw, N., Boner, R., Barrett, L. & Lusseau, D. (2013). Scalar social dynamics in female vervet monkey cohorts. Phiosophical Transactions of the Royal Society B, 368(1618), 20120351.Google Scholar
Henzi, S.P., Hetem, R., Fuller, A., Maloney, S., Young, C., Mitchell, D., Barrett, L. & McFarland, R. (2017). Consequences of sex-specific sociability for thermoregulation in male vervet monkeys during winter. Journal of Zoology, 302(3), 193200.Google Scholar
Henzi, S.P., Lusseau, D., Weingrill, T., Van Schaik, C.P. & Barrett, L. (2009). Cyclicity in the structure of female baboon social networks. Behavioral Ecology and Sociobiology, 63, 10151021.Google Scholar
Hibar, D. P., Stein, J.L., Renteria, M.E. et al. (2015). Common genetic variants influence human subcortical brain structures. Nature, 520, 224229.Google Scholar
Higham, J.P., Semple, S., MacLarnon, A., Heistermann, M. & Ross, C. (2009). Female reproductive signaling, and male mating behavior, in the olive baboon. Hormones & Behavior, 55, 6067.Google Scholar
Higham, J.P., Brent, L.J.N., Dubuc, C., Accamando, A.K., Engelhardt, A., Gerald, M.S., Heistermann, M. & Stevens, M. (2010). Color signal information content and the eye of the beholder: a case study in the rhesus macaque. Behavioral Ecology, 21, 739746.Google Scholar
Higley, J.D., Mehlman, P.T., Poland, R.E., Taub, D.M., Vickers, J., Suomi, S.J. & Linnoila, M. (1996). CSF testosterone and 5-HIAA correlate with different types of aggressive behaviors. Biological Psychiatry, 40(11), 10671082.Google Scholar
Hill, C.M. & Webber, A.D. (2010). Perceptions of nonhuman primates in human–wildlife conflict scenarios. American Journal of Primatology, 72, 919924.Google Scholar
Hill, G.E. (2006). Female mate choice for ornamental coloration. In Hill, G.E. & McGraw, K.J., eds., Bird Coloration, Vol. 2: Function and Evolution. Cambridge, MA: Harvard University Press, pp. 137200.Google Scholar
Hill, R.A. & Dunbar, R. (1998). An evaluation of the roles of predation rate and predation risk as selective pressures on primate grouping behavior. Behaviour, 135, 411430.Google Scholar
Hill, R.A., Barrett, L., Gaynor, D., Weingrill, T., Dixon, P., Payne, H. & Henzi, S.P. (2003). Day length, latitude and behavioural (in) flexibility in baboons (Papio cynocephalus ursinus). Behavioral Ecology and Sociobiology, 53, 278286.Google Scholar
Hill, W.C.O. (1966). Primate Comparative Anatomy and Taxonomy. VI. Catarrhini, Cercopithecoidea, Cercopithecinae. Edinburgh, UK: Edinburgh University Press.Google Scholar
Hirsch, V.M., McGann, C., Dapolito, G. et al. (1993). Identification of a new subgroup of SIVagm in tantalus monkeys. Virology, 197, 426430.Google Scholar
Hirsch, V.M., Olmsted, R.A., Murphey-Corb, M., Purcell, R.H. & Johnson, P.R. (1989). An African primate lentivirus (SIVsm) closely related to HIV-2. Nature, 339, 389392.Google Scholar
Hockings, K.J., Yamakoshi, G., Kabasawa, A. & Matsuzawa, T. (2010). Attacks on local persons by chimpanzees in Bossou, Republic of Guinea, long-term perspectives. American Journal of Primatology, 72, 887896.Google Scholar
Hoffman, M.T., Carrick, P.J., Gillson, L. & West, A.G. (2009). Drought, climate change and vegetation response in the succulent karoo, South Africa. South African Journal of Science, 105, 5460.Google Scholar
Holmes, D.J. & Sherry, D. (1997). Selected approaches to using individual variation for understanding mammalian, life history evolution. Journal of Mammalogy, 78(2), 311319.Google Scholar
Hope, K., Goldsmith, M.L. & Graczyk, T. (2004). Parasitic health of olive baboons in Bwindi Impenetrable National Park, Uganda. Veterinary Parasitology, 122(2), 165170.Google Scholar
Hoppitt, W. & Laland, K.N. (2008). Social processes influencing learning in animals, a review of the evidence. Advances in the Study of Behavior, 38, 105165.Google Scholar
Horrocks, J.A. (1982). Study of feral monkeys in Barbados. Laboratory Primate Newsletter, 21, 1516.Google Scholar
Horrocks, J.A. (1984). Aspects of the behavioural ecology of Cercopithecus aethiops sabaeus in Barbados, West Indies. PhD Dissertation. Cave Hill, Barbados: University of the West Indies.Google Scholar
Horrocks, J.A. (1986). Life history characteristics of a feral population of vervets (Cercopithecus aethiops sabaeus) in Barbados. International Journal of Primatology, 7, 3147.Google Scholar
Horrocks, J.A. & Baulu, J. (1988). Effects of trapping on the vervet (Cercopithecus aethiops sabaeus) in Barbados. American Journal of Primatology, 15, 223233.Google Scholar
Horrocks, J.A. (1994). Food competition between vervets (Cercopithecus aethiops sabaeus) and farmers in Barbados, implications for management. Revue d’Ecologie, La Terre et la Vie, 49, 281294.Google Scholar
Horrocks, J.A. & Hunte, W. (1983a). Maternal rank and offspring rank in vervet monkeys. Animal Behavior, 31, 772782.Google Scholar
Horrocks, J.A. (1983b). Rank relations in vervet sisters. American Naturalist, 122, 417421.Google Scholar
Horrocks, J.A. (1986). Sentinel behaviour in vervet monkeys, who sees whom first? Animal Behaviour, 34, 15661567.Google Scholar
Horrocks, J.A. (1993). Interactions between juveniles and adult males in vervets, implications for adult male turnover. In Pereira, M.E. & Fairbanks, L.A., eds., Juvenile Primates, Life History, Development and Behavior. New York: Oxford University Press, pp. 228239.Google Scholar
Hosseini, E., Grootaert, C., Verstraete, W. & Van de Wiele, T. (2011). Propionate as a health-promoting microbial metabolite in the human gut. Nutrition Reviews, 69(5), 245258.Google Scholar
Howell, N. (1979). Demography of the Dobe!Kung. New York: Academic Press.Google Scholar
Hu, F., van Dam, R. & Liu, S. (2001). Diet and risk of type II diabetes: the role of types of fat and carbohydrate. Diabetologia, 44, 805817.Google Scholar
Huang, Y.S., Ramensky, V., Service, S.K. et al. (2015) Sequencing strategies and characterization of 721 vervet monkey genomes for future genetic analyses of medically relevant traits. BMC Biology, 13, 41.Google Scholar
Huck, M., Rotundo, M. & Fernandez-Duque, E. (2011). Growth and development in wild owl monkeys (Aotus azarai) of Argentina. International Journal of Primatology, 32, 11331152.Google Scholar
Hunt, J., Bussiere, L.F., Jennions, M.D. & Brooks, R. (2004). What is genetic quality? Trends in Ecology and Evolution, 19(6), 329333.Google Scholar
Hunte, W. & Horrocks, J.A. (1987). Kin and non-kin interventions in the aggressive disputes of vervet monkeys. Behavioral Ecology and Sociobiology, 20(4), 257263.Google Scholar
Huxley, J.S. (1932). Problems of Relative Growth. London, UK: Methuen & Co.Google Scholar
Isbell, L.A. (1990). Sudden short-term increase in mortality of vervet monkeys (Cercopithecus aethiops) due to leopard predation in Amboseli National Park, Kenya. American Journal of Primatology, 21, 4152.Google Scholar
Isbell, L.A. (1991). Contest and scramble competition, patterns of female aggression and ranging behavior among primates. Behavioral Ecology, 2, 143155.Google Scholar
Isbell, L.A. (1994a). Predation on primates, ecological patterns and evolutionary consequences. Evolutionary Anthropology, 3, 6171.Google Scholar
Isbell, L.A. (1994b). The vervets’ year of doom. Natural History, 103(8), 4855.Google Scholar
Isbell, L.A. (1995). Seasonal and social correlates of changes in hair, skin, and scrotal condition in vervet monkeys (Cercopithecus aethiops) of Amboseli National Park, Kenya. American Journal of Primatology, 36, 6170.Google Scholar
Isbell, L.A. (2004). Is there no place like home? Ecological bases of dispersal in primates and their consequences for the formation of kin groups. In Chapais, B. & Berman, C., eds., Kinship and Behavior in Primates. New York: Oxford University Press, pp. 71108.Google Scholar
Isbell, L.A. (2006). Snakes as agents of evolutionary change in primate brains. Journal of Human Evolution, 51, 135.Google Scholar
Isbell, L.A. (2009). The Fruit, the Tree, and the Serpent: Why We See So Well. New York: Harvard University Press.Google Scholar
Isbell, L.A. & Bidner, L.R. (2016). Vervet monkey (Chlorocebus pygerythrus) alarm calls to leopards (Panthera pardus) function as a predator deterrent. Behaviour, 153, 591606.Google Scholar
Isbell, L.A., Bidner, L.R., Van Cleave, E.K., Matsumoto-Oda, A. & Crofoot, M.C. (2018). GPS-identified vulnerabilities of savannah-woodland primates to leopard predation and their implications for early hominins. Journal of Human Evolution, 118, 113.Google Scholar
Isbell, L.A. & Enstam, K.L. (2002). Predator (in)sensitive foraging in sympatric female vervets (Chlorocebus aethiops) and patas monkeys (Erythrocebus patas): a test of ecological models of group dispersion. In Miller, L.E., ed., Eat or Be Eaten, Predator Sensitive Foraging in Nonhuman Primates. New York: Cambridge University Press, pp. 154168.Google Scholar
Isbell, L.A. & Jaffe, K.L.E. (2013). Chlorocebus pygerythrus vervet monkey. In Butynski, T.M., Kingdon, J.S. & Kalina, J., eds., The Mammals of Africa: Vol. II Primates. London, UK: Bloomsbury Publishing, pp. 277283.Google Scholar
Isbell, L.A. & Pruetz, J.D. (1998). Differences between vervets (Cercopithecus aethiops) and patas monkeys (Erythrocebus patas) in agonistic interactions between adult females. International Journal of Primatology, 19, 837855.Google Scholar
Isbell, L.A. & Van Vuren, D. (1996). Differential costs of locational and social dispersal and their consequences for female group-living primates. Behaviour, 133, 136Google Scholar
Isbell, L. & Young, T. (1993a). Social and ecological influences on activity budgets of vervet monkeys, and their implications for group living. Behavioral Ecology and Sociobiology, 32, 377385.Google Scholar
Isbell, L.A. & Young, T.P. (1993b). Human presence reduces predation in a free-ranging vervet monkey population in Kenya. Animal Behavior, 45, 12331235.Google Scholar
Isbell, L.A., Cheney, D.L. & Seyfarth, R.M. (1990). Costs and benefits of home range shifts among vervet monkeys (Cercopithecus aethiops) in Amboseli National Park, Kenya. Behavioral Ecology and Sociobiology, 27, 351358.Google Scholar
Isbell, L.A. (1991). Group fusions and minimum group sizes in vervet monkeys (Cercopithecus aethiops). American Journal of Primatology, 25, 5765.Google Scholar
Isbell, L.A., Cheney, D.L. (1993). Are immigrant vervet monkeys, Cercopithecus aethiops, at greater risk of mortality than residents? Animal Behavior, 45, 729734.Google Scholar
Isbell, L.A., Cheney, D.L. (2002). Why vervet monkeys (Cercopithecus aethiops) live in multimale groups. In Glenn, M. & Cords, M., eds., The Guenons, Diversity and Adaptation in African Monkeys. New York: Kluwer Academic/Plenum Publishers, pp. 173187.Google Scholar
Isbell, L.A, Pruetz, J.D. & Young, T.P. (1998). Movements of vervets (Cercopithecus aethiops) and patas monkeys (Erythrocebus patas) as estimators of food resource size, density, and distribution. Behavioral Ecology and Sociobiology, 42, 123133.Google Scholar
Isbell, L.A., Young, T.P., Jaffe, K.E., Carlson, A.A. & Chancellor, R.L. (2009). Demography and life histories of sympatric patas monkeys (Erythrocebus patas) and vervets (Cercopithecus aethiops) in Laikipia, Kenya. International Journal of Primatology, 30, 103124.Google Scholar
Ishimoto, G., Toyomazu, T. & Uemura, K. (1967). Serum transferrins of Japanese macaques: comparison with other species of monkeys. Primates, 8, 2934.Google Scholar
Jablonski, N.G. (2002). Fossil Old World monkeys: the late Neogene radiation. In Hartwig, W.C., ed., The Primate Fossil Record. New York: Cambridge University Press, pp. 255299.Google Scholar
Jablonski, N.G. & Frost, S. (2010). Cercopithecoidea. In Werderlin, L. & Sanders, W.J., eds., Cenozoic Mammals of Africa. Los Angeles, CA: University of California Press, pp. 393428.Google Scholar
Jackson, G. & Gartlan, J.S. (1965). The flora and fauna of Lolui Island, Lake Victoria: a study of vegetation, men and monkeys. Journal of Ecology, 53(3), 573598.Google Scholar
Jacobus, S. & Loy, J. (1981). The grimace and gecker, a submissive display among patas monkeys. Primates, 22, 393398.Google Scholar
Jacquelin, B., Mayau, V., Targat, B. et al. (2009). Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response. Journal of Clinical Investigation, 119, 35443555.Google Scholar
Jaffe, K.E. & Isbell, L.A. (2009). After the fire: benefits of reduced ground cover for vervet monkeys (Cercopithecus aethiops). American Journal of Primatology, 71, 252260.Google Scholar
Jaffe, K.E. (2010). Ranging and social behavior after a predator-induced group fusion in wild vervet monkeys (Cercopithecus aethiops) in Laikipia, Kenya. American Journal of Primatology, 72, 634644.Google Scholar
Janson, C. (2000). Spatial movement strategies: theory, evidence, and challenges. In Boinski, S. & Garber, P.A., eds., On the Move: How and Why Animals Travel in Groups. Chicago: University of Chicago Press, pp. 165203.Google Scholar
Janson, C.H. & van Schaik, C.P. (1988). Recognizing the many faces of primate food competition, methods. Behaviour, 105, 165186.Google Scholar
Janson, C.H. (1993). Ecological risk aversion in juvenile primates: slow and steady wins the race. In Pereira, M.E & Fairbanks, L.A, eds., Juvenile Primates. New York: Oxford University Press, pp. 5774.Google Scholar
Jarman, P. (1974). The social organisation of antelope in relation to their ecology. Behaviour, 48(1), 215267.Google Scholar
Jasinska, A.J., Lin, M.K., Service, S. et al. (2012) A nonhuman primate system for large-scale genetic studies of complex traits. Human Molecular Genetics, 21(15), 33073316.Google Scholar
Jasinska, A.J., Schmitt, C.A., Service, S.K. et al. (2013). Systems biology of the vervet monkey. ILAR Journal, 54, 122143.Google Scholar
Jasinska, A.J., Service, S., Levinson, M. et al. (2007). A genetic linkage map of the vervet monkey (Chlorocebus aethiops sabaeus). Mammalian Genome, 18, 347360.Google Scholar
Jasinska, A.J., Service, S., Choi, O.W. et al. (2009). Identification of brain transcriptional variation reproduced in peripheral blood, an approach for mapping brain expression traits. Human Molecular Genetics, 18, 44154427.Google Scholar
Jasinska, A.J., Zelaya, I., Service, S.K. et al. (2017). Genetic variation and gene expression across multiple tissues and developmental stages in a nonhuman primate. Nature Genetics, 49(12), 17141721.Google Scholar
Jin, M.J., Hui, H., Robertson, D.L, Muller, M.C., Barre-Sinoussi, F., Hirsch, V.M., Allan, J.S., Shaw, G.M., Sharp, P.M. & Hahn, B.H. (1994a). Mosaic genome structure of simian immunodeficiency virus from West African green monkeys. EMBO Journal, 13, 29352947.Google Scholar
Jin, M.J., Rogers, J., Phillips-Conroy, J.E., Allan, J.S., Desrosiers, R.C., Shaw, G.M., Sharp, P.M. & Hahn, B.H. (1994b). Infection of a yellow baboon with simian immunodeficiency virus from African green monkeys, evidence for cross-species transmission in the wild. Journal of Virology, 68, 84548460.Google Scholar
Johnson, S.E. (2003). Life history and the competitive environment: trajectories of growth, maturation and reproductive output among chacma baboons. American Journal of Physical Anthropology, 120(1), 8398.Google Scholar
Jolly, C.J. (1993). Species, subspecies and baboon systematics. In Kimbel, W.H. & Martin, L.B., eds., Species, Species Concepts and Primate Evolution. New York: Plenum Press, pp. 67108.Google Scholar
Jolly, C.J. & Brett, F.L. (1973). Genetic markers and baboon biology. Journal of Medical Primatology, 2, 8599.Google Scholar
Jolly, C.J. & Phillips-Conroy, J.E. (2003). Testicular size, mating system, and maturation schedules in wild Anubis and hamadryas baboons. International Journal of Primatology, 24, 125142.Google Scholar
Jolly, C.J., Phillips-Conroy, J.E., Turner, T.R., Broussard, S. & Allan, J.S. (1996). SIV-agm incidence over two decades in a natural population of Ethiopian grivet monkeys (Cercopithecus aethiops aethiops). Journal of Medical Primatology, 25(2), 7883.Google Scholar
Jolly, C.J., Turner, T.R., Socha, W.W. & Weiner, A.S. (1977) Human-type A-B-O blood group antigens of Ethiopian vervet monkeys (Cercopithecus aethiops) in the wild. Journal of Medical Primatology, 6, 5457.Google Scholar
Jones, G.E. & Scott, G.R. (1970). Vervet monkey disease, a new zoonosis. Tropical Animal Health and Production, 2(1), 3543.Google Scholar
Jones-Engel, L., Engel, G.A., Schillaci, M.A., Babo, R. & Froehlich, J. (2001). Detection of antibodies to selected human pathogens among wild and pet macaques (Macaca tonkeana) in Sulawesi, Indonesia. American Journal of Primatology, 54(3), 171178.Google Scholar
Jones-Engel, L., Schillaci, M.A. & Engel, G.A. (2011). Human–nonhuman primate interactions, an ethnoprimatological approach. In Setchell, J.M. & Curtis, D.J., eds., Field and Laboratory Methods in Primatology, A Practical Guide, 2nd edn. Cambridge: Cambridge University Press, pp. 1524.Google Scholar
Josephs, N., Bonnell, T., Dostie, M., Barrett, L. & Henzi, S.P. (2016). Working the crowd: sociable vervets benefit by reducing exposure to risk. Behavioral Ecology, 27, 988994.Google Scholar
Jost Robinson, C.A. & Remis, M.J. (2014). Entangled realms, hunters and hunted in the Dzanga Sangha Dense Forest Reserve (RDS), Central African Republic. Anthropology Quarterly, 87, 613636.Google Scholar
Kalin, N.H. (2004). Studying non-human primates, a gateway to understanding anxiety disorders. Psychopharmacology Bulletin, 38, 813.Google Scholar
Kanthaswamy, S. & Smith, D.G. (2002). Population subdivision and gene flow among wild orangutans. Primates, 43(4), 315327.Google Scholar
Kaplan, J.R. & Zucker, E.L. (1980). Social organization in a group of free-ranging patas monkeys. Folia Primatologica, 34, 196213.Google Scholar
Kappeler, P.M., Pereira, M.E. & van Schaik, C.P. (2003). Primate life histories and socioecology. In Kappeler, P.M. & Pereira, M.E., eds., Primate Life Histories and Socioecology. Chicago: Chicago University Press, pp. 123.Google Scholar
Kapusinszky, B., Mulvaney, U., Jasinska, A.J. et al. (2015). Local virus extinctions following a host population bottleneck. Journal of Virology, 89, 81528161.Google Scholar
Kavanagh, M. (1978). The diet and feeding behaviour of Cercopithecus aethiops tantalus. Folia Primatologica, 30, 3063.Google Scholar
Kavanagh, K., Fairbanks, L.A., Bailey, J.N. et al. (2007). Characterization and heritability of obesity and associated risk factors in vervet monkeys. Obesity, 15, 16661674.Google Scholar
Kawai, M. (1965). Newly-acquired pre-cultural behavior of the natural troop of Japanese monkeys on Koshima Islet. Primates, 6, 130.Google Scholar
Kawamoto, Y., Ischak, T.M. & Supriatna, J. (1984). Genetic variations within and between troops of the crab-eating macaque (Macaca fascicularis) on Sumatra, Java, Bali, Lombok and Sumbawa, Indonesia. Primates, 25(2), 131159.Google Scholar
Kawamoto, Y., Shotake, T. & Nozawa, K. (1982). Genetic differentiation among three genera of family Cercopithecidae. Primates, 23(2), 272286.Google Scholar
Keane, B., Dittus, W.P.J. & Melnick, D.J. (1997). Paternity assessment in wild groups of toque macaques Macaca sinica at Polonnaruwa, Sri Lanka using molecular markers. Molecular Ecology, 6(3), 267282.Google Scholar
Keddy, A.C. (1986). Female mate choice in vervet monkeys (Cercopithecus aethiops sabaeus). American Journal of Primatology, 10, 125134.Google Scholar
Keddy Hector, A.C. & Raleigh, M.J. (1992). The effects of temporary removal of the alpha male on the behavior of subordinate male vervet monkeys. American Journal of Primatology, 26, 7787.Google Scholar
Keele, B.F., Giorgi, E.E., Salazar-Gonzalez, J.F. et al. (2008). Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proceedings of the National Academy of Science of the United States of America, 105, 75527557.Google Scholar
Keele, B.F., Li, H., Learn, G.H. et al. (2009). Low dose rectal inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human mucosal infection by HIV-1. Journal of Experimental Medicine, 206, 11171134.Google Scholar
Kelaita, M.A. (2015). Applications of genomic methods to studies of wild primate populations. In Duggirala, R., Almasy, L., Williams-Blangero, S., Paul, F.D. & Kole, C, eds., Genome Mapping and Genomics in Human and Non-Human Primates. Berlin, Germany: Springer, pp. 103112.Google Scholar
Kessel, A. & Brent, L. (2001). The rehabilitation of captive baboons. Journal of Medical Primatology, 30(2), 7180.Google Scholar
Kessel, A.L. & Brent, L. (1998). Cage toys reduce abnormal behavior in individually housed pigtail macaques. Journal of Applied Animal Welfare Science, 1(3), 227234.Google Scholar
Kleiber, M. (1961). The Fire of Life: An Introduction to Animal Energetics. New York: John Wiley & Sons, Inc.Google Scholar
Kilmer, J.T. & Rodríguez, R.L. (2017). Ordinary least squares regression is indicated for studies of allometry. Journal of Evolutionary Biology, 30(1), 412.Google Scholar
King, S.J., Morelli, T.L., Arrigo-Nelson, S., Ratelolahy, F.J., Godfrey, L.R., Wyatt, J., Tecot, S., Jernvall, J. & Wright, P.C. (2011). Morphometrics and pattern of growth in wild sifakas (Propithecus edwardsi) at Ranomafana National Park, Madagascar. American Journal of Primatology, 73(2), 155172.Google Scholar
Kingdon, J. (1971). East African Mammals, Vol. 1. New York: Academic Press.Google Scholar
Kingdon, J. (1988). What are face patterns and do they contribute to reproductive isolation in guenons? In Gautier-Hion, A., Bourliere, F., Gautier-Hion, J.P. & Kingdon, J., eds., A Primate Radiation: Evolutionary Biology of the African Guenons. Cambridge: Cambridge University Press, pp. 227245.Google Scholar
Kingdon, J. (1992). Facial patterns as signals and masks. In Jones, S., Martin, R. & Pilbeam, D., eds., The Cambridge Encyclopedia of Human Evolution. Cambridge: Cambridge University Press, pp. 161165.Google Scholar
Kingdon, J. & Largen, M. J. (1997). The kingdom field guide to African mammals. Zoological Journal of the Linnean Society, 120(4), 479.Google Scholar
Kisidayova, S., Varadyova, Z., Pristas, P. et al. (2009). Effects of high- and low-fiber diets on fecal fermentation and fecal microbial populations of captive chimpanzees. American Journal of Primatology, 71, 548557.Google Scholar
Kluge, M. & Ting, I. (1978). Crassulacean Acid Metabolism: An Ecological Analysis. Berlin, Germany: Springer-Verlag.Google Scholar
Knight, J. (1999). Monkeys on the move, the natural symbolism of people–macaque conflict in Japan. The Journal of Asian Studies, 58, 622647.Google Scholar
Knight, J. (2000). Introduction. In Knight, J., ed., Natural Enemies: People–Wildlife Conflicts in Anthropological Perspective. London: Routledge, pp. 135.Google Scholar
Kodric-Brown, A., Sibly, R.M. & Brown, J. H. (2006). The allometry of ornaments and weapons. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 87338738.Google Scholar
Korstjens, A.H., Lehmann, J. & Dunbar, R.I.M. (2010). Resting time as an ecological constraint on primate biogeography. Animal Behaviour, 79, 361374.Google Scholar
Kowalewski, M.M., Salzer, J.S., Deutsch, J.C., Rano, M., Kuhlenschmidt, M.S. & Gillespie, T.R. (2011). Black and gold howler monkeys (Alouatta caraya) as sentinels of ecosystem health: patterns of zoonotic protozoa infection relative to degree of human–primate conflict. American Journal of Primatology, 73(1), 7583.Google Scholar
Krige, P.D. & Lucas, J.W. (1974). Aunting behaviour in an urban troop of Cercopithecus aethiops. Journal of Behavioural Science, 2, 5561.Google Scholar
Kuntz, R.E. & Myers, B.J. (1966). Parasites of baboons (Papio doguera (Pucheran, 1856)) captured in Kenya and Tanzania, East Africa. Primates, 7, 2732.Google Scholar
Kuokkanen, S., Polotsky, A.J., Chosich, J., Bradford, A.P., Jasinska, A., Phang, T., Santoro, N. & Appt, S.E. (2016). Corpus luteum as a novel target of weight changes that contribute to impaired female reproductive physiology and function. Systems Biology in Reproductive Medicine, 62(4), 227242.Google Scholar
Kurita, H., Suzumura, T., Kanchi, F. & Hamada, Y. (2012). A photogrammetric method to evaluate nutritional status without capture in habituated free-ranging Japanese macaques (Macaca fuscata), a pilot study. Primates, 53, 711.Google Scholar
Kuzawa, C.W. (1998). Adipose tissue in human infancy and childhood: an evolutionary perspective. Yearbook of Physical Anthropology, 41, 177209.Google Scholar
Lack, D. (1947). The significance of clutch size. Ibis, 89, 302352.Google Scholar
Laland, K.N. (2004). Social learning strategies. Learning & Behavior, 32, 414.Google Scholar
Laland, K.N. & Janik, V. (2006). The animal cultures debate. Trends in Ecology & Evolution, 21, 542547.Google Scholar
Lancaster, J.B. (1971). Play-mothering: the relations between juvenile females and young infants among free-ranging vervet monkeys (Cercopithecus aethiops). Folia Primatologica, 15, 161182.Google Scholar
Lane, K.E., Lute, M., Rompis, A., Wandia, I.N., Putra, I.A., Hollocher, H. & Fuentes, A. (2010). Pests, pestilence, and people: the long-tailed macaque and its role in the cultural complexities of Bali. In Gursky-Doyen, S. & Supriatna, J., eds., Indonesian Primates. New York, NY: Springer, pp. 235248.Google Scholar
Langergraber, K.E, Siedel, H., Mitani, J.C., Wrangham, R.W., Reynolds, V., Hunt, K. & Vigilant, L. (2007). The genetic signature of sex-biased migration in patrilocal chimpanzees and humans. PLoS One, 2(10), 17.Google Scholar
Larsen, N., Vogensen, F.K., van den Berg, F.W.J. et al. (2010). Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One, 5(2), e9085.Google Scholar
Laudenslager, M.L., Jorgensen, M.J., Grzywa, R. & Fairbanks, L.A. (2011). A novelty seeking phenotype is related to chronic hypothalamic–pituitary–adrenal activity reflected by hair cortisol. Physiology & Behavior, 104, 291295.Google Scholar
Launhardt, K., Epplen, C., Epplen, J.T. & Winkler, P. (1998). Amplification of microsatellites adapted from human systems in faecal DNA of wild Hanuman langurs (Presbytis entellus). Electrophoresis, 19(8–9), 13561361.Google Scholar
Laviola, G., Macrì, S., Morley-Fletcher, S. & Adriani, W. (2003). Risk-taking behavior in adolescent mice: psychobiological determinants and early epigenetic influence. Neuroscience and Biobehavioral Reviews, 27, 1931.Google Scholar
Lawler, R.R., Richard, A.F. & Riley, M.A. (2003). Genetic population structure of the white sifaka (Propithecus verrauxi verrauxi) at Beza Mahafaly Special Reserve, southwest Madagascar (1992–2001). Molecular Ecology, 12(9), 23072317.Google Scholar
Le, Q.V., Isbell, L.A., Nguyen, M.N., Matsumoto, J., Hori, E., Maior, R.S., Tomaz, C., Tran, A.H., Ono, T. & Nishijo, H. (2013). Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes. Proceedings of the National Academy of Sciences of the United States of America, 110, 1900019005.Google Scholar
Le, Q.V., Isbell, L.A., Matsumoto, J., Quang, L.V., Hori, E., Tran, A.H., Maior, R.S., Tomaz, C., Ono, T. & Nishijo, H. (2014). Monkey pulvinar neurons fire differentially to snake postures. PLoS One, 9, e114258.Google Scholar
Leakey, M. (1988). Fossil evidence for the evolution of the guenons. In Gautier-Hion, A., Bourliere, F., Gautier-Hion, J.P. & Kingdon, J., eds., A Primate Radiation: Evolutionary Biology of the African Guenons. Cambridge: Cambridge University Press, pp. 712.Google Scholar
Leakey, M.G., Teaford, M.F. & Ward, C.V. (2003). Cercopithecidae from lothagam. In Leakey, M., ed., Lothagam: The Dawn of Humanity in Eastern Africa. New York: Columbia University Press, New York, pp. 201248.Google Scholar
Ledbetter, D.H. (1981). Chromosomal evolution and speciation of the genus Cercopithecus (Primates, Cercopithecinae). PhD thesis. Austin, TX: University of Texas.Google Scholar
Lee, P.C. (1984). Early infant development and maternal care in free-ranging vervet monkeys. Primates, 25(1), 3647.Google Scholar
Lee, P.C. (2010). Sharing space, can ethnoprimatology contribute to the survival of nonhuman primates in human-dominated globalized landscapes? American Journal of Primatology, 72, 925931.Google Scholar
Lee, P.C. & Kappeler, P.M. (2003). Socioecological correlates of phenotypic plasticity of primate life histories. In Kappeler, P.M. & Pereira, M. E., eds., Primate Life Histories and Socioecology. Chicago: Chicago University Press, pp. 4165.Google Scholar
Lee, P.C. & Priston, N.E.C. (2005). Human attitudes to primates: perception of pests, conflict and consequences for conservation. In Paterson, J.D. & Wallis, J., eds., Commensalism and Conflict: The Human–Primate Interface. Norman, OK: American Society of Primatologists, pp. 123.Google Scholar
Lee-Thorp, J.A. & van der Merwe, N.J. (1987). Carbon isotope analysis of fossil bone apatite. South African Journal of Science, 83, 712715.Google Scholar
Legesse, M. & Erko, B. (2004). Zoonotic intestinal parasites in Papio anubis (baboon) and Cercopithecus aethiops (vervet) from four localities in Ethiopia. Acta Tropica, 90(3), 231236.Google Scholar
Leigh, S.R. (1992). Patterns of variation in the ontogeny of primate body size dimorphism. Journal of Human Evolution, 23(1), 2750.Google Scholar
Leonard, W.R. (1989). Nutritional determinants of high-altitude growth in Nunoa, Peru. American Journal of Physical Anthropology, 80(3), 341352.Google Scholar
Leonard, W.R., Robertson, M.L., Snodgrass, J.J. & Kuzawa, C.W. (2003). Metabolic correlates of hominid brain evolution. Comparative Biochemistry and Physiology A, 135, 515.Google Scholar
Leonard, W.R., Snodgrass, J.J. & Robertson, M.L. (2007). Effects of brain evolution on human nutrition and metabolism. Annual Review of Nutrition, 27, 311327.Google Scholar
Lernould, J.M. (1988). Classification and geographical distribution of guenons: a review. In Gautier-Hion, A., Bourliere, F., Gautier-Hion, J.P. & Kingdon, J., eds., A Primate Radiation: Evolutionary Biology of the African Guenons. Cambridge: Cambridge University Press, pp. 5478.Google Scholar
Lewis, L.S., Rogers, J.A. & Turner, T.R. (1981). Some female reproductive statistics for wild-caught vervet monkeys (Cercopithecus aethiops pygerythrus). American Journal of Physical Anthropology, 54, 246.Google Scholar
Ley, R.E. (2010). Obesity and the human microbiome. Current Opinion in Gastroenterology, 26(1), 511.Google Scholar
Li, D., Ren, B., Grueter, C.C., Li, B. & Li, M. (2010). Nocturnal sleeping habits of the Yunnan snub-nosed monkey in Xiangguqing, China. American Journal of Primatology, 72, 10921099.Google Scholar
Li, H.P., Meng, S.J., Men, Z.M., Fu, Y.X. & Zhang, Y.P. (2003). Genetic diversity and population history of golden monkeys (Rhinopithecus roxellana). Genetics, 164(1), 269275.Google Scholar
Lilly, A.A., Mehlman, P.T. & Doran, D. (2002). Intestinal parasites in gorillas, chimpanzees, and humans at Mondika Research site, Dzanga-Ndoki National Park, Central African Republic. International Journal of Primatology, 23(3), 555573.Google Scholar
Ling, B., Apetrei, C., Pandrea, I., Veazey, R.S., Lackner, A.A., Gormus, B. & Marx, P.A. (2004). Classic AIDS in a sooty mangabey after an 18-year natural infection. Journal of Virology, 78, 89028908.Google Scholar
Locke, A.E., Kahali, B. & Berndt, S.I. (2015). Genetic studies of body mass index yield new insights for obesity biology. Nature, 518, 197206.Google Scholar
Lorenz, J., Grobler, J.P., MacAuliffe Dore, K., Freimer, N., Jasinska, A. & Turner, T.R. (2010). Genetic variation among geographically widespread populations of vervets (Chlorocebus aethiops) in southern and eastern Africa. American Journal of Physical Anthropology, 141, 157158.Google Scholar
Loudon, J.E., Grobler, J.P., Sponheimer, M., Moyer, K., Lorenz, J.G. & Turner, T.R. (2014). Using stable carbon and nitrogen isotope compositions of vervet monkey (Chlorocebus pygerythrus) to examine questions in ethnoprimatology. PLoS One, 9, e100758.Google Scholar
Loudon, J.E., Howells, M.E. & Fuentes, A. (2006). The importance of integrative anthropology: a preliminary investigation employing primatological and cultural anthropological data collection methods in assessing human–monkey co-existence in Bali, Indonesia. Ecological and Environmental Anthropology, 2, 213.Google Scholar
Loudon, J.E., Sandberg, P.A., Wrangham, R.W., Fahey, B. & Sponheimer, M. (2016). The stable isotope ecology of Pan in Uganda and beyond. American Journal of Primatology, 78(10), 10701085.Google Scholar
Loudon, J.E., Sponheimer, M., Sauther, M.L. & Cuozzo, F.P. (2007). Intraspecific variation in hair δ13C and δ15N values of ring-tailed lemurs (Lemur catta) with known individual histories, behavior, and feeding ecology. American Journal of Physical Anthropology, 133, 978985.Google Scholar
Loy, J. & Harnois, M. (1988). An assessment of dominance and kinship among patas monkeys. Primates, 29, 331342.Google Scholar
Lozupone, C., Stombaugh, J., Gonzalez, A. et al. (2012). The vaginal microbiome, rethinking health and diseases. Annual Review of Microbiology, 66, 371389.Google Scholar
Lu, A., Bergman, T.J., McCann, C., Stinespring-Harris, A. & Beehner, J.C. (2016). Growth trajectories in wild geladas (Theropithecus gelada). American Journal of Primatology, 78, 707719.Google Scholar
Lubbe, A., Hetem, R.S., McFarland, R., Barrett, L., Henzi, S.P., Mitchell, D., Meyer, L.C.R., Maloney, S.K. & Fuller, A. (2014). Thermoregulatory plasticity in free-ranging vervet monkeys, Chlorocebus pygerythrus. Journal of Comparative Physiology B, 184, 799809.Google Scholar
Lucotte, G., Gauteau, C., Galat, G. & Galat-Luong, A. (1982). Electrophoretic polymorphism in different subspecies of Cercopithecus aethiops. Folia Primatologica, 38(3–4), 183195.Google Scholar
Lukas, D., Reynolds, V., Boesch, C. & Vigilant, L. (2005). To what extent does living in a group mean living with kin? Molecular Ecology, 14(7), 21812196.Google Scholar
Ma, B., Forney, L.J. & Ravel, J. (2012). Vaginal microbiome: rethinking health and disease. Annual Review of Microbiology, 66, 371389.Google Scholar
Ma, D., Jasinska, A., Kristoff, J. et al. (2014). Factors associated with SIV transmission in a natural African nonhuman primate host in the wild. Journal of Virology, 88, 56875705.Google Scholar
Ma, J., Prince, A.L., Bader, D. et al. (2014). High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nature Communications, 5, 3889.Google Scholar
Ma, D. Jasinska, A.J., Kristoff, J. et al. (2013). SIVagm infection in wild African green monkeys from South Africa: epidemiology, natural history, and evolutionary considerations. PLoS Pathogens, 9, e1003011.Google Scholar
MacIntosh, A.J.J., Jacobs, A., Garcia, C. et al. (2012). Monkeys in the middle, parasite transmission through the social network of a wild primate. PLoS One, 7, e51144.Google Scholar
Maestripieri, D., Hoffman, C.L., Anderson, G.M., Carter, C.S. & Higley, J.D. (2009). Mother–infant interactions in free-ranging rhesus macaques, relationships between physiological and behavioral variables. Physiology & Behavior, 96, 613619.Google Scholar
Majolo, B., McFarland, R., Young, C. & Qarro, M. (2013). The effect of climatic factors on the activity budgets of a temperate primate, the Barbary macaque (Macaca sylvanus). International Journal of Primatology, 34, 500514.Google Scholar
Marketon, J.I.W. & Glaser, R. (2008). Stress hormones and immune function. Cellular Immunology, 252, 1626.Google Scholar
Marmoset Genome Sequencing and Analysis Consortium (2014). The common marmoset genome provides insight into primate biology and evolution. Nature Genetics, 46, 850857.Google Scholar
Martin, R.D. & MacLarnon, A.M. (1988). Quantitative comparisons of the skull and teeth in guenons. In Gautier-Hion, A., Bourliere, F., Gautier-Hion, J.P. & Kingdon, J., eds., A Primate Radiation: Evolutionary Biology of the African Guenons. Cambridge: Cambridge University Press, pp. 160183.Google Scholar
Martin, R.D., Dixon, A.F. & Wickings, E.J. (1992). Paternity in Primates: Genetic Tests and Theories: Implications of Human DNA Fingerprinting. Basel, Switzerland: Karger.Google Scholar
Martinez-Mota, R., Valdespino, C., Sanchez-Ramos, M.A. & Serio-Silva, J.C. (2007). Effects of forest fragmentation on the physiological stress response of black howler monkeys. Animal Conservation, 10(3), 374379.Google Scholar
Maslin, M.A., Shultz, S. & Trauth, M.H. (2015). A synthesis of the theories and concepts of early human evolution. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 370, 20140064.Google Scholar
Mathy, J. & Isbell, L.A. (2001). The relative importance of size of food and interfood distance in eliciting aggression in captive rhesus macaques (Macaca mulatta). Folia Primatologica, 72, 268277.Google Scholar
Mayr, E. (1963). Animal Species and Evolution. Cambridge, MA: Harvard University Press.Google Scholar
McCombs, M.L. & Bowman, B.H. (1970). Electrophoretic comparison of ceruloplasmin types in ten primate species. Texas Reports on Biology and Medicine, 28(1), 6974.Google Scholar
McDermid, E.M. & Ananthakrishnan, R. (1972). Red cell enzymes and serum proteins of Cercopithecus aethiops (South African green monkey). Folia Primatologica, 17(1), 122131.Google Scholar
McDermid, E.M., Vos, G.H. & Downing, H.J. (1973). Blood groups, red cell enzymes and serum proteins of baboons and vervets. Folia Primatologica, 19, 312326.Google Scholar
McDougall, P., Forshaw, N., Barrett, L. & Henzi, S.P. (2010). Leaving home: responses to water depletion by vervet monkeys. Journal of Arid Environments, 74, 924927.Google Scholar
McFarland, R. & Majolo, B. (2013). Coping with the cold: predictors of survival in wild Barbary macaques, Macaca sylvanus. Biology Letters, 9, 20130428.Google Scholar
McFarland, R., Barrett, L., Boner, R., Freeman, N. J. & Henzi, S. P. (2014). Behavioral flexibility of vervet monkeys in response to climatic and social variability. American Journal of Physical Anthropology, 154, 357364.Google Scholar
McFarland, R., Fuller, A., Hetem, R.S., Mitchell, D., Maloney, S.K., Henzi, S.P. & Barrett, L. (2015). Social integration confers thermal benefits in a gregarious primate. Journal of Animal Ecology, 84, 871878.Google Scholar
McFarland, R., Henzi, S.P., Barrett, L., Wanigaratne, A., Coetzee, E., Fuller, A., Hetem, R.S., Mitchell, D. & Maloney, S.K. (2016). Thermal consequences of increased pelt loft infer an additional utilitarian function for grooming. American Journal of Primatology, 78, 456461.Google Scholar
McFarland, R., Hetem, R.S., Fuller, A., Mitchell, D., Henzi, S.P. & Barrett, L. (2013). Assessing the reliability of biologger techniques to measure activity in a free-ranging primate. Animal Behaviour, 85, 861866.Google Scholar
McFarland, R., Murphy, D., Lusseau, D., Henzi, S.P., Parker, J.L., Pollet, T.V. & Barrett, L. (2017). The “strength of weak ties” among female baboons: fitness-related benefits of social bonds. Animal Behaviour, 126, 101106.Google Scholar
McGrew, W.C., Tutin, C.E.G., Collins, D.A. & File, S.K. (1989). Intestinal parasites of sympatric Pan troglodytes and Papio spp. at two sites: Gombe (Tanzania) and Mt. Assirik (Senegal). American Journal of Primatology, 17(2), 147155.Google Scholar
McGuire, M.T. (1974). The St. Kitts Vervet. New York: Karger.Google Scholar
McGuire, M.T. & Raleigh, M.J. (1985). Serotonin–behavior interactions in vervet monkeys. Psychopharmacology Bulletin, 21(3), 458463.Google Scholar
McKee, J.K., von Mayer, A. & Kuykendall, K.L. (2011). New species of Cercopithecoides from Haasgat, North West Province, South Africa. Journal of Human Evolution, 60(1), 8393.Google Scholar
McKinney, T. & Dore, K.M. (2018). The state of ethnoprimatology: its use and potential in today’s primate research. International Journal of Primatology, 119.Google Scholar
McNamara, J.M. & Houston, A.I. (1996). State-dependent life histories. Nature, 380, 215221.Google Scholar
McPhee, M.E. (2003). Generations in captivity increases behavioral variance, considerations for captive breeding and reintroduction programs. Biological Conservation, 115, 7177.Google Scholar
McPherson, M., Smith-Lovin, L. & Brashears, M.E. (2006). Social isolation in America: changes in core discussion networks over two decades. American Sociological Review, 71, 353375.Google Scholar
Medina, E. & Minchin, P. (1980). Stratification of δ13C values of leaves in Amazonian rain forests. Oecologia, 45, 377378.Google Scholar
Mellors, J.W., RinaldoJr., C.R., Gupta, P., White, R.M., Todd, J.A. & Kingsley, L.A. (1996). Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science, 272, 11671170.Google Scholar
Melnick, D.J. & Kidd, K.K. (1983). The genetic consequences of social group fission in a wild population of rhesus monkeys (Macaca mulatta). Behavioral Ecology and Sociobiology, 12(3), 229236.Google Scholar
Melnick, D.J. & Pearl, M.C. (1987). Cercopithecines in multimale groups: genetic diversity and population structure. In Smuts, B.B., Cheney, D.L., Seyfarth, R.M., Wrangham, R.W. & Struhsaker, T.T., eds., Primate Societies. Chicago: University of Chicago Press, pp. 121134.Google Scholar
Melnick, D.J., Jolly, C.J. & Kidd, K.K. (1984). The genetics of a wild population of rhesus monkeys (Macaca mulatta). I. Genetic variability within and between social groups. American Journal of Physical Anthropology, 63(4), 341360.Google Scholar
Menard, N., von Segesser, F., Scheffrahn, W.,Pastorini, J., Vallet, D., Gaci, B., Martin, R.D. & Gautier-Hion, A. (2001). Is male-infant caretaking related to paternity and/or mating activities in wild Barbary macaques (Macaca sylvanus)? Comptes Rendus de l’Academic des Sciences, 324(7), 601610.Google Scholar
Mendoza, S.P., Capitanio, J.P. & Mason, W.A. (2000). Chronic social stress: studies in non-human primates. In Moberg, G.P. & Mench, J.A., eds., Biology of Animal Stress: The Basic Principles and Implications for Animal Welfare. New York: CABI Publishing, pp. 227247.Google Scholar
Metcalfe, N.B. & Monaghan, P. (2001). Compensation for a bad start: grow now, pay later? Trends in Ecology & Evolution, 16, 254260.Google Scholar
Meyer, J.S. & Bowman, R.E. (1972). Rearing experience, stress and adrenocorticosteroids in the rhesus monkey. Physiology & Behavior, 8(2), 339343.Google Scholar
Michener, C.D. & Sokal, R.R. (1957). A quantitative approach to a problem of classification. Evolution, 11, 490499.Google Scholar
Milton, K. & May, M.L. (1976). Body weight, diet and home range area in primates. Nature, 259, 459462.Google Scholar
Milton, K. (1988). Foraging behavior and the evolution of primate cognition. In Whiten, A. & Byrne, R., eds., Machiavellian Intelligence, Social Expertise and the Evolution of Intellect in Monkeys, Apes and Humans. Oxford, UK: Oxford University Press, pp. 285305.Google Scholar
Mitani, J.C., Merriwether, D.A. & Zhang, C.B. (2000). Male affiliation, cooperation and kinship in wild chimpanzees. Animal Behaviour, 59(4), 885893.Google Scholar
Mitchell, G. & Tokunaga, D.H. (1976). Sex differences in nonhuman primate grooming. Behavioural Processes, 1, 335345.Google Scholar
Miththapala, S., Seidensticker, J. & O’Brien, S.J. (1996). Phylogeographic subspecies recognition in leopards (Panthera pardus): molecular genetic variation. Conservation Biology, 10(4), 11151132.Google Scholar
Mittermeier, R.A., Schwitzer, C., Rylands, A.B., Taylor, L., Chiozza, F., Williamson, E.A. & Wallis, J. (2012). Primates in Peril, The World’s Top 25 Most Endangered Primates 2012–2014. Bristol, UK: Conservation International.Google Scholar
Mittermeier, R.A., Wilson, D.E. & Rylands, A.B. (2013). Handbook of the Mammals of the World: Primates. Barcelona, Spain: Lynx Edicions.Google Scholar
Montgomerie, R. (2006). Analyzing colors. In Hill, G.E. & McGraw, K.J., eds., Bird Coloration Vol. 1: Mechanisms and Measurements. Cambridge, MA: Harvard University Press, pp. 90147.Google Scholar
Moore, J.P., Kitchen, S.G., Pugach, P. & Zack, J.A. (2004). The CCR5 and CXCR4 coreceptors – central to understanding the transmission and pathogenesis of human immunodeficiency virus type 1 infection. AIDS Research and Human Retroviruses, 20, 111126.Google Scholar
Moulin, S., Gerbault-Seureau, M., Dutrillaux, B. & Richard, F.A. (2008). Phylogenomics of African guenons. Chromosome Research, 16(5), 783799.Google Scholar
Muriuki, S.M.K., Murugu, R.K., Munene, E., Karere, G.M. & Chai, D.C. (1998). Some gastro-intestinal parasites of zoonotic (public health) importance commonly observed in old wold non-human primates in Kenya. Acta Tropica, 71(1), 7382.Google Scholar
Mutani, A., Rhynd, K. & Brown, G. (2003). A preliminary investigation on the gastrointestinal helminthes of the Barbados green monkey, Cercopithecus aethiops sabaeus. Revista do Instituto de Medicina Tropical de Sao Paolo, 45(4), 193195.Google Scholar
Mzilikazi, N., Masters, J.C. & Lovegrove, B.G. (2006). Lack of torpor in free-ranging southern lesser galagos, Galago moholi: ecological and physiological considerations. Folia Primatologica, 77, 465476.Google Scholar
Nakagawa, N. (1992). Distribution of affiliative behaviors among adult females within a group of wild patas monkeys in a nonmating, nonbirth season. International Journal of Primatology, 13, 7396.Google Scholar
Nakagawa, S. & Schielzeth, H. (2010). Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biological Reviews, 85(4), 935956.Google Scholar
Napier, P.H. (1981). Catalogue of Primates in the British Museum (Natural History) and Elsewhere in the British Isles, Part II: Family Cercopithecidae, Subfamily Cercopithecinae. London, UK: British Museum (Natural History).Google Scholar
Nee, S., Colegrave, N., West, S.A. & Grafen, A. (2005). The illusion of invariant quantities in life histories. Science, 309, 12361239.Google Scholar
Neel, J.V. (1962). Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”. American Journal of Human Genetics, 14, 353362.Google Scholar
Nei, M. (1972). Genetic distance between populations. American Naturalist, 106, 283292.Google Scholar
Nei, M. (1973) Analysis of genetic diversity in subdivided populations. Proceedings of the National. Academy of Sciences of the United States of America, 70, 33213323.Google Scholar
Newman, T.K., Fairbanks, L.A., Pollack, D. & Rogers, J. (2002). Effectiveness of human microsatellite loci for assessing paternity in a captive colony of vervets (Chlorocebus aethiops sabaeus). American Journal of Primatology, 56(4), 237243.Google Scholar
Niu, Y., Shen, B., Cui, Y. et al. (2014). Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 156, 836843.Google Scholar
Noe, R. & Laporte, M. (2014). Socio-spatial cognition in vervet monkeys. Animal Cognition, 17, 597607.Google Scholar
Novak, M.A. (2003). Self-injurious behavior in rhesus monkeys: new insights into its etiology, physiology, and treatment. American Journal of Primatology, 59(1), 319.Google Scholar
Nowack, J., Mzilikazi, N. & Dausmann, K.H. (2010). Torpor on demand: heterothermy in the non-lemur primate Galago moholi. PLoS One, 5, e10797.Google Scholar
Nozawa, K., Shotake, T., Kawamoto, Y. & Tanabe, Y. (1982). Population genetics of Japanese monkeys, II. Blood protein polymorphisms and population structure. Primates, 23 (2), 252271.Google Scholar
Nozawa, K., Shotake, T., Minezawa, M., Kawamoto, Y., Hayasaka, K., Kawamoto, S. & Ito, S. (1991). Population genetics of Japanese monkeys, III. Ancestry and differentiation of local populations. Primates, 32(4), 411435.Google Scholar
Nunn, C.L. (1999). The number of males in primate social groups: a comparative test of the sociological model. Behavioral Ecology and Sociobiology, 46(1), 113.Google Scholar
Nunn, C.L., Thrall, P.H., Leendertz, F.H. & Boesch, C. (2011). The spread of fecally transmitted parasites in socially-structured populations. PLoS One, 6(6), e21677.Google Scholar
Oates, J.F. (1988). The distribution of Cercopithecus monkeys in West African forests. In Gautier-Hion, A., Bourliere, F., Gautier-Hion, J.P. & Kingdon, J., eds., A Primate Radiation: Evolutionary Biology of the African Guenons. Cambridge: Cambridge University Press, pp. 79103.Google Scholar
Ober, C., Olivier, T.J. & Buettner-Janusch, J. (1978). Carbonic anhydrase heterozygosity and FST distributions in Kenyan baboon troops. American Journal of Physical Anthropology, 48, 95100.Google Scholar
Ober, C., Olivier, T.J. (1980). Genetic aspects of migration in a rhesus monkey population. Journal of Human Evolution, 9, 187203.Google Scholar
Obregon-Tito, A.J., Tito, R.Y., Metcalf, J.L. et al. (2015). Subsistence strategies in traditional societies distinguish gut microbiomes. Nature Communications, 6, 6505.Google Scholar
O'Brien, S.J. & Mayr, E. (1991). Bureaucratic mischief: recognizing endangered species and subspecies. Science, 251(4998), 11871188.Google Scholar
Ockerse, T. (1959). The anatomy of the teeth of the vervet monkey. Journal of the Dental Association of South Africa, 14, 209226.Google Scholar
Ogawa, H. & Takahashi, H. (2003). Triadic positions of Tibetan macaques huddling at a sleeping site. International Journal of Primatology, 24, 591606.Google Scholar
Okoye, A., Meier-Schellersheim, M., Brenchley, J.M. et al. (2007). Progressive CD4+ central memory T cell decline results in CD4+ effector memory insufficiency and overt disease in chronic SIV infection. Journal of Experimental Medicine, 204, 21712185.Google Scholar
Olivier, T.J., Buettner-Janusch, J. & Buettner-Janusch, V. (1974). Carbonic anhydrase isoenzymes in nine troops of Kenya baboons, Papio cynocephalus (Linnaeus 1776). American Journal of Physical Anthropology, 41, 175189.Google Scholar
Olivier, T.J., Coppenhaver, D.H. & Steinberg, A.G. (1986). Distribution of immunoglobulin allotypes among local populations of Kenya olive baboons. American Journal of Physical Anthropology, 70(1), 2938.Google Scholar
Olupot, W. & Waser, P.M. (2001). Activity patterns, habitat use and mortality risks of mangabey males living outside social groups. Animal Behavior, 61, 2271235.Google Scholar
Ostner, J. & Schülke, O. (2018). Linking sociality to fitness in primates: a call for mechanisms. Advances in the Study of Behavior, 50, 127175.Google Scholar
Otsyula, M.G., Gettie, A., Suleman, M., Tarara, R., Mohamed, I. & Marx, P. (1995). Apparent lack of vertical transmission of simian immunodeficiency virus (SIV) in naturally infected African green monkeys, Cercopithecus aethiops. Annals of Tropical Medicine and Parasitology, 89, 573576.Google Scholar
Ou, J., Carbonero, F., Zoetendal, E.G., DeLaney, J.P., Wang, M., Newton, K., Gaskins, H.R. & O’Keefe, S.J.D. (2013). Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African–Americans. American Journal of Clinical Nutrition, 98(1), 111120.Google Scholar
Pahl, L., Schubert, S., Skawran, B., Sandbothe, M., Schmidtke, J. & Stuhrmann, M. (2013). 1,25-Dihydroxyvitamin D decreases HTRA1 promoter activity in the rhesus monkey – a plausible explanation for the influence of vitamin D on age-related macular degeneration? Experimental Eye Research, 116, 234239.Google Scholar
Paiardini, M., Cervasi, B., Reyes-Aviles, E. et al. (2011). Low levels of SIV infection in sooty mangabey central memory CD4+ T cells are associated with limited CCR5 expression. Nature Medicine, 17, 830836.Google Scholar
Palesch, D., Bosinger, S.E., Tharp, G.K. et al. (2018). Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host. Nature, 553(7686), 7781.Google Scholar
Pampush, J.D. (2010). Human food access and its effects on South African vervet body mass. MSc thesis. Milwaukee, WI: University of Wisconsin-Milwaukee.Google Scholar
Pandrea, I. & Apetrei, C. (2010). Where the wild things are, pathogenesis of SIV infection in African nonhuman primate hosts. Current HIV/AIDS Report, 7, 2836.Google Scholar
Pandrea, I., Apetrei, C., Dufour, J. et al. (2006). Simian immunodeficiency virus (SIV) SIVagm.sab infection of Caribbean African green monkeys: new model of the study of SIV pathogenesis in natural hosts. Journal of Virology, 80, 48584867.Google Scholar
Pandrea, I., Apetrei, C., Gordon, S. et al. (2007). Paucity of CD4+CCR5+ T cells is a typical feature of natural SIV hosts. Blood, 109, 10691076.Google Scholar
Pandrea, I., Gaufin, T., Brenchley, J.M. et al. (2008). Cutting edge, experimentally induced immune activation in natural hosts of simian immunodeficiency virus induces significant increases in viral replication and CD4+ T cell depletion. Journal of Immunology, 181, 66876691.Google Scholar
Pandrea, I.V., Gautam, R., Ribeiro, R.M. et al. (2007). Acute loss of intestinal CD4+ T cells is not predictive of simian immunodeficiency virus virulence. Journal of Immunology, 179, 30353046.Google Scholar
Pandrea, I., Kornfeld, C., Ploquin, M.J.I. et al. (2005). Impact of viral factors on very early in vivo replication profiles in SIVagm-infected African green monkeys. Journal of Virology, 79, 62496259.Google Scholar
Pandrea, I., Onanga, R., Rouquet, P., Bourry, O., Ngari, P., Wickings, E.J., Roques, P. & Apetrei, C. (2001). Chronic SIV infection ultimately causes immunodeficiency in African non-human primates. AIDS, 15, 24612462.Google Scholar
Pandrea, I., Parrish, N.F., Raehtz, K. et al. (2012). Mucosal simian immunodeficiency virus transmission in African green monkeys, susceptibility to infection is proportional to target cell availability at mucosal sites. Journal of Virology, 86, 41584168.Google Scholar
Pandrea, I., Ribeiro, R.M., Gautam, R. et al. (2008). Simian immunodeficiency virus SIVagm dynamics in African green monkeys. Journal of Virology, 82, 37133724.Google Scholar
Pandrea, I., Silvestri, G. & Apetrei, C. (2009). AIDS in African nonhuman primate hosts of SIVs: a new paradigm of SIV infection. Current HIV Research, 6, 5772.Google Scholar
Pandrea, I., Sodora, D.L., Silvestri, G. & Apetrei, C. (2008). Into the wild, simian immunodeficiency virus (SIV) infection in natural hosts. Trends in Immunology, 29, 419428.Google Scholar
Parker, K.J., Rainwater, K.L., Buckmaster, C.L., Schatzberg, A.F., Lindley, S.E. & Lyons, D.M. (2007). Early life stress and novelty seeking behavior in adolescent monkeys. Psychoneuroendocrinology, 32, 785–92.Google Scholar
Pasternak, H., Brown, L.R., Kienzle, S., Fuller, A., Barrette, L. & Henzi, S.P. (2013). Population ecology of vervet monkeys in a high latitude, semi-arid riparian woodland. Koedoe, 55(1), 10781086.Google Scholar
Pawlak, C.R., Ho, Y.J., & Schwarting, R.K. (2008). Animal models of human psychopathology based on individual differences in novelty-seeking and anxiety. Neuroscience & Biobehavioral Reviews, 32(8), 15441568.Google Scholar
Pedersen, N., Lowenstine, L., Marx, P. et al. (1986). The causes of false-positives encountered during the screening of old-world primates for antibodies to human and simian retroviruses by ELISA. Journal of Virological Methods, 14, 213228.Google Scholar
Pedersen, A.B., Altizer, S., Poss, M., Cunningham, A.A. & Nunn, C.L. (2005). Patterns of host specificity and transmission among parasites of wild primates. International Journal of Parasitology, 35(6), 647657.Google Scholar
Perry, J.R., Day, F. & Elks, C.E. (2014). Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature, 514, 9297.Google Scholar
Perry, G.H., Marioni, J.C., Melsted, P. & Gilad, Y. (2010). Genomic-scale capture and sequencing of endogenous DNA from feces. Molecular Ecology, 19, 53325344.Google Scholar
Petrželková, K.J., Hasegawa, H., Appleton, C.C., Huffman, M.A., Archer, C.E., Moscovice, L.R., Mapua, M.I., Singh, J. & Kaur, T. (2010). Gastrointestinal parasites of indigenous and introduced primate species of Rubondo Island National Park, Tanzania. International Journal of Primatology, 31(5), 920936.Google Scholar
Phillips-Conroy, J.E. & Jolly, C.J. (1988). Dental eruption schedules of wild and captive baboons. American Journal of Primatology, 15(1), 1729.Google Scholar
Philips-Conroy, J.E., Jolly, C.J., Nystrom, P. & Hemmalin, H.A. (1992). Migration of male hamadryas baboons into anubis groups in the Awash National Park, Ethiopia. International Journal of Primatology, 13(4), 455476.Google Scholar
Phillips-Conroy, J.E., Jolly, C.J., Petros, B., Allan, J.S. & Desrosiers, R.C. (1994). Sexual transmission of SIVagm in wild grivet monkeys. Journal of Medical Primatology, 23, 17.Google Scholar
Pickford, M. (1988). Habitat and locomotion in Miocene cercopithecoids. In Gautier-Hion, A., Bourliere, F., Gautier-Hion, J.P. & Kingdon, J., eds., A Primate Radiation: Evolutionary Biology of the African Guenons. Cambridge: Cambridge University Press, pp. 3553.Google Scholar
Pocock, R.I. (1907). A monographic revision of the monkeys of the genus Cercopithecus. Proceedings Zoological Society London, 1, 677746.Google Scholar
Poirier, F.E. (1972). The St Kitts green monkeys (Cercopithecus aethiops sabaeus): ecology, population dynamics, and selected behavioral traits. Folia Primatologica, 17, 2055.Google Scholar
Ponsa, M., Egozcue, J. & Garcia, M. (1994). The phylogeny of guenons using PAUP analysis of cytogenetic characters. In Thierry, B., Anderson, J.R., Roeder, J.J. & Herrenschmidt, N., eds., Current Primatology, Vol. I, Ecology and Evolution. Strasbourg, France: University Louis Pasteur, pp. 387392.Google Scholar
Popp, J.L. (1983). Ecological determinism in the life histories of baboons. Primates, 24(2), 198210.Google Scholar
Potts, R. (1998). Variability selection in hominid evolution. Evolutionary Anthropology: Issues, News, and Reviews, 7, 8196.Google Scholar
Prado-Martinez, J., Sudman, P.H. & Kidd, J.M. (2013). Great ape genetic diversity and population history. Nature, 499 (7459), 471–5.Google Scholar
Prentice, A.M., Hennig, B.J. & Fulford, A.J. (2008). Evolutionary origins of the obesity epidemic: natural selection of thrifty genes or genetic drift following predation release? International Journal of Obesity, 32, 16071610.Google Scholar
Promislow, D.E.L. & Harvey, P.H. (1990). Living fast and dying young: a comparative analysis of life-history variation among mammals. Journal of Zoology, 220(3), 417437.Google Scholar
Pruetz, J.D. & Bertolani, P. (2007). Savanna chimpanzees, Pan troglodytes verus, hunt with tools. Current Biology, 17(5), 412417.Google Scholar
Pruetz, J.D. (2009). Chimpanzee (Pan troglodytes verus) behavioral responses to stresses associated with living in a savanna–mosaic environment, implications for hominin adaptations to open habitats. PaleoAnthropology, 252262.Google Scholar
Pruetz, J.D. & Isbell, L.A. (2000). Correlations of food distribution and patch size with agonistic interactions in female vervets (Chlorocebus aethiops) and patas monkeys (Erythrocebus patas) living in simple habitats. Behavioral Ecology and Sociobiology, 49, 3847.Google Scholar
Prum, R.O. & Torres, R.H. (2004). Structural colouration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays. Journal of Experimental Biology, 207, 21572172.Google Scholar
Pulliam, H.R. (1973). On the advantages of flocking. Journal of Theoretical Biology, 38, 419422.Google Scholar
Pusey, A.E., Oehlert, G.W., Williams, J.M. & Goodall, J. (2005). Influence of ecological and social factors on body mass of wild chimpanzees. International Journal of Primatology, 26(1), 331.Google Scholar
Pusey, A. & Packer, C. (1987). Dispersal and philopatry. In Smuts, B., Cheney, D., Seyfarth, R., Wrangham, R. & Struhsaker, T., eds., Primate Societies. Chicago, IL: University of Chicago Press, pp. 250266.Google Scholar
Raaum, R.L., Sterner, K.N., Noviello, C.M., Stewart, C.B. & Disotell, T.R. (2005). Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. Journal of Human Evolution, 48(3), 237257.Google Scholar
Rainwater, D.L., Cox, L.A., Rogers, J., VandeBerg, J.L. & Mahaney, M.C. (2009). Localization of multiple pleiotropic genes for lipoprotein metabolism in baboons. Journal of Lipid Research, 50, 14201428.Google Scholar
Raleigh, M.J. & McGuire, M.T. (1989). Female influences on male dominance in captive vervet monkeys, Cercopithecus aethiops sabaeus. Animal Behavior, 38, 5967.Google Scholar
Raleigh, M.J. (1990). Social influences on endocrine function in male vervet monkeys. In Ziegler, T.E. & Bercovitch, F.B., eds., Socioendocrinology of Primate Reproduction. New York: Wiley-Liss, pp. 95111.Google Scholar
Rapkin, A.J., Pollack, D.B., Raleigh, M.J., Stone, B. & McGuire, M.T. (1995). Menstrual cycle and social behavior in vervet monkeys. Psychoneuroendocrinology, 20(3), 289297.Google Scholar
Ravel, J., Gajer, P., Abdo, Z. et al. (2011). Vaginal microbiome of reproductive-age women. Proceedings of the National Academy of Science of the United States of America, 108, 46804687.Google Scholar
Ravosa, M.J. & Hylander, W.L. (1993). Relative growth of the limbs and trunk in sifakas: heterochronic, ecological, and functional considerations. American Journal of Physical Anthropology, 92(4), 499520.Google Scholar
Raz, A., Vaadia, E. & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. Journal of Neuroscience, 20, 85598571.Google Scholar
Read, A.F. & Harvey, P.H. (1989). Life history differences among the eutherian radiations. Journal of Zoology, 219(2), 329353.Google Scholar
Reif, A. & Lesch, K.P. (2003). Toward a molecular architecture of personality. Behavioral Brain Research, 139, 120.Google Scholar
Reimers, M., Schwarzenberger, F. & Preuschoft, S. (2007). Rehabilitation of research chimpanzees: stress and coping after long-term isolation. Hormones and Behavior, 51(3), 428435.Google Scholar
Reinhardt, V. & Garza-Schmidt, M. (2000). Daily feeding enrichment for laboratory macaques: inexpensive options. Laboratory Primate Newsletter, 39 (2), 810.Google Scholar
Renevey, N., Bshary, R. & van de Waal, E. (2013). Philopatric vervet monkey females are the focus of social attention rather independently of rank. Behaviour, 150, 599615.Google Scholar
Rensch, B. (1950). Die abhangigkeit der relativen sexualdifferenz von der körpergroße. Bonner Zoologische Beiträge, 1, 5869.Google Scholar
Reznick, D., Bryant, M.J. & Bashey, F. (2002). r- and K-selection revisited: the role of population regulation in life-history evolution. Ecology, 83, 15091520.Google Scholar
Reznick, D., Nunney, L. & Tessler, A. (2000). Big houses, big cars, superfleas and the costs of reproduction. TREE, 15(10), 421425.Google Scholar
Richard, A.F. (1985). Primates in Nature. New York: W.H. Freeman and Company.Google Scholar
Richard, A.F., Dewar, R.E., Schwartz, M. & Ratsirarson, J. (2000). Mass change, environmental variability and female fertility in wild Propithecus verrauxi. Journal of Human Evolution, 39(4), 381391.Google Scholar
Richerson, P. & Boyd, R. (2005). Not by Genes Alone. Chicago: Chicago University Press.Google Scholar
Riddick, N.E., Wu, F., Matsuda, K. et al. (2015). Simian immunodeficiency virus SIVagm efficiently utilizes non-CCR5 entry pathways in African green monkey lymphocytes, potential role for GPR15 and CXCR6 as viral coreceptors. Journal of Virology, 90, 23162331.Google Scholar
Riley, E.P. (2006). Ethnoprimatology: Towards reconciliation of biological and cultural anthropology. Ecological and Environmental Anthropology, 2(2), 110.Google Scholar
Riley, E.P. (2007). The human–macaque interface: conservation implications of current and future overlap and conflict in Lore Lindu National Park, Sulawesi, Indonesia. American Anthropologist, 109, 473484.Google Scholar
Riley, E.P. (2010). The importance of human–macaque folklore for conservation in Lore National Park, Sulawesi, Indonesia. Oryx, 44(2), 235240.Google Scholar
Riley, E.P. & Ellwanger, A.L. (2013). Methods in ethnoprimatology, exploring the human–non-human primate interface. In Sterling, E.J., Bynum, N. & Blair, M.E., eds., Primate Ecology and Conservation, A Handbook of Techniques. Oxford, UK: Oxford University Press, pp. 128150.Google Scholar
Riley, E.P. & Priston, N.E. (2010). Macaques in farms and folklore: exploring the human–nonhuman primate interface in Sulawesi, Indonesia. American Journal of Primatology, 72(10), 848854.Google Scholar
Rodman, P.S. (1988). Resources and group sizes in primates. In Slobodchikoff, C.N., ed., The Ecology of Social Behavior. New York: Academic Press, pp. 83108.Google Scholar
Rodríguez, R.L. & Al-Wathiqui, N. (2012). Causes of variation in sexual allometry: a case study with the mating signals and genitalia of Enchenopa treehoppers (Hemiptera membracidae). Ethology Ecology & Evolution, 24(2), 187197.Google Scholar
Rodríguez, R.L., Araya-Salas, M., Gray, D.A., Reichert, M.S., Symes, L.B., Wilkins, M.R., Safran, R.J. & Höbel, G. (2015a). How acoustic signals scale with individual body size, common trends across diverse taxa. Behavioral Ecology, 26, 168177.Google Scholar
Rodríguez, R. L., Cramer, J.D., Schmitt, C.A. et al. (2015b). Adult age confounds estimates of static allometric slopes in a vertebrate. Ethology, Ecology & Evolution, 27, 412431.Google Scholar
Rodríguez, R.L., Cramer, J.D., Schmitt, C.A., Gaetano, T.J., Grobler, J.P., Freimer, N.B. & Turner, T.R. (2015c). The static allometry of sexual and non-sexual traits in vervet monkeys. Biological Journal of the Linnean Society, 114, 527537.Google Scholar
Roederer, M. (1995). T-cell dynamics of immunodeficiency. Nature Medicine, 1, 621622.Google Scholar
Roff, D.A. (2002). Life History Evolution. Sunderland, MA: Sinauer Associates, Inc.Google Scholar
Rogers, J.A. (1989). Genetic structure and microevolution in a population of Tanzanian yellow baboons (Papio hamadryas cynocephalus). PhD thesis. New Haven, CT: Yale University.Google Scholar
Rogers, J. (2000). Molecular genetic variation and population structure in Papio baboons. In Whitehead, P.F. & Jolly, C.J., eds., Old World Monkeys. Cambridge: Cambridge University Press, pp. 5776.Google Scholar
Rogers, J. & Gibbs, R.A. (2014). Comparative primate genomics: emerging patterns of genome content and dynamics. Nature Reviews Genetics, 15, 347359.Google Scholar
Rogers, J. & Kidd, K.K. (1993). Nuclear DNA polymorphisms in a wild population of yellow baboons (Papio hamadryas cynocephalus) from Mikumi National Park, Tanzania. American Journal of Physical Anthropology, 90(4), 477486.Google Scholar
Romero, R., Hassan, S.S., Gajer, P. et al. (2014). The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome, 2, 4.Google Scholar
Rose, M.R. (1985). Life history evolution with antagonistic pleiotropy and overlapping generations. Theoretical Population Biology, 28(3), 342358.Google Scholar
Rothman, J.M., Chapman, C.A., Twinomugisha, D., Wasserman, M.D., Lambert, J.E. & Goldberg, T. (2008). Measuring physical traits of primates remotely, the use of parallel lasers. American Journal of Primatology, 70, 11911195.Google Scholar
Rowe, L. & Houle, D. (1996). The lek paradox and the capture of genetic variance by condition dependent traits. Proceedings of the Royal Society of London B: Biological Sciences, 263(1375), 14151421.Google Scholar
Rowe, N. (1996). The Pictorial Guide to the Living Primates. Charlestown, RI: Pogonias Press.Google Scholar
Rowell, T.E. (1988). The social system of guenons, compared with baboons, macaques and mangabeys. In Gautier-Hin, A., Bourliere, F., Gautier, J.P. & Kingdon, J., eds., A Primate Radiation: Evolutionary Biology of the African Guenons. Cambridge: Cambridge University Press, pp. 439451.Google Scholar
Rowell, T.E. & Olson, D.K. (1983). Alternative mechanisms of social organization in monkeys. Behaviour, 86, 3154.Google Scholar
Rowell, T.E. & Richards, S.M. (1979). Reproductive strategies of some African monkeys. Journal of Mammalogy, 60, 5869.Google Scholar
Rukstalis, M. & French, J.A. (2004). Exposure to conspecific vocalizations modulates stress responses in marmosets (Callithrix kuhlii). American Journal of Primatology, 60(S1), 129130.Google Scholar
Rukstalis, M. (2004). Conspecific vocal signals moderate urinary cortisol excretion in isolated marmosets (Callithrix kuhlii). American Journal of Primatology, 61(S1), 80.Google Scholar
Rutenberg, G.W., CoelhoJr., A.M., Lewis, D.S., Carey, K.D. & McGillJr., H.C. (1987). Body composition in baboons, evaluating a morphometric method. American Journal of Primatology, 12, 275285.Google Scholar
Ruvolo, M. (1988). Genetic evolution in the African guenons. In Gautier-Hion, A., Bourliere, F., Gautier-Hion, J.P. & Kingdon, J., eds., A Primate Radiation: Evolutionary Biology of the African Guenons. Cambridge: Cambridge University Press, pp. 127139.Google Scholar
Ryan, S. J., Brashares, J. S., Walsh, C., Milbers, K., Kilroy, C. & Chapman, C. A. (2012). A survey of gastrointestinal parasites of olive baboons (Papio anubis) in human settlement areas of Mole National Park, Ghana. Journal of Parasitology, 98(4), 885888.Google Scholar
Sackett, G.P., Bowman, R.E., Meyer, J.S., Tripp, R.L. & Grady, S.S. (1973). Adrenocortical and behavioral reactions by differentially raised rhesus monkeys. Physiological Psychology, 1, 209212.Google Scholar
Sade, D.S. & Hildrech, R.W. (1965). Notes on the green monkey (Cercopithecus aethiops sabaeus) on St Kitts, West Indies. Caribbean Journal of Science, 5, 6781.Google Scholar
Sadlier, R.M.F.S. (1969). The Ecology of Reproduction in Wild and Domestic Mammals. London, UK: Methuen & Co Ltd.Google Scholar
Saj, T.L. & Sicotte, P. (2007). Predicting the competitive regime of female Colobus vellerosus from the distribution of food resources. International Journal of Primatology, 28, 315336.Google Scholar
Santiago, M.L., Bibollet-Ruche, F., Gross-Camp, N. et al. (2003). Noninvasive detection of simian immunodeficiency virus infection in a wild-living l’hoest’s monkey (Cercopithecus Ihoesti). AIDS Research and Human Retroviruses, 19, 11631166.Google Scholar
Santiago, M.L., Range, F., Keele, B.F. et al. (2005). Simian immunodeficiency virus infection in free-ranging sooty mangabeys (Cercocebus atys atys) from the Tai Forest, Cote d’Ivoire, implications for the origin of epidemic human immunodeficiency virus type 2. Journal of Virology, 79, 1251512527.Google Scholar
Santiago, M.L., Rodenburg, C.M., Kamenya, S. et al. (2002). SIVcpz in wild chimpanzees. Science, 295, 465.Google Scholar
Santos, L.R., Pearson, H.M., Spaepen, G.M., Tsao, F. & Hauser, M.D. (2006). Probing the limits of tool competence: experiments with two non-tool-using species (Cercopithecus aethiops and Saguinus oedipus). Animal Cognition, 9, 94109.Google Scholar
Sapolsky, R.M. (2005). The influence of social hierarchy on primate health. Science, 308, 648652.Google Scholar
Sargis, E.J., Terranova, C.J. & Gebo, D.L. (2008). Evolutionary morphology of the guenon postcranium and its taxonomic implication. In Sargis, E.J. & Dagosto, M., eds., Mammalian Evolutionary Morphology. Dordrecht, The Netherlands: Springer, pp. 361372.Google Scholar
Schillaci, M.A., Castellini, M.J., Stricker, C.A. et al. (2014). Variation in hair δ13C and δ15N values in long-tailed macaques (Macaca fascicularis) from Singapore. Primates, 55, 2534.Google Scholar
Schillaci, M.A., Jones-Engel, L., Lee, B.P.Y.H. et al. (2007). Morphology and somatometric growth of long-tailed macaques (Macaca fascicularis fascicularis) in Singapore. Biological Journal of the Linnean Society, 92, 675694.Google Scholar
Schillaci, M.A. & Stallmann, R.R. (2005). Ontogeny and sexual dimorphism in booted macaques (Macaca ochreata). Journal of Zoology, 267, 1929.Google Scholar
Schmitt, C.A., Service, S.K., Jasinska, A.J., Dyer, T.D., Jorgensen, M.J., Cantor, R.M., Weinstock, G.M., Blangero, J., Kaplan, J.R. & Freimer, N.B. (2018). Obesity and obesogenic growth are both highly heritable and modified by diet in a nonhuman primate model, the African green monkey (Chlorocebus aethiops sabaeus). International Journal of Obesity, 42(4), 765774.Google Scholar
Schnorr, S.L., Candela, M., Rampelli, S. et al. (2014). Gut microbiome of Hadza hunter–gatherers. Nature Communications, 5, 3654.Google Scholar
Schoene, C.U.R. & Brend, S.A. (2002). Primate sanctuaries – a delicate conservation approach. South African Journal of Wildlife Research, 32(2), 109113.Google Scholar
Schoeninger, M.J. & DeNiro, M.J. (1984). Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta, 48, 625639.Google Scholar
Schoeninger, M.J., Moore, J. & Sept, J.M. (1999). Subsistence strategies of two “savanna” chimpanzee populations, the stable isotope evidence. American Journal of Primatology, 49, 297314.Google Scholar
Schuett, W., Tregenza, T. & Dall, S.R.X. (2010). Sexual selection and animal personality. Biological Reviews, 85, 217246.Google Scholar
Schülke, O., Bhagavatula, J., Vigilant, L. & Ostner, J. (2010). Social bonds enhance reproductive success in male macaques. Current Biology, 20, 22072210.Google Scholar
Schulte-Hostedde, A.I., Kuula, S., Martin, C., Schank, C.C.M. & Lesbarrères, D. (2011). Allometry and sexually dimorphic traits in male anurans. Journal of Evolutionary Biology, 24, 11541159.Google Scholar
Schulte-Hostedde, A.I., Zinner, B., Millar, J.S. & Hickling, G.J. (2005). Restitution of mass–size residuals: validating body condition indices. Ecology, 86(1), 155163.Google Scholar
Schurr, M.R., Fuentes, A., Luecke, E., Cortes, J. & Shaw, E. (2012). Intergroup variation in stable isotope ratios reflects anthropogenic impact on the Barbary macaques (Macaca sylvanus) of Gibraltar. Primates, 53, 3140.Google Scholar
Schwarz, E. (1926). Die meerkatzen der Cercopithecus aethiops-gruppe. Zeitschrift für Säugetierkunde, 1, 2847.Google Scholar
Schwartz, S.M. & Kemnitz, J.W. (1992). Age- and gender-related changes in body size, adiposity, and endocrine and metabolic parameters in free-ranging rhesus macaques. American Journal of Physical Anthropology, 89(1), 109121.Google Scholar
Schwartz, S.M., Wilson, M.E., Walker, M.L. & Collins, D.C. (1988). Dietary influences on growth and sexual maturation in premenarchial rhesus monkeys. Hormones and Behavior, 22(2), 231251.Google Scholar
Selander, R.K. & Kaufman, D.W. (1973). Genic variability and strategies of adapatation in animals. Proceedings of the National Academy of Sciences of the United States of America, 70(6), 18751877.Google Scholar
Semple, S. & Higham, J.P. (2013). Primate signals: current issues and perspectives. American Journal of Primatology, 75(7), 613620.Google Scholar
Šešelj, M. (2013). Relationship between dental development and skeletal growth in modern humans and its implications for interpreting ontogeny in fossil hominins. American Journal of Physical Anthropology, 150, 3847.Google Scholar
Setchell, J.M., Charpentier, M.J.E., Bedjabaga, I.B., Reed, P., Wickings, E.J. & Knapp, L.A. (2006). Secondary sexual characters and female quality in primates. Behavioral Ecology and Sociobiology, 61, 305315.Google Scholar
Setchell, J.M., Lee, P.C., Wickings, E.J. & Dixon, A.F. (2001). Growth and ontogeny of sexual size dimorphism in the mandrill (Mandrillus sphinx). American Journal of Physical Anthropology, 115, 349–60.Google Scholar
Seyfarth, R.M. (1977). A model of social grooming among adult female monkeys. Journal of Theoretical Biology, 65, 671698.Google Scholar
Seyfarth, R.M. (1980). The distribution of grooming and related behaviors among adult female vervet monkeys. Animal Behavior, 28, 798813.Google Scholar
Seyfarth, R.M., Cheney, D.L. & Marler, P. (1980a). Monkey responses to three different alarm calls, evidence of predator classification and semantic communication. Science, 210, 801803.Google Scholar
Seyfarth, R.M., Cheney, D.L. (1980b). Vervet monkey alarm calls: Semantic communication in a free-ranging primate. Animal Behaviour, 28, 10701094.Google Scholar
Seyfarth, R.M. & Cheney, D.L. (1984). Grooming, alliances and reciprocal altruism in vervet monkeys. Nature, 308(5959), 541543.Google Scholar
Shannon, C., Champoux, M. & Suomi, S.J. (1998). Rearing condition and plasma cortisol in rhesus monkey infants. American Journal of Primatology, 46(4), 311321.Google Scholar
Shannon, C., Schwandt, M.L., Champoux, M., Shoaf, S.E., Suomi, S.J., Linnoila, M. & Higley, J.D. (2005). Maternal absence and stability of individual differences in CSF 5-HIAA concentrations in rhesus monkey infants. American Journal of Psychiatry, 162, 16581664.Google Scholar
Sharp, P.M. & Hahn, B.H. (2011). Origins of HIV and the AIDS pandemic. Cold Spring Harbor Perspectives in Medicine, 1, a006841.Google Scholar
Sharp, P.M., Bailes, E., Gao, F., Beer, B.E., Hirsch, V.M. & Hahn, B.H. (2000). Origins and evolution of AIDS viruses, estimating the time-scale. Biochemical Society Transactions, 28, 275282.Google Scholar
Shea, B.T. (1986). Ontogenetic approaches to sexual dimorphism in anthropoids. Human Evolution, 1, 97110.Google Scholar
Shelley, E.L. & Blumstein, D.T. (2005). The evolution of vocal alarm communication in rodents. Behavioral Ecology, 16, 169177.Google Scholar
Shimada, M.K. (2000). Geographic distribution of mitochondrial DNA variations among grivet (Cercopithecus aethiops aethiops) populations in central Ethiopia. International Journal of Primatology, 21(1), 113129.Google Scholar
Shimada, M.K. & Shotake, T. (1997). Genetic variation of blood proteins within and between local populations of grivet monkey (Cercopithecus aethiops aethiops) in central Ethiopia. Primates, 38(4), 399414.Google Scholar
Shimada, M.K., Terao, K. & Shotake, T. (2002). Mitochondrial sequence diversity within a subspecies of savanna monkeys (Cercopithecus aethiops) is similar to that between subspecies. Journal of Heredity, 93(1), 918.Google Scholar
Shine, R. (1988). The evolution of large body size in females: a critique of Darwin’s “fecundity advantage” model. American Naturalist, 131, 124131.Google Scholar
Shingleton, A.W., Frankino, W.A., Flatt, T., Nijhout, H.F. & Emlen, D.J. (2007). Size and shape, the developmental regulation of static allometry in insects. BioEssays, 29, 536548.Google Scholar
Shotake, T. & Nozawa, K. (1984). Blood protein variations in baboons. II. Genetic variability within and among herds of gelada baboons in the central Ethiopian plateau. Journal of Human Evolution, 13(3), 265274.Google Scholar
Shultz, S., Noë, R., McGraw, W.S. & Dunbar, R.I.M. (2004). A community-level evaluation of the impact of prey behavioural and ecological characteristics on predator diet composition. Proceedings of the Royal Society London B, 271, 725732.Google Scholar
Sigg, H.H., Stolba, A., Abegglen, J.J. & Dasser, V. (1982). Life history of hamadryas baboons: physical development, infant mortality, reproductive parameters and family relationships. Primates, 23, 473487.Google Scholar
Sih, A. & Bell, A.M. (2008). Insights for behavioral ecology from behavioral syndromes. Advances in the Study of Behavior, 38, 227281.Google Scholar
Silk, J.B. (2007a). Social components of fitness in primate groups. Science, 317, 13471351.Google Scholar
Silk, J.B. (2007b). The adaptive value of sociality in mammalian groups. Philosophical Transactions of the Royal Society B, Biological Sciences, 362, 539599.Google Scholar
Silk, J.B., Alberts, S.C. & Altmann, J. (2003). Social bonds of female baboons enhance infant survival. Science, 302, 12311234.Google Scholar
Silk, J.B., Beehner, J.C., Bergman, T.J., Crockford, C., Engh, A.L., Moscovice, L.R., Wittig, R.M., Seyfarth, R.M. & Cheney, D.L. (2009). The benefits of social capital: close social bonds among female baboons enhance offspring survival. Proceedings of the Royal Society B, 276, 30993104.Google Scholar
Smith, C.C. (1978). Feeding behaviour and social organization in howling monkeys. In Clutton-Brock, T.H., ed., Primate Ecology: Studies of Feeding and Ranging Behaiour in Lemurs, Monkeys and Apes. New York, NY: Academic Press, pp. 97126.Google Scholar
Smith, C.C. & Fretwell, S.D. (1974). The optimal balance between size and number of offspring. The American Naturalist, 108(962), 499506.Google Scholar
Smith, B.R. & Blumstein, D.T. (2008). Fitness consequences of personality: a meta analysis. Behavioral Ecology, 19(2), 448455.Google Scholar
Smuts, B.B. & Smuts, R.W. (1993). Male aggression and sexual coercion of females in nonhuman primates and other mammals: evidence and theoretical implications. Advances in the Study of Behavior, 22, 163.Google Scholar
Smuts, B.B., Cheney, D.L., Seyfarth, R.M. & Wrangham, R.W. (1987). Primate Societies. Chicago: University of Chicago Press.Google Scholar
Sokal, R.R. & Rohlf, F.J. (1981). Biometry: The Principles and Practice of Statistics in Biological Research, 2nd edn. New York: W.H. Freeman and Company.Google Scholar
Spitze, K. (1991). Chaoborus predation and life-history evolution in Daphnia pulex: temporal pattern of population diversity, fitness, and mean life history. Evolution, 45, 8292.Google Scholar
Sponsel, L.E. (1997). The human niche in Amazonia, explorations in ethnoprimatology. In Kinzey, W.G., ed., New World Primates. New York: Holt, Rinehart and Winston, pp. 111159.Google Scholar
Sponheimer, M., Loudon, J.E., Codron, D., Howells, M.E., Pruetz, J.D., Codron, J., de Ruiter, D.J. & Lee-Thorp, J.A. (2006). Do “savanna” chimpanzees consume C4 resources? Journal of Human Evolution, 51, 128133.Google Scholar
Sprague, D. (2002). Monkeys in the backyard: encroaching wildlife and rural communities in Japan. In Fuentes, A. & Wolfe, L.D., eds., Primates Face to Face: The Conservation Implications of Human and Nonhuman Primate Interconnections. Cambridge: Cambridge University Press, pp 254272.Google Scholar
Sprague, D. & Iwasaki, N. (2006). Coexistence and exclusion between humans and monkeys in Japan: is either really possible? Ecological and Environmental Anthropology, 2, 3043.Google Scholar
Stanford, C.B. (1995). The influence of chimpanzee predation on group size and anti-predator behaviour in red colobus monkeys. Animal Behaviour, 49(3), 577587.Google Scholar
Stearns, S.C. (1992). The Evolution of Life Histories. New York: Oxford University Press.Google Scholar
Stearns, S.C., Byars, S.G., Govindaraju, D.R. & Ewbank, D. (2010). Measuring selection in contemporary human populations. Nature Reviews Genetics, 11(9), 611.Google Scholar
Sterck, E.H.M., Watts, D.P. & van Schaik, C.P. (1997). The evolution of female social relationships in nonhuman primates. Behavioral Ecology and Sociobiology, 41, 291309.Google Scholar
Stevens, M., Stoddard, M.C. & Higham, J.P. (2009). Studying primate color: towards visual system dependent techniques. International Journal of Primatology, 30, 893917.Google Scholar
Stinson, S. (2012). Growth variation: biological and cultural factors. In Stinson, S., Bogin, B. & O’Rourke, D., eds., Human Biology: An Evolutionary and Biocultural Perspective, 2nd edn. Hoboken, NJ: Wiley Blackwell, pp. 587635.Google Scholar
Stoner, K.E. (1996). Prevalence and intensity of intestinal parasites in mantled howling monkeys (Alouatta palliata) in northeasten Costa Rica: implications for conservation biology. Conservation Biology, 10(2), 539546.Google Scholar
Strasser, E. & Delson, E. (1987). Cladistic analysis of cercopithecid relationships. Journal of Human Evolution, 16(1), 8199.Google Scholar
Strier, K.B., Altmann, J., Brockman, D.K., Bronikowski, A.M., Cords, M., Fedigan, L.M., Lapp, H., Liu, X., Morris, W.F., Pusey, A.E., Stoinski, T.S. & Alberts, S.C. (2010). The Primate Life History Database, a unique shared ecological data resource. Methods in Ecology and Evolution, 1, 199211.Google Scholar
Struhsaker, T.T. (1967a). Behavior of vervet monkeys (Cercopithecus aethiops). University of California Publications in Zoology, 82, 164.Google Scholar
Struhsaker, T.T. (1967b). Auditory communication among vervet monkeys (Cercopithecus aethiops). In Altmann, S., ed., Social Communication among Primates. Chicago: University of Chicago Press, pp. 281324.Google Scholar
Struhsaker, T.T. (1967c). Social structure among vervet monkeys (Cercopithecus aethiops). Behaviour, 29(2), 83121.Google Scholar
Struhsaker, T.T. (1967d). Ecology of vervet monkeys (Cercopithecus aethiops) in the MasaiAmboseli Game Reserve, Kenya. Ecology, 48(6), 891904.Google Scholar
Struhsaker, T.T. (1969). Correlates of ecology and social organization among African cercopithecines. Folia Primatologica, 11, 80118.Google Scholar
Strum, S.C. (1991). Weight and age in wild olive baboons. American Journal of Primatology, 25(4), 219237.Google Scholar
Stumpf, R.M., Wilson, B.A., Rivera, A., Yildirim, S., Yeoman, C.J., Polk, J.D., White, B.A. & Leigh, S.R. (2013). The primate vaginal microbiome, comparative context and implications for human health and disease. American Journal of Physical Anthropology, 57, 119134.Google Scholar
Sudmant, P.H., Huddleston, J. & Catacchio, C.R. (2013). Evolution and diversity of copy number variation in the great ape lineage. Genome Research, 23, 13731382.Google Scholar
Sudmant, P.H., Rausch, T. & Gardner, E.J. (2015). An integrated map of structural variation in 2,504 human genomes. Nature, 526, 7581.Google Scholar
Suomi, S. J. (1982). Animal models of human psychopathology, relevance for clinical psychology. In Kendall, P. & Butcher, J., eds., Handbook of Research Methods in Clinical Psychology. New York: John Wiley, pp. 249271.Google Scholar
Suomi, S. (2003). Gene–environment interactions and the neurobiology of social conflict. Annals of the New York Academy of Sciences, 1008, 132139.Google Scholar
Suomi, S.J. (2006). Risk, resilience, and gene × environment interactions in rhesus monkeys. Annals of the New York Academy of Sciences, 1094, 5262.Google Scholar
Svardal, H., Jasinska, A.J., Apetrei, C., Coppola, G., Huang, Y., Schmitt, C.A., Jacquelin, B., Müller-Trutwin, M., Weinstock, G., Grobler, J.P., Wilson, R.K., Turner, T.R., Warren, W.C., Freimer, N.B. & Nordborg, M. (2017). Ancient hybridization and strong adaptation to viruses across African vervet monkey populations. Nature Genetics, 49, 17051713.Google Scholar
Takahashi, H. (1997). Huddling relationships in night sleeping groups among wild Japanese macaques in Kinkazan Island during winter. Primates, 38, 5768.Google Scholar
Tanner, J.M. (1962). Growth at Adolescence, 2nd edn. Oxford, UK: Blackwell.Google Scholar
Tanner, J.M., Wilson, M.E. & Rudman, C.G. (1990). Pubertal growth spurt in the female rhesus monkey: relation to menarche and skeletal maturation. American Journal of Human Biology, 2(2), 101106.Google Scholar
Teaford, M.F. & Ungar, P.S. (2000). Diet and the evolution of the earliest human ancestors. Proceedings of the National Academy of Science of the United States of America, 97(25), 1350613511.Google Scholar
Tecot, S.R., Baden, A.L., Romine, N.K. & Kamilar, J.M. (2012). Infant parking and nesting, not allomaternal care, influence Malagasy primate life histories. Behavioral Ecology and Sociobiology, 66(10), 13751386.Google Scholar
Teichroeb, J.A., White, M.M.J. & Chapman, C.A. (2015). Vervet monkey (Chlorocebus pygerythrus) intragroup spatial positioning: dominants trade-off predation risk for increased food acquisition. International Journal of Primatology, 38, 154176.Google Scholar
Terborgh, J. & Janson, C.H. (1986). The socioecology of primate groups. Annual Review of Ecology, Evolution, and Systematics, 17, 111135.Google Scholar
Thomas, C.D., Cameron, A., Green, R.E. et al. (2004). Extinction risk from climate change. Nature, 427, 145148.Google Scholar
Thompson, C.L., Williams, S.H., Glander, K.E., Teaford, M.F. & Vinyard, C.J. (2014). Body temperature and thermal environment in a generalized arboreal anthropoid, wild mantled howling monkeys (Alouatta palliata). American Journal of Physical Anthropology, 154, 110.Google Scholar
Thornton, A. & Clutton-Brock, T. (2011). Social learning and the development of individual and group behaviour in mammal societies. Philosophical Transactions of the Royal Society B, 366, 978987.Google Scholar
Toft, II, J.D. & Eberhard, M.L. (1998). Parasitic diseases. In Bennett, B.T., Abee, C.R. & Henrickson, R., eds., Nonhuman Primates in Biomedical Research: Diseases. San Diego, CA: Academic Press, pp. 111205.Google Scholar
Tosi, A.J., Buzzard, P.J., Morales, J.C. & Melnick, D.J. (2002). Y-chromosomal window onto the history of terrestrial adaptation in the Cercopithecini. In Glenn, M.E. & Cords, M., eds., The Guenons, Diversity and Adaptation in African Monkeys. New York, Kluwer Academic Plenum Publishing, pp. 1526.Google Scholar
Tosi, A.J., Disotell, T.R., Morales, J.C. & Melnick, D.J. (2003). Cercopithecine Y-chromosome data provide a test of competing morphological evolutionary hypotheses. Molecular Phylogenetics and Evolution, 27(3), 510521.Google Scholar
Tosi, A.J., Detwiler, K.M. & Disotell, T.R. (2005). X-chromosomal window into the evolutionary history of the guenons (Primates, Cercopithecini). Molecular Phylogenetics and Evolution, 36(1), 5866.Google Scholar
Tosi, A.J., Melnick, D.J. & Disotell, T.R. (2004). Sex chromosome phylogenetics indicate a single transition to terrestriality in the guenons (tribe Cercopithecini). Journal of Human Evolution, 46(2), 223237.Google Scholar
Traina-Dorge, V., Blanchard, J., Martin, L. & Murphey-Corb, M. (1992). Immunodeficiency and lymphoproliferative disease in an African green monkey dually infected with SIV and STLV-I. AIDS Research and Human Retroviruses, 8, 97100.Google Scholar
Trayford, H.R. & Farmer, K.H. (2013). Putting the spotlight on internally displaced animals (IDAs): a survey of primate sanctuaries in Africa, Asia, and the Americas. American Journal of Primatology, 75(2), 116134.Google Scholar
Trivers, R.L. (1972). Parental investment and sexual selection. In Campbell, B., ed., Sexual Selection and the Descent of Man, 1871–1971. Chicago: Aldine, pp. 136179.Google Scholar
Tung, J., Alberts, S.C. & Wray, G.A. (2010). Evolutionary genetics in wild primates: combining genetic approaches with field studies of natural populations. Trends in Genetics, 26(8), 353362.Google Scholar
Tung, J., Akinyi, M.Y., Mutura, S., Altmann, J., Wray, G.A. & Alberts, S.C. (2011). Allele-specific gene expression in a wild nonhuman primate population. Molecular Ecology, 20(4), 725739.Google Scholar
Tung, J., Barreiro, L.B. & Burns, M.B. (2015a). Social networks predict gut microbiome composition in wild baboons. eLife, 4, e05224.Google Scholar
Tung, J., Charpentier, M.J.E., Garfield, D.A., Altmann, J. & Alberts, S.C. (2008). Genetic evidence reveals temporal change in hybridization patterns in a wild baboon population. Molecular Ecology, 17(8), 19982011.Google Scholar
Tung, J., Zhou, X., Alberts, S. C., Stephens, M. & Gilad, Y. (2015b). The genetic architecture of gene expression levels in wild baboons. eLife, 25, 4.Google Scholar
Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R. & Gordon, J.I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(21), 10271031.Google Scholar
Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., Rey, F.E., Knight, R. & Gordon, H.A. (2009). The effect of diet on the human gut microbiome, a metagenomic analysis in humanized gnotobiotic mice. Science Translational Medicine, 1, 6ra14.Google Scholar
Turner, T.R. (1977). Biological variation in vervet monkeys (Cercopithecus aethiops). PhD dissertation. New York: New York University.Google Scholar
Turner, T.R. (1981). Blood protein variation in a population of Ethiopian vervet monkeys (Cercopithecus aethiops aethiops). American Journal of Physical Anthropology, 55, 225232.Google Scholar
Turner, T.R. & Weiss, M.L. (1999). Genetics of Old World monkeys: one aspect of the “newer” physical anthropology. In Strum, S.C., Kindburg, D.G. & Hamburg, D., eds., The New Physical Anthropology: Science, Humanism and Critical Reflection. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Turner, T.R., Anapol, F., & Jolly, C.J. (1997). Growth, development, and sexual dimorphism in vervet monkeys at four sites in Kenya. American Journal of Physical Anthropology, 103(1), 1935.Google Scholar
Turner, T.R., Coetzer, W.G., Schmitt, C.A., Lorenz, J., Freimer, N.B. & Grobler, J.P. (2016). Localized population divergence of vervet monkeys (Chlorocebus spp.) in South Africa: evidence from mtDNA. American Journal of Physical Anthropology, 159, 1730.Google Scholar
Turner, T.R., Cramer, J.D., Nisbett, A. & Gray, J. P. (2016). A comparison of adult body size between captive and wild vervet monkeys (Chlorocebus aethiops sabaeus) on the island of St. Kitts. Primates, 57, 211220.Google Scholar
Turner, T.R., Hill, R., Coetzer, W.G. & Paterson, L. (2017). A conservation assessment of Chlorocebus pygerythrus. In Child, M.F., Roxburgh, L., Do Linh San, E, Raimondo, D. & Davies-Mostert, H.T., eds., The Red List of Mammals of South Africa, Swaziland, and Lesotho, 2016. Pretoria, South Africa: South African National Biodiversity Institute and Endangered Wildlife Trust.Google Scholar
Turner, T.R., Lorenz, J., Pampush, J.D., Freimer, N. & Grobler, J.P. (2010). The utility of genetic and morphological data in understanding taxonomy in vervet monkeys. Paper presented at the Congress of the International Primatological Society, Kyoto, Japan.Google Scholar
Turner, T.R., Schmitt, C.A., Cramer, J.D., Lorenz, J., Grobler, J.P., Jolly, C.J. & Freimer, N.B. (2018). Morphological variation in the genus Chlorocebus: ecogeographic and anthropogenically mediated variation in body mass, postcranial morphology, and growth. American Journal of Physical Anthropology, 166(3), 682707.Google Scholar
Turner, T.R., Whitten, P.L., Jolly, C.J. & Else, J.G. (1987). Pregnancy outcome in free-ranging vervet monkeys (Cercopithecus aethiops). American Journal of Primatology, 12(2), 197203.Google Scholar
Turnquist, J.E. & Kessler, M.J. (1989). Free-ranging Cayo Santiago rhesus monkeys (Macaca mulatta), I. Body size, proportion, and allometry. American Journal of Primatology, 19(1), 113.Google Scholar
Uehara, S. & Nishida, T. (1987). Body weights of wild chimpanzees (Pan troglodytes schweinfurthii) of the Mahale Mountains National Park, Tanzania. American Journal of Physical Anthropology, 72(3), 315321.Google Scholar
UK10K Consortium, Walter, K., Min, J.L., Huang, J. et al. (2015). The UK10K project identifies rare variants in health and disease. Nature, 526, 8290.Google Scholar
Ulijaszek, S.J. (1993). Evidence for a secular trend in heights and weights of adults in Papua New Guinea. Annals of Human Biology, 20(4), 349355.Google Scholar
van de Waal, E. & Bshary, R. (2010). Contact with human facilities appears to enhance technical skills in wild vervet monkeys (Chlorocebus aethiops). Folia Primatologica, 81, 282291.Google Scholar
van de Waal, E. (2011). Social learning abilities of wild vervet monkeys in a two-step task artificial fruit experiment. Animal Behaviour, 81, 433438.Google Scholar
van de Waal, E., Borgeaud, C. & Whiten, A. (2013a). Potent social learning and conformity shape a wild primate’s foraging decisions. Science, 340(6131), 483485.Google Scholar
van de Waal, E., Bshary, R. & Whiten, A. (2014). Field experiments show wild vervet monkey infants acquire maternal food-processing techniques. Animal Behaviour, 90, 4145.Google Scholar
van de Waal, E., Claidière, N. & Whiten, A. (2013b). Social learning and spread of alternative means of opening an artificial food in four groups of vervet monkeys (Chlorocebus aethiops). Animal Behaviour, 85, 7176.Google Scholar
van de Waal, E., Claidière, N. (2015). Wild vervet monkeys discriminate and copy alternative methods for opening an artificial fruit. Animal Cognition, 18(3), 617621.Google Scholar
van de Waal, E., Krützen, M., Hula, J., Goudet, J. & Bshary, R. (2012). Similarity in food cleaning techniques within matrilines in wild vervet monkeys. PLoS One, 7(4), e35694.Google Scholar
van de Waal, E., Renevey, N., Favre, C.M. & Bshary, R. (2010). Selective attention to philopatric models causes directed social learning in wild vervet monkeys. Proceedings of the Royal Society of London B, 277, 21052111.Google Scholar
van de Waal, E. & Whiten, A. (2012). Spontaneous emergence, imitation and spread of alternative foraging techniques among groups of vervet monkeys. PLoS One, 7 (10), e47008.Google Scholar
van de Woude, S. & Apetrei, C. (2006). Going wild: lessons from T-lymphotropic naturally occurring lentiviruses. Clinical Microbiology Review, 19, 728762.Google Scholar
van der Kuyl, A.C., Kuiken, C.L., Dekker, J.T. & Goudsmit, J. (1995). Phylogeny of African monkeys based upon mitochondrial 12S rRNA sequences. Journal of Molecular Evolution, 40(2), 173180.Google Scholar
van Heuverswyn, F., Li, Y., Neel, C. et al. (2006). Human immunodeficiency viruses, SIV infection in wild gorillas. Nature, 444, 164.Google Scholar
van Rensburg, E.J., Engelbrecht, S., Mwenda, J., Laten, J.D., Robson, B.A., Stander, T. & Chege, G.K. (1998). Simian immunodeficiency viruses (SIVs) from eastern and southern Africa, detection of a SIVagm variant from a chacma baboon. Journal of General Virology, 79, 18091814.Google Scholar
van Schaik, C.P. (1983). Why are diurnal primates living in groups? Behaviour, 87, 120144.Google Scholar
van Schaik, C.P. (1989). The ecology of social relationships amongst female primates. In Standen, V. & Foley, R.A, eds., Comparative Socioecology: The Behavioural Ecology of Humans and Other Mammals. Oxford, UK: Blackwell, pp. 195218.Google Scholar
van Schaik, C.P. & Kappeler, P.M. (1993). Life history, activity period and lemur social systems. In Ganzhorn, J., ed., Lemur Social Systems and Their Ecological Basis. Boston, MA: Springer, pp. 241260.Google Scholar
van Schaik, C.P. (1996). Social evolution in primates: the role of ecological factors and male behavior. Proceedings of the British Academy, 88, 931.Google Scholar
van Schaik, C.P. & Hörstermann, M. (1994). Predation risk and the number of males in a primate group, a comparative test. Behavioral Ecology and Sociobiology, 35, 261272.Google Scholar
van Schaik, C.P. & van Hooff, J.A.R.A.M. (1983). On the ultimate causes of primate social systems. Behaviour, 85, 91117.Google Scholar
Van Wegenen, G. & Catchpole, H.R. (1956). Physical growth of the rhesus monkey (Macaca mulatta). American Journal of Physical Anthropology, 14, 245273.Google Scholar
Verheyen, W.N. (1962). Contribution to the comparative craniology of primates. The genuses Colobus Illeger 1811 and Cercopithecus Linne 1758. Annales du Muse Republique du Congo Belge, B105, 1255.Google Scholar
Vigilant, L., Hofreiter, M., Siedel, H. & Boesch, C. (2001). Paternity and relatedness in wild chimpanzee communities. Proceedings of the National Academy of Sciences of the United States of America, 98(23), 1289012895.Google Scholar
Vigue, K. (2008). Behavioral and hormonal variability in vervet monkeys under stressed conditions. MS thesis. Milwaukee, WI: University of Wisconsin-Milwaukee.Google Scholar
Villar, D., Berthelot, C., Aldridge, S. et al. (2015). Enhancer evolution across 20 mammalian species. Cell, 160(3), 554566.Google Scholar
Vinson, A., Prongay, K. & Ferguson, B. (2013). The value of extended pedigrees for next-generation analysis of complex disease in the rhesus macaque. ILAR Journal, 54, 91105.Google Scholar
Vitzthum, V.J. (2008). Evolutionary models of women’s reproductive functioning. Annual Review of Anthropology, 37, 5362.Google Scholar
Voruganti, V.S., Jorgensen, M.J., Kaplan, J.R. et al. (2013). Significant genotype by diet (G × D) interaction effects on cardiometabolic responses to a pedigree-wide, dietary challenge in vervet monkeys (Chlorocebus aethiops sabaeus). American Journal of Primatology, 75, 491499.Google Scholar
Walker, R., Gurven, M., Hill, K. et al. (2006). Growth rates and life histories in twenty-two small-scale societies. American Journal of Human Biology, 18(3), 295311.Google Scholar
Wallis, J. (2013). Green monkey Chlorocebus sabaeus. In Mittermeier, R.A., Rylands, A.B. & Wilson, D.E., eds., Handbook of the Mammals of the World Volume 3: Primates. Barcelona, Spain: Lynx Edicions, p. 673.Google Scholar
Warren, W.C., Jasinska, A.J., Garcia-Perez, R. et al. (2015). The genome of the vervet (Chlorocebus aethiops sabaeus). Genome Research, 25(12), 19211933.Google Scholar
Washburn, S.L. & DeVore, I. (1961). The social life of baboons. Scientific American, 204(6), 6271.Google Scholar
Watkins, D.I., Burton, D.R., Kallas, E.G., Moore, J.P. & Koff, W.C. (2008). Nonhuman primate models and the failure of the Merck HIV-1 vaccine in humans. Nature Medicine, 14, 617621.Google Scholar
Watts, E.S. & Gavan, J.A. (1982). Postnatal growth of nonhuman primates, the problem of the adolescent spurt. Human Biology, 54, 5370.Google Scholar
Wells, J.C.K., Chomtho, S. & Fewtrell, M.S. (2007). Programming of body composition by early growth and nutrition. Proceedings of the Nutritional Society, 66, 423434.Google Scholar
Weiner, A.S. & Moor-Jankowski, J. (1969). The ABO blood groups of baboons. American Journal of physical Anthropology, 30, 117122.Google Scholar
Weiss, M.L. & Goodman, M. (1971). Genetic structure and systematics of some macaques and men. In Chiarelli, A.B., ed., Comparative Genetics in Monkeys, Apes, and Man. London, UK: Academic Press, pp. 129151.Google Scholar
Whiten, A. (1998). Imitation of the sequential structure of actions by chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 112, 270281.Google Scholar
Whiten, A. (2005). The second inheritance system of chimpanzees and humans. Nature, 437, 5255.Google Scholar
Whiten, A. (2009). The identification of culture in chimpanzees and other animals: from natural history to diffusion experiments. In Laland, K.N. & Galef, B.G., eds., The Question of Animal Culture. Cambridge, MA: Harvard University Press, pp. 99124.Google Scholar
Whiten, A. & Mesoudi, A. (2008). Establishing an experimental science of culture, animal social diffusion experiments. Philosophical Transactions of the Royal Society B, 363, 34773488.Google Scholar
Whiten, A. & van Schaik, C.P. (2007). The evolution of animal “cultures” and social intelligence. Philosophical Transactions of the Royal Society B, 362, 603620.Google Scholar
Whiten, A., Custance, D.M., Gomez, J.C., Teixidor, P. & Bard, K.A. (1996). Imitative learning of artificial fruit processing in children (Homo sapiens) and chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 110, 314.Google Scholar
Whitney, A. R., Diehn, M., Popper, S.J. et al. (2003). Individuality and variation in gene expression patterns in human blood. Proceedings of the National Academy of Sciences of the United States of America, 100, 18961901.Google Scholar
Whittaker, D.J., Morales, J.C., & Melnick, D.J. (2007). Resolution of Hylobates phylogeny: congruence of mitochondrial D-loop sequences with molecular, behavioral, and morphological data sets. Molecular Phylogenetics and Evolution, 45(2), 620628.Google Scholar
Whitten, P.L. (1983). Diet and dominance among female vervet monkeys (Cercopithecus aethiops). American Journal of Primatology, 5, 139159.Google Scholar
Whitten, P.L. & Turner, T.R. (2004). Male residence and patterning of serum testosterone in vervet monkeys (Cercopithecus aethiops). Behavioral Ecology and Sociobiology, 56(6), 565578.Google Scholar
Whitten, P.L. (2008). Ecological and reproductive variance in serum leptin in wild vervet monkeys. American Journal of Physical Anthropology, 137(4), 441448.Google Scholar
Whitten, P.L. (2009). Endocrine mechanisms of primate life history trade-offs: growth and reproductive maturation in vervet monkeys. American Journal of Human Biology, 21(6), 754761.Google Scholar
Wickings, E.J. & Dixson, A.F. (1992). Testicular function, secondary sexual development, and social status in male mandrills (Mandrillus sphinx). Physiology and Behavior, 52, 909916.Google Scholar
Widdig, A., Kessler, M.J., Bercovitch, F.B. et al. (2015). Genetic studies on the Cayo Santiago rhesus macaques: a review of 40 years of research. American Journal of Primatology, 78(1), 4462.Google Scholar
Widdig, A., Kessler, M.J., Bercovitch, F.B. et al. (2016a). Genetic studies on the Cayo Santiago rhesus macaques: a review of 40 years of research. American Journal of Primatology, 78, 4462.Google Scholar
Widdig, A., Langos, D. & Kulik, L. (2016b). Sex differences in kin bias at maturation: male rhesus macaques prefer paternal kin prior to natal dispersal. American Journal of Primatology, 78, 7891.Google Scholar
Widdig, A., Nürnberg, P., Krawczak, M., Streich, W.J. & Bercovitch, F.B. (2001). Paternal relatedness and age proximity regulate social relationships among adult female rhesus macaques. Procedings of the National Academy of Sciences of the United States of America, 98, 1376913773.Google Scholar
Widdig, A., Bercovitch, F.B., Streich, W.J., Sauermann, U., Nuernberg, P. & Krawczak, M. (2004). A longitudinal analysis of reproductive skew in male rhesus macaques. Proceedings of the Royal Society of London, B271(1541), 819826.Google Scholar
Wiederholt, R. & Post, E. (2010). Tropical warming and the dynamics of endangered primates. Biology Letters, 6, 257260.Google Scholar
Wiens, J.A. (1976). Population responses to patchy environments. Annual Review of Ecology, Evolution, and Systematics, 7, 81120.Google Scholar
Wilen, R. & Naftolin, F. (1976). Age, weight and weight gain in the individual pubertal female rhesus monkey (Macaca mulatta). Biology of Reproduction, 15, 356360.Google Scholar
Willems, E.P. & Hill, R.A. (2009). Predator-specific landscapes of fear and resource distribution, effects on spatial range use. Ecology, 90, 546555.Google Scholar
Wilson, P.J. (1975). The promising primate. Man, 520.Google Scholar
Wimberger, K., Downs, C.T. & Perrin, M.R. (2010a). Postrelease success of two rehabilitated vervet monkey (Chlorocebus aethiops) troops in KwaZulu-Natal, South Africa. Folia Primatologica, 81, 96108.Google Scholar
Wimberger, K., Downs, C.T. & Boyes, R.S. (2010). A survey of wildlife rehabilitation in South Africa: is there a need for improved management? Animal Welfare, 19(4), 481.Google Scholar
Wingfield, J.C. (1994). Hormone–behavior interactions and mating systems in male and female birds. In Short, R.V. & Balaban, B.B., eds., The Differences Between the Sexes. Cambridge: Cambridge University Press, pp. 303330.Google Scholar
Wingfield, J.C., Hegner, R.E., Dufty, Jr., A.M. & Ball, G.F. (1990). The “challenge hypothesis”: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. The American Naturalist, 136, 829846.Google Scholar
Williams, G.C. (1966). Adaptation and Natural Selection. Princeton, NJ: Princeton University Press.Google Scholar
Williams-Blangero, S. (1991). Recent trends in genetic research on captive and wild nonhuman primate populations. Yearbook of Physical Anthropology, 34, 6996.Google Scholar
Wilson, M.E., Gordon, T.P., Rudman, C.G. & Tanner, J.M. (1989). Effects of growth hormone on the tempo of sexual maturation in female rhesus monkeys. Journal of Clinical Endocrinology and Metabolism, 68(1), 2938.Google Scholar
Woods, R. P., Fears, S.C., Jorgensen, M.J., Fairbanks, L.A, Toga, A.W. & Freimer, N.B. (2011). A web-based brain atlas of the vervet monkey, Chlorocebus aethiops. NeuroImage, 54, 18721880.Google Scholar
Wrangham, R.W. (1980). An ecological model for the evolution of female-bonded groups of primates. Behaviour, 75, 262300.Google Scholar
Wrangham, R.W. (1981). Drinking competition in vervet monkeys. Animal Behaviour, 29, 904910.Google Scholar
Wrangham, R. & Waterman, P. (1981). Feeding behaviour of vervet monkeys on Acacia tortilis and Acacia xanthophloea, with special reference to reproductive strategies and tannin production. Journal of Animal Ecology, 50, 715731.Google Scholar
Wren, B.T. (2006). Gastrointestinal parasites of the vervet monkey (Chlorocebus [Cercopithecus] aethiops) at a Sanctuary in Limpopo Province, South Africa. MS Thesis. Muncie, IN: Ball State University.Google Scholar
Wren, B.T. (2013). Behavioral ecology of primate–parasite interactions. PhD dissertation. West Lafayette, IN: Purdue University.Google Scholar
Wren, B.T., Gillespie, T.R., Camp, J.W. & Remis, M.J. (2015). Helminths of vervet monkeys, Chlorocebus aethiops, from Loskop Dam Nature Reserve, South Africa. Comparative Parasitology, 82, 101108.Google Scholar
Wren, B.T., Remis, M.J., Camp, J.W. & Gillespie, T.R. (2016). Number of grooming partners is associated with hookworm infection in wild vervet monkeys (Chlorocebus aethiops). Folia Primatologica, 87(3), 168179.Google Scholar
Wright, E. & Robbins, M.M. (2014). Proximate mechanisms of contest competition among female Bwindi mountain gorillas (Gorilla beringei beringei). Behavioral Ecology and Sociobiology, 68, 17851797.Google Scholar
Xing, J.C., Witherspoon, D.J., Ray, D.A., Batzer, M.A. & Jorde, L.B. (2007). Mobile DNA elements in primate and human evolution. Yearbook of Physical Anthropology, 50, 219.Google Scholar
Yang, S.H., Cheng, P.H., Banta, H. et al. (2008). Towards a transgenic model of Huntington’s disease in a non-human primate. Nature, 453, 921924.Google Scholar
Yatsunenko, T., Rey, F.E., Manary, M.J. et al. (2012). Human gut microbiome viewed across age and geography. Nature, 486(7402), 222227.Google Scholar
Yeager, C.P. (1997). Orangutan rehabilitation in Tannjung Putting National Park, Indonesia. Conservation Biology, 11(3), 802805.Google Scholar
Yildirim, S., Yeoman, C.J., Janga, S.C. et al. (2014). Primate vaginal microbiomes exhibit species specificity without universal Lactobacillus dominance. ISME Journal, 8, 24312444.Google Scholar
Young, C., Majolo, B., Heistermann, M., Schülke, O. & Ostner, J. (2014). Responses to social and environmental stress are attenuated by strong male bonds in wild macaques. Proceedings of the National Academy of Sciences of the United States of America, 111, 1819518200.Google Scholar
Young, C., McFarland, R., Barrett, L. & Henzi, S.P. (2017). Formidable females and the power trajectories of socially integrated male vervet monkeys. Animal Behaviour, 125, 6167.Google Scholar
Zarrei, M., MacDonald, J.R., Merico, D. & Scherer, S.W. (2015). A copy number variation map of the human genome. Nature Reviews Genetics, 16, 172183.Google Scholar
Zhou, X., Wang, B., Pan, Q. et al. (2014). Whole-genome sequencing of the snub-nosed monkey provides insights into folivory and evolutionary history. Nature Genetics, 46, 13031310.Google Scholar
Zuberbühler, K. (2007). Predation and primate cognitive evolution. In Gursky, S. & Nekaris, K.A.I., eds., Primate Anti-Predator Strategies. New York: Springer, pp. 326.Google Scholar
Zuberbühler, K. & Jenny, D. (2002). Leopard predation and primate evolution. Journal of Human Evolution, 43, 873886.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×