Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 14
  • Print publication year: 2018
  • Online publication date: December 2018

2 - The Origin and Evolution of Saturn, with Exoplanet Perspective


Saturn formed beyond the snow line in the primordial solar nebula, and that made it possible for it to accrete a large mass. Disk instability and core accretion models have been proposed for Saturn’s formation, but core accretion is favored on the basis of its volatile abundances, internal structure, hydrodynamic models, chemical characteristics of protoplanetary disk, etc. The observed frequency, properties, and models of exoplanets provide additional supporting evidence for core accretion. The heavy elements with mass greater than 4He make up the core of Saturn, but are presently poorly constrained, except for carbon. The C/H ratio is super-solar, and twice that in Jupiter. The enrichment of carbon and other heavy elements in Saturn and Jupiter requires special delivery mechanisms for volatiles to these planets. In this chapter we will review our current understanding of the origin and evolution of Saturn and its atmosphere, using a multi-faceted approach that combines diverse sets of observations on volatile composition and abundances, relevant properties of the moons and rings, comparison with the other gas giant planet, Jupiter, and analogies to the extrasolar giant planets, as well as pertinent theoretical models.

Adachi, I., Hayashi, C. and Nakazawa, K. (1976), The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula, Prog. Theor. Phys., 56, 17561771.
Adams, F. C., Hollenbach, D., Laughlin, G. et al. (2004), Photoevaporation of circumstellar disks due to external far-ultraviolet radiation in stellar aggregates, Astrophys. J., 611, 360379.
Alibert, Y. and Mousis, O. (2007), Formation of Titan in Saturn’s subnebula: Constraints from Huygens probe measurements, Astron. Astrophys., 465, 10511060.
Alibert, Y., Mousis, O. and Benz, W. (2005a), On the Volatile enrichments and composition of Jupiter, Astrophys. J., 622, L145L148.
Alibert, Y., Mousis, O., Mordasini, C. et al. (2005b), New Jupiter and Saturn formation models meet observations, Astrophys. J., 626, L57L60.
Ali-Dib, M., Mousis, O., Petit, J. M. et al. (2014), Carbon-rich planet formation in a solar composition disk, Astrophys. J., 785, 125131.
Altwegg, K., Balsiger, H., Bar-Nun, A. et al. (2015), 67P/ Churyumov-Gerasimenko: A Jupiter family comet with a high D/H ratio, Science, 347(6220). 1261952–11261952–3.
Amelin, Y. A., Kaltenbach, A., Iizuka, T. et al. (2010), U-Pb chronology of the solar system’s oldest solids with variable 238U/235U, Earth Planet. Sci. Lett., 300, 343350.
Anders, E. and Grevesse, N. (1989), Abundances of the elements: meteoritic and solar, Geochim. Cosmochim. Acta, 53, 197214.
Armitage, P. (2010), Astrophysics of Planet Formation, Cambridge University Press, Cambridge.
Arpigny, C., Jehin, E., Manfroid, J. et al. (2003), Anomalous nitrogen isotope ratio in comets, Science, 301, 15221524.
Asplund, M., Grevesse, N., Sauval, J. et al. (2009), The chemical composition of the Sun, Annu. Rev. Astron. Astrophys, 47, 481522.
Atreya, S. K. (1986), Atmospheres and Ionospheres of the Outer Planets and their Satellites, pp. 6679. Springer-Verlag, New York-Heidelberg.
Atreya, S. K., Adams, E. Y., Niemann, H. B. et al. (2006), Titan’s methane cycle, Planet. Space Sci., 54, 11771187.
Atreya, S. K., Donahue, T. M. and Kuhn, W. R. (1978), Evolution of a nitrogen atmosphere on Titan, Science, 201, 611613.
Atreya, S. K., Lorenz, R. D. and Waite, J. H. (2009), Volatile origin and cycles: Nitrogen and methane, in Titan from Cassini-Huygens, edited by Brown, R. H., Lebreton, J. P., and Waite, J., pp. 177199, Springer Dordrecht, Heidelberg-London-New York.
Atreya, S. K., Mahaffy, P. R., Niemann, H. B. et al. (2003), Composition and origin of the atmosphere of Jupiter: An update, and implications for the extrasolar giant planets, Planet. Space Sci., 51, 105112.
Atreya, S. K., Trainer, M. G., Franz, H B. et al. (2013), Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity, and implications for atmospheric loss, Geophys. Res. Lett., 40, 56055609.
Atreya, S. K. and Wong, A. S. (2005), Coupled chemistry and clouds of the giant planets: A case for multiprobes, Space Sci. Rev., 116, 121136.
Atreya, S. K., Wong, M. H., Owen, T. C. et al. (1999), A Comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing, and origin, Planet. Space Sci., 47, 12431262.
Ayliffe, B. and Bate, M. (2009a), Circumplanetary disc properties obtained from radiation hydrodynamical simulations of gas accretion by protoplanets, MNRAS, 397, 657665.
Ayliffe, B. and Bate, M. (2009b), Gas accretion on to planetary cores: Three-dimensional self-gravitating radiation hydrodynamical calculations, MNRAS, 393, 4964.
Ayliffe, B. and Bate, M. (2012), The growth and hydrodynamic collapse of a protoplanet envelope, MNRAS, 427, 25972612.
Baraffe, I., Chabrier, G. and Barman, T. (2008), Structure evolution of super-Earth to super-Jupiter exoplanets. I. Heavy element enrichment in the interior, Astron. Astrophys., 482, 315332.
Baraffe, I., Chabrier, G., Fortney, J. et al. (2014), Planetary internal structures, in Protostars and Planets VI, edited by Beuther, H., Klessen, R., Dullemond, C., and Henning, Th, University of Arizona Press, Tucson, AZ.
Barstow, J. K., Aigrain, S., Irwin, P. G. J. et al. (2014), Clouds on the Hot Jupiter HD189733b: Constraints from the Reflection Spectrum, Astrophys. J. 786, 154.
Baruteau, C., Crida, A., Paardekooper, S. J. et al. (2014), Planet-disc interactions and early evolution of planetary systems, in Protostars and Planets VI, edited by Beuter, H., Klessen, R., Dullemond, C., and Henning, T.. University of Arizona Press, Tucson, AZ.
Bate, M. R., Lubow, S. H., Ogilvie, G. I. et al. (2003), Three-dimensional calculations of high- and low-mass planets embedded in protoplanetary discs, MNRAS, 341, 213229.
Batygin, K. and Stevenson, D. J. (2010), Inflating hot Jupiters with ohmic dissipation, Astrophys. J., 714, L238L243.
Birkby, J. L., de Kok, R. J., Brogi, M. et al. (2013), Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 μm, MNRAS, 436, 3539.
Bitsch, B., Crida, A., Morbidelli, A. et al. (2013), Stellar irradiated discs and implications on migration of embedded planets. I. Equilibrium discs, Astron. Astrophys., 549, A124137.
Bitsch, B., Morbidelli, A., Lega, E. et al. (2014), Stellar irradiated discs and implications on migration of embedded planets. II. Accreting-discs, Astron. Astrophys., 564, A135146.
Black, D. C. (1972), The origins of trapped helium, neon, and argon isotopic variations in meteorites-I, Geochim. Cosmochim. Acta, 36, 347375.
Bockelée-Morvan, D., Biver, N., Jehin, E. et al. (2008), Large excess of heavy nitrogen in both hydrogen cyanide and cyanogen from comet 17P/Holmes, Astrophys. J., 679, L49L52.
Bolton, S. J., Adriani, S., Adumitroaie, V., Allison, M., Anderson, J., Atreya, S. K. et al. (2017), Jupiter’s interior and deep atmosphere: the initial pole-to-pole passes with the Juno spacecraft, Science, 356, 821–825.
Bodenheimer, P., Lin, D. N. C. and Mardling, R. A. (2001), On the tidal inflation of short-period extrasolar planets, Astrophys. J., 548, 466472.
Boss, A. P. (2000), Possible rapid gas giant planet formation in the solar nebula and other protoplanetary disks, Astrophys. J., 536, L101L104.
Briggs, F. H. and Sackett, P. D. (1989), Radio observations of Saturn as a probe of its atmosphere and cloud structure, Icarus, 80, 77103.
Brogi, M., Snellen, L. A. G., de Kok, R. J. et al. (2012), The signature of orbital motion from the dayside of the planet τ Boötis b, Nature, 486, 502504.
Burrows, A., Hubeny, I., Budaj, J. et al. (2007), Possible solutions to the radius anomalies of transiting giant planets, Astrophys. J., 661, 502514.
Cameron, A. G. W. (1973), Abundances of the elements in the solar system, Space Sci. Rev. 15, 121146.
Cameron, A. G. W. (1979), The interaction between giant gaseous protoplanets and the primitive solar nebula, The Moon and the Planets, 21, 173183.
Cameron, A. G. W. (1982), Elemental and nuclidic abundances in the solar system, in Essays in Nuclear Astrophysics, edited by Fowler, W. A., pp. 2343, Cambridge University Press.
Canup, R. M. (2010), Origin of Saturn’s rings and inner moons by mass removal from a lost Titan-sized satellite, Nature, 468, 943946.
Canup, R. M. and Ward, W. R. (2002), Formation of the Galilean satellites: Conditions of accretion, Astron. J., 124, 34043423.
Castillo-Rogez, J., Johnson, T. V., Lee, M. H. et al. (2009), 26Al decay: Heat production and a revised age for Iapetus, Icarus, 204, 658662.
Charbonneau, D., Knutson, H. A., Barman, T. et al. (2008), The broadband infrared emission spectrum of the exoplanet HD 189733b, Astrophys. J., 686, 2, 13411348.
Charnoz, S., Crida, A., Castillo-Rogez, J. C. et al. (2011), Accretion of Saturn’s mid-sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate-poor rings versus silicate-rich moons, Icarus, 216, 535550.
Charnoz, S., Salmon, J. and Crida, A. (2010), The recent formation of Saturn’s moonlets from viscous spreading of the main rings, Nature, 465, 752754.
Chiang, E. and Goldreich, P. (1997), Spectral energy distributions of T Tauri stars with passive circumstellar disks, Astrophys. J., 490, 368376.
Chick, K. M. and Cassen, P. (1997), Thermal processing of interstellar dust grains in the primitive solar environment, Astrophys. J., 477, 398409.
Conrath, B. J. and Gautier, D. (2000), Saturn helium abundance: A reanalysis of Voyager measurements, Icarus, 144, 124134.
Conrath, B. J., Gautier, D., Hanel, R. A. et al. (1984), The helium abundance of Saturn from Voyager measurements, Astrophys. J., 282, 807815.
Conrath, B. J., Hanel, R. A. and Samuelson, R. E. (1989), Thermal structure and heat balance of the outer planets, in Origin and Evolution of Planetary and Satellite Atmospheres, edited by. Atreya, S. K., Pollack, J. B., and Matthews, M. S., pp. 513538, University of Arizona Press, Tucson, AZ.
Cossou, C., Raymond, S. and Pierens, A. (2013), Convergence zones for Type I migration: An inward shift for multiple planet systems, Astron. Astrophys., 553, L2 (5 pp.).
Crida, A. and Batygin, K. (2014), Spin-Orbit angle distribution and the origin of (mis)aligned hot Jupiters, Astron. Astrophys., 567, A42 (8 pp.).
Crida, A. and Charnoz, S. (2012), Formation of regular satellites from ancient massive rings in the solar system, Science, 338, 11961199.
Crida, A. and Morbidelli, A. (2007), Cavity opening by a giant planet in a protoplanetary disc and effects on planetary migration, MNRAS, 377, 13241336.
Crida, A., Morbidelli, A. and Masset, F. (2006), On the width and shape of gaps in protoplanetary disks, Icarus, 181, 587604.
Croll, B., Lafreniere, D., Albert, L. et al. (2011), Near-infrared thermal emission from WASP-12b: Detections of the secondary eclipse in Ks, H, and J, Astron. J., 141, 3042.
Currie, T., Burrows, A., Itoh, Y. et al. (2011), A combined Subaru/VLT/MMT 1–5 μm study of planets orbiting HR 8799: Implications for atmospheric properties, masses, and formation, Astrophys. J., 729, 128147.
Dahmen, G., Wilson, T. L. and Matteucci, F. (1995), The nitrogen isotope abundance in the galaxy 1: The galactic disk gradient, Astron. Astrophys., 295, 194198.
Dartois, E., Dutrey, A. and Guilloteau, S. (2003), Structure of the DM Tau outer disk: probing the vertical kinetic temperature gradient, Astron. Astrophys., 399, 773787.
Delgado-Mena, E., Israelian, G., González Hernández, J. I. et al. (2010), Chemical clues on the formation of planetary systems: C/O versus Mg/Si for HARPS GTO sample, Astrophys. J., 725, 23492358.
Deming, D., Wilkins, A., McCullough, P. et al. (2013), Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the wide field camera-3 on the Hubble Space Telescope, Astrophys. J., 774, 95112.
Demory, B. J., de Wit, J., Lewis, N. et al. (2013), Inference of inhomogeneous clouds in an exoplanet atmosphere, Astrophys. J. Lett., 776, L25 (7 pp.).
de Pater, I. and Massie, S. T. (1985), Models of the millimeter-centimeter spectra of the giant planets, Icarus, 62, 143171.
Dodson-Robinson, S. E., Bodenheimer, P., Laughlin, G. et al. (2008), Saturn forms by core accretion in 3.4 Myr, Astrophys. J., 688, L99L102.
Dubrulle, B., Morfill, G. and Sterzik, M. (1995), The dust subdisk in the protoplanetary nebula, Icarus, 114, 237246.
Dürmann, C. and Kley, W. (2015), Migration of massive planets in accreting disks, Astron. Astrophys., 574, A52.
Dyudina, U. A., Ingersoll, A. P., Ewald, S. P. et al. (2010), Detection of visible lightning on Saturn, Geophys. Res. Lett., 37, L09205.
Dyudina, U. A., Ingersoll, A. P., Ewald, S. P. et al. (2013), Saturn’s visible lightning, its radio emissions, and the structure of the 2009–2011 lightning storms, Icarus, 226, 10201037.
Eberhardt, P. (1974), A Neon-E-rich phase in the orgueil carbonaceous chondrite, Earth Planet. Sci. Lett., 24, 182187.
Estrada, P. R., Mosqueira, I. and Charnoz, S. (2009), The Ganymede, Titan, Callisto, Iapetus trend: Interpretation of Iapetus’ composition, AGU Fall Meeting Abstracts, C1148.
Evans, T. M., Pont, F., Sing, D. K. et al. (2013), The deep blue color of HD 189733b: albedo measurements with Hubble Space Telescope/space telescope imaging spectrograph at visible wavelengths, Astrophys. J. Lett. 772, L16 (5 pp.).
Fabrycky, D. and Tremaine, S. (2007), Shrinking binary and planetary orbits by Kozai cycles with Tidal friction, Astrophys. J., 669, 12981315.
Fegley, B. and Prinn, R. G. (1985), Equilibrium and nonequilibrium chemistry of Saturn’s atmosphere: Implications for the observability of PH3, N2, CO, and GeH4, Astrophys. J., 299, 10671078.
Flasar, F. M., Achterberg, R. K., Conrath, B. J. et al. (2005), Temperatures, winds, and composition in the Saturnian system, Science, 307, 12471251.
Fletcher, L. N., Baines, K. H., Momary, T. W. et al. (2011), Saturn’s tropospheric composition and clouds from Cassini/VIMS 4.6–5.1 μm nightside spectroscopy, Icarus, 214, 510533.
Fletcher, L. N., Greathouse, T. K., Orton, G. S. et al. (2014), The origin of nitrogen on Jupiter and Saturn from the 15N/14N ratio, Icarus, 238, 170190.
Fletcher, L. N., Orton, G. S., Teanby, N. A. et al. (2009a), Phosphine on Jupiter and Saturn from Cassini/CIRS, Icarus, 202, 543564.
Fletcher, L. N., Orton, G. S., Teanby, N. A.(2009b), Methane and its isotopologues on Saturn from Cassini/CIRS Observations, Icarus, 199, 351367.
Folkner, W. M., Woo, R. and Nandi, S. (1998), Ammonia abundance in Jupiter’s atmosphere derived from attenuation of the Galileo Probe’s radio signal, J. Geophys. Res., 103, 2284722856.
Fortney, J. J., Lodders, K., Marley, M. S. et al. (2008), A unified theory for the atmospheres of the hot and very hot Jupiters: Two classes of irradiated atmospheres, Astrophys. J., 678, 14191435.
Fouchet, T., Lellouch, E., Bezard, B. et al. (2000), ISO-SWS observations of Jupiter: measurement of the ammonia tropospheric profile and of the 15N/14N isotopic ratio, Icarus, 143, 223243.
Fujii, Y. I., Okuzumi, S. and Inutsuka, S. (2011), A fast and accurate calculation scheme for ionization degrees in protoplanetary and circumplanetary disks with charged dust grains, Astrophys. J., 743, 5361.
Fujii, Y. I., Okuzumi, S., Tanigawa, T. et al. (2014), On the viability of the magnetorotational instability in circumplanetary disks, Astrophys. J., 785, 101108.
Gaudi, B. S. and Winn, J. N. (2007), Prospects for the characterization and confirmation of transiting exoplanets via the Rossiter–McLaughlin effect, Astrophys. J., 655, 550563.
Gaulme, P., Schmider, F. X., Gay, J. et al. (2011), Detection of Jovian seismic waves: A new probe of its interior structure, Astron. Astrophys., 531, A104 (7 pp.).
Gautier, D., Hersant, F., Mousis, O. et al. (2001), Enrichments in volatiles in Jupiter: A new interpretation of the Galileo measurements. Astrophys. J., 550, L227L230.
Geiss, J. (1993), Primordial abundance of hydrogen and helium isotopes, in Origin and Evolution of the Elements, edited by Prantzos, N., Vangioni-Flam, E., and Cassé, M., pp. 89106, Cambridge University Press, Cambridge.
Geiss, J. and Gloeckler, G. (1998), Abundances of deuterium and helium-3 in the protosolar cloud, Space Sci. Rev., 84, 239250.
Geiss, J. and Reeves, H. (1972), Cosmic and solar system abundances of deuterium and helium-3, Astron. Astrophys., 18, 126132.
Gibb, E. L., Whittet, D. C. B., Boogert, A. C. A. et al. (2004), Interstellar ice: The infrared space observatory legacy, Astrophys. J. Supp. Ser., 151, 3573.
Gorti, U., Dullemond, C. P. and Hollenbach, D. (2009), Time evolution of viscous circumstellar disks due to photoevaporation by far-ultraviolet, extreme-ultraviolet, and X-ray radiation from the central star, Astrophys. J., 705, 12371251.
Grevesse, N., Asplund, M. and Sauval, A. J. (2005), The new solar chemical composition, in Elements Stratification in Stars, 40 Years of Atomic Diffusion, edited by Alecian, G., Richard, O., and Vauclair, S., 17, pp. 2130, EAS Publications Series.
Grevesse, N., Asplund, M. and Sauval, A. J. (2007), The solar chemical composition, Space Sci. Rev., 130, 105114.
Grossman, A. S., Pollack, J. B., Reynolds, R. T. et al. (1980), The effect of dense cores on the structure and evolution of Jupiter and Saturn, Icarus, 42, 358379.
Guillot, T. and Hueso, R. (2006), The composition of Jupiter: Sign of a (relatively) late formation in a chemically evolved protosolar disc, MNRAS, 367, L47L51.
Guillot, T., Santos, N. C., Pont, F. et al. (2006), A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars, Astron. Astrophys, 453, L21L24.
Guillot, T. and Showman, A. P. (2002), Evolution of “51 Pegasus b-like” planets, Astron. Astrophys., 385, 156165.
Guillot, T., Stevenson, D. J., Hubbard, W. B. et al. (2004), The interior of Jupiter, in Jupiter. The Planet, Satellites and Magnetosphere, edited by Bagenal, F., Dowling, T. E., and McKinnon, W. B., pp. 3557, Cambridge University Press, Cambridge.
Hartogh, P., Lis, D. C., Bockelée-Morvan, D. et al. (2011), Ocean-like water in the Jupiter-family comet 103P/Hartley 2, Nature, 478, 218220. doi:10.1038/nature10519; pmid: 21976024.
Hayashi, C. (1981), Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula, Prog. Theor. Phys. Supp., 70, 3553.
Haynes, K., Mandell, A. M., Madhusudhan, N. et al. (2015), Spectroscopic evidence for a temperature inversion in the dayside atmosphere of hot Jupiter WASP-33b, Astrophys. J., 806, 146, 12 pp.
Helled, R. and Guillot, T. (2013), Interior models of Saturn: Including the uncertainties in shape and rotation, Astrophys. J., 767, 113119.
Helled, R. and Lunine, J. I. (2014), Measuring Jupiter’s water abundance by Juno: The link between interior and formation models, MNRAS, 441, 22732279.
Helling, C., Woitke, P., Rimmer, P. B. et al. (2014), Disk evolution, element abundances and cloud properties of young gas giant planets, Life, 4, 142173.
Hersant, F., Gautier, D., Tobie, G. et al. (2008), Interpretation of the carbon abundance in Saturn measured by Cassini, Planet. Space Sci., 56, 11031111.
Hoffman, J. H., Hodges, R. R., McElroy, M. B. et al. (1979), Composition and structure of the Venus atmosphere: Results from Pioneer Venus, Science, 205, 4952.
Howard, A. W. (2013), Observed properties of extrasolar planets, Science, 340, 572576.
Hubeny, I., Burrows, A. and Sudarsky, D. (2003), A possible bifurcation in atmospheres of strongly irradiated stars and planets, Astrophys. J., 594, 10111018.
Ida, S., Lin, D. N. C. and Nagasawa, M. (2013), Toward a deterministic model of planetary formation. VII. Eccentricity distribution of gas giants, Astrophys. J., 775, 4266.
Ikoma, M., Emori, H. and Nakazawa, K. (2001), Formation of giant planets in dense nebulae: Critical core mass revisited, Astrophys. J., 553, 991005.
Ishimaru, R., Sekine, Y., Matsui, T. et al. (2011), Oxidizing proto-atmosphere on Titan: Constraint from N2 formation by impact shock, Astrophys. J. Lett., 741, L10 (6 pp.).
Janson, M., Brandt, T. D., Kuzuhara, M. et al. (2013), Direct imaging detection of methane in the atmosphere of GJ 504 b, Astrophys. J. Lett., 778, L4 (6 pp.).
Jewitt, D., Matthews, H. E., Owen, T. et al. (1997), The 12C/13C, 14N/15N and 32S/ 34S isotope ratios in comet Hale–Bopp (C/1995 O1), Science, 278, 9093.
Johansen, A., Oishi, J. S., Mac Low, M. et al. (2007), Rapid planetesimal formation in turbulent circumstellar disks, Nature, 448, 10221025.
Johansen, A. and Youdin, A. (2007), Protoplanetary disk turbulence driven by the streaming instability: Nonlinear saturation and particle concentration, Astrophys. J., 662, 627641.
Johansen, A., Youdin, A. and Mac Low, M. M. (2009), Particle clumping and planetesimal formation depend strongly on metallicity, Astrophys. J., 704, L75L79.
Johnson, J. A., Aller, K. M., Howard, A. W. et al. (2010), Giant planet occurrence in the stellar mass-metallicity plane, PASP, 122, 905915.
Jones, T. D. and Lewis, J. S. (1987), Estimated impact shock production of N2 and organic compounds on early Titan, Icarus, 72, 381393.
Karkoschka, E. and Tomasko, M. G. (2011), The haze and methane distributions on Neptune from HST-STIS spectroscopy, Icarus, 211, 328340.
Knutson, H. A., Howard, A. W. and Isaacson, H. (2010), A correlation between stellar activity and hot Jupiter emission spectra, Astrophys. J., 720, 15691576.
Kokubo, E. and Ida, S. (1998), Oligarchic growth of protoplanets, Icarus, 131, 171178.
Konopacky, Q. M., Barman, T. S., Macintosh, B. A. et al. (2013), Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere, Science, 339, 13981401.
Kouchi, A., Yamamoto, T., Kozasa, T. et al. (1994), Conditions for condensation and preservation of amorphous ice and crystallinity of astrophysical ices, Astron. Astrophys., 290, 10091018.
Kreidberg, L., Bean, J. L., Désert, J. M. et al. (2014), A precise water abundance measurement for the hot Jupiter WASP-43b, Astrophys J. Lett., 793, L27 (6 pp.).
Lainey, V., Jacobson, R. A., Tajeddine, R. et al. (2015), New constraints on Saturn’s interior from Cassini astrometric data. Submitted.
Lainey, V., Karatakin, Ö., Desmars, J. et al. (2012), Strong tidal dissipation in Saturn and constraints on Enceladus’ thermal state from astrometry, Astrophys. J., 752, 1432.
Lambrechts, M. and Johansen, A. (2012), Rapid growth of gas-giant cores by pebble accretion, Astron. Astrophys., 544, A32.
Lambrechts, M., Johansen, A. and Morbidelli, A. (2014), Separating gas-giant and ice-giant planets by halting pebble accretion, Astron. Astrophys., 572, A35.
Laraia, A. L., Ingersoll, A. P., Janssen, M. A. et al. (2013), Analysis of Saturn’s thermal emission at 2.2-cm wavelength: Spatial distribution of ammonia vapor, Icarus, 226, 641654.
Leconte, J., Chabrier, G., Baraffe, I. et al. (2010), Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity, Astron. Astrophys., 516, A64 (13 pp.).
Lee, J. M., Fletcher, L. N. and Irwin, P. G. J. (2012), Optimal estimation retrievals of the atmospheric structure and composition of HD 189733b from secondary eclipse spectroscopy, MNRAS, 420, 170182.
Lellouch, E., Bézard, B., Fouchet, T. et al. (2001), The deuterium abundance in Jupiter and Saturn from ISO-SWS observations, Astron. Astrophys., 370, 610622.
Li, C. and Ingersoll, A. P. (2015), Moist convection in hydrogen atmospheres and the frequency of Saturn’s giant storms, Nat. Geosci. 8, 398403.
Lin, D. N. C., Bodenheimer, P. and Richardson, D. C. (1996), Orbital migration of the planetary companion of 51 Pegasi to its present location, Nature, 380, 606607.
Lin, D. N. C. and Papaloizou, J. (1986), On the tidal interaction between protoplanets and the protoplanetary disk. III. Orbital migration of protoplanets, Astrophys. J., 309, 846857.
Lodders, K. (2004), Jupiter formed with more tar than ice, Astrophys. J., 611, 587597.
Lodders, K. (2008), The solar argon abundance, Astrophys. J., 674, 607611.
Lodders, K. and Fegley, B. (2002), Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. I. Carbon, nitrogen, and oxygen, Icarus, 155, 393424.
Lodders, K., Palme, H. and Gail, H. P. (2009), Abundances of the elements in the solar system, in Landolt-Börnstein New Series, Astron. and Astrophys., edited by Trümper, J. E., vol. VI/4B, pp. 560630, Springer-Verlag, Berlin.
Lunine, J. I., Atreya, S. K. and Pollack, J. B. (1989), Present state and chemical evolution of the atmospheres of Titan, Triton, and Pluto, in Origin and Evolution of Planetary and Satellite Atmospheres, edited by Atreya, S. K., Pollack, J. B., and Matthews, M. S., pp. 605665, University of Arizona Press, Tucson, AZ.
Lyra, W., Paardekooper, S. and Mac Low, M. (2010), Orbital migration of low-mass planets in evolutionary radiative models: Avoiding catastrophic infall, Astrophys. J. Lett., 715, L68L73.
Machida, M. N., Kokubo, E., Inutsuka, S. I. et al. (2008), Angular momentum accretion onto a gas giant planet, Astrophys. J., 685, 12201236.
Macintosh, B., Graham, J. R., Barman, T. et al. (2015), Discovery and spectroscopy of the young Jovian planet 51 Eri b with the Gemini Planet Imager, Science, 350, 6467.
Madhusudhan, N. (2012), C/O ratio as a dimension for characterizing exoplanetary atmospheres, Astrophys. J., 758, 3657.
Madhusudhan, N., Amin, M. A. and Kennedy, G. M. (2014c), Toward chemical constraints on hot Jupiter migration, Astrophys. J. Lett., 794, 12.
Madhusudhan, N., Crouzet, N., McCullough, P. R. et al. (2014a), H2O abundances in the atmospheres of three hot Jupiters, Astrophys. J. Lett., 791, L9 (5 pp.).
Madhusudhan, N., Harrington, J., Stevenson, K. B. et al. (2011a), A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b, Nature, 469, 6467.
Madhusudhan, N., Knutson, H., Fortney, J. et al. (2014b), Exoplanetary atmospheres, in Protostars and Planets VI, edited by Beuther, H., Klessen, R., Dullemond, C., and Henning, Th., University of Arizona Press, Tucson, AZ.
Madhusudhan, N., Mousis, O., Johnson, T. V. et al. (2011b), Carbon-rich giant planets: atmospheric chemistry, thermal inversions, spectra, and formation conditions, Astrophys. J., 743, 191202.
Madhusudhan, N. and Seager, S. (2010), On the inference of thermal inversions in hot Jupiter atmospheres, Astrophys. J., 725, 261274.
Mahaffy, P. R., Donahue, T. M., Atreya, S. K. et al. (1998), Galileo Probe measurements of D/H and 3He/4He in Jupiter’s atmosphere, Space Sci. Rev., 84, 251263.
Mahaffy, P. R., Niemann, H. B., Alpert, A. et al. (2000), Noble gas abundances and isotope ratios in the atmosphere of Jupiter from the Galileo probe mass spectrometer, J. Geophys. Res. (Planets), 105 (E6), 1506115071.
Mahaffy, P. R., Webster, C. R., Stern, J. C. et al. (2014), The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars, Science, 347, 415417.
Mandell, A., Haynes, K., Sinukoff, E. et al. (2013), Exoplanet transit spectroscopy using WFC3: WASP-12 b, WASP-17 b, and WASP-19 b, Astrophys. J., 779, 128.
Mandt, K. E., Mousis, O., Lunine, J. I. et al. (2014), Protosolar ammonia as the unique source of Titan’s nitrogen, Astrophys. J. Lett., 788, L24 (5 pp.).
Marboeuf, U., Thiabaud, A., Alibert, A. et al. (2014), From stellar nebula to planetesimals, Astron. Astrophys., 570, 35.
Marley, M. S., Saumon, D., Cushing, M. et al. (2012), Masses, radii, and cloud properties of the HR 8799 planets, Astrophys. J., 753, 135152.
Marois, C., Zuckerman, B., Konopacky, Q. M. et al. (2010), Images of a fourth planet orbiting HR 8799, Science, 468, 10801083.
Marty, B., Chaussidon, M., Wiens, R. C. et al. (2011), A 15N-poor isotopic composition for the solar system as shown by genesis solar wind samples, Science, 332, 15331536.
Masset, F. and Snellgrove, M. (2001), Reversing type II migration: Resonance trapping of a lighter giant protoplanet, MNRAS, 320, L55L59.
Mathew, K. J. and Marti, K. (2001), Early evolution of Martian volatiles: Nitrogen and noble gas components in ALH84001 and Chassigny, J. Geophys. Res., 106, 14011422.
Matter, A., Guillot, T. and Morbidelli, A. (2009), Calculation of the enrichment of the giant planet envelopes during the “late heavy bombardment,” Planet. Space Sci., 57, 816821.
Mayer, L., Quinn, T., Wadsley, K. et al. (2002), Formation of giant planets by fragmentation of protoplanetary disks, Science, 298, 17561759.
McCullough, P. R., Crouzet, N., Deming, D. et al. (2014), Water vapor in the spectrum of the extrasolar planet HD 189733b: 1. The transit, Astrophys. J., 791, 55.
McKay, C. P., Scattergood, T. W., Pollack, J. B. et al. (1988), High-temperature shock formation of N2 and organics on primordial Titan, Nature, 332, 520522.
Menou, K. (2012), Thermo-resistive instability of hot planetary atmospheres, Astrophys. J., 754, L9L14.
Mizuno, H. (1980), Formation of the giant planets, Progr. Theor. Phys. 64, 544557.
Morbidelli, A. and Crida, A. (2007), The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk, Icarus, 191, 158171.
Morbidelli, A. and Nesvorny, D. (2012), Dynamics of pebbles in the vicinity of a growing planetary embryo: Hydro-dynamical simulations, Astron. Astrophys., 546, A1825.
Morbidelli, A., Szulágyi, J., Crida, A. et al. (2014), Meridional circulation of gas into gaps opened by giant planets in three-dimensional low-viscosity disks, Icarus, 232, 266270.
Mordasini, C., Alibert, Y. and Benz, W. (2009), Extrasolar planet population synthesis. I. Method, formation, tracks, and mass-distance distribution, Astron. Astrophys., 501, 11391160.
Moses, J. I., Madhusudhan, N., Visscher, C. et al. (2013), Chemical consequences of the C/O ratio on hot Jupiters: Examples from WASP-12b, CoRoT-2b, XO-1b, and HD 189733b, Astrophys. J., 763, 2551.
Mousis, O., Alibert, Y. and Benz, W. (2006), Saturn’s internal structure and carbon enrichment, Astron. Astrophys., 449, 411415.
Mousis, O., Gautier, D. and Bockelée-Morvan, D. (2002), An evolutionary turbulent model of Saturn’s subnebula: Implications for the origin of the atmosphere of Titan, Icarus, 156, 162175.
Mousis, O., Lunine, J. I., Madhusudhan, N. et al. (2012), Nebular water depletion as the cause of Jupiter’s low oxygen abundance, Astrophys. J. 751, L7 (5 pp.).
Mousis, O., Lunine, J. I., Pasek, M. et al. (2009a), A primordial origin for the atmospheric methane of Saturn’s moon Titan, Icarus, 204, 749751.
Mousis, O., Lunine, J. I., Thomas, C. et al. (2009b), Clathration of volatiles in the solar nebula and implications for the origin of Titan’s atmosphere, Astrophys. J., 691, 17801786.
Mousis, O., Marboeuf, U., Lunine, J. I. et al. (2009c), Determination of the minimum masses of heavy elements in the envelopes of Jupiter and Saturn, Astrophys. J., 696, 13481354.
Nettelmann, N., Püstow, R. and Redmer, R. (2013), Saturn layered structure and homogeneous evolution models with different EOSs, Icarus, 225, 548557.
Niemann, H. B., Atreya, S. K., Bauer, S. J. et al. (2005), The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe, Nature, 438, 779784.
Niemann, H. B., Atreya, S. K., Carignan, G. R. et al. (1998), The composition of the jovian atmosphere as determined by the Galileo probe mass spectrometer, J. Geophys. Res., 103, 2283122845.
Niemann, H. B., Atreya, S. K., Demick, J. E. et al. (2010), The composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini–Huygens probe gas chromatograph mass spectrometer experiment, J. Geophys. Res. (Planets), 115, E12006.
Notesco, G. and Bar-Nun, A. (2005), A ~25 K temperature of formation for the submicron ice grains which formed comets, Icarus, 175, 546550.
Öberg, K. I., Boogert, A. C. A., Pontoppidan, K. M. et al. (2011a), II, The Spitzer ice legacy: Ice evolution from cores to protostars, Astrophys. J., 740, 109124.
Öberg, K. I., Murray-Clay, R. and Bergin, E. A. (2011b), The effects of snowlines on C/O in planetary atmospheres, Astrophys. J. Lett., 743, L16 (5 pp.).
Owen, T. and Encrenaz, T. (2006), Compositional constraints on the giant planet formation, Planet. Space Sci. 54, 11881196.
Owen, T., Mahaffy, P., Niemann, H. et al. (1999), A low-temperature origin for the planetesimals that formed Jupiter, Nature, 402, 269270.
Owen, T., Mahaffy, P., Niemann, H. et al. (2001), Protosolar nitrogen, Astophys. J., 553, L77L79.
Paardekooper, S. J., Baruteau, C., Crida, A. et al. (2010), A torque formula for non-isothermal type I planetary migration: I. Unsaturated horseshoe drag, MNRAS, 401, 19501964.
Paardekooper, S. J., Baruteau, C. and Kley, W. (2011), A torque formula for non-isothermal Type I planetary migration: II. Effects of diffusion, MNRAS, 410, 293303.
Paardekooper, S. J. and Mellama, G. (2006), Halting type I planet migration in non-isothermal disks, Astron. Astrophys., 459, L17L20.
Palme, H. and Jones, A. (2003), Solar system abundances of the elements, in Treatise on Geochemistry, edited by Holland, H. D. and Turekian, K., Elsevier, pp. 4161.
Papaloizou, J. and Lin, D. N. C. (1984), On the tidal interaction between protoplanets and the primordial solar nebula: I. Linear calculation of the role of angular momentum exchange, Astrophys. J., 285, 818834.
Pollack, J. B., Hubickyj, O., Bodenheimer, P. et al. (1996), Formation of the giant planets by concurrent accretion of solids and gas, Icarus, 124, 6285.
Pont, F., Sing, D. K., Gibson, N. P. et al. (2013), The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations, Mon. Not. R. Astron. Soc., 432, 29172944.
Prinn, R. G. and Fegley, B. (1981), Kinetic inhibition of CO and N2 reduction in circumplanetary nebulae: Implications for satellite composition, Astrophys. J., 249, 308317.
Prinn, R. G. and Fegley, B. (1989), Solar nebula chemistry: Origins of planetary, satellite and cometary volatiles, in Origin and Evolution of Planetary and Satellite Atmospheres, edited by Atreya, S. K., Pollack, J. B., and Matthews, M. S., pp. 78136, University of Arizona Press, Tucson, AZ.
Rasio, F. A. and Ford, E. B. (1996), Dynamical instabilities and the formation of extrasolar planetary systems, Science, 274, 954956.
Redfield, S., Endl, M., Cochran, W. D. et al. (2008), Sodium absorption from the exoplanetary atmosphere of HD 189733b detected in the optical transmission spectrum, Astrophys. J., 673, L87L90.
Remus, F., Mathis, S., Zahn, J. P. et al. (2012), Anelastic tidal dissipation in multi-layer planets, Astron. Astrophys., 541, A165 (17 pp.).
Rivier, G., Crida, A., Morbidelli, A. et al. (2012), Circum-planetary discs as bottlenecks for gas accretion onto giant planets, Astron. Astrophys., 548, A116 (7 pp.).
Rosman, K. J. R. and Taylor, P. D. P. (1998), Isotopic compositions of the elements, J. Phys. Chem. Ref. Data, 27, 12751287.
Roulston, M. S. and Stevenson, D. J. (1995), Prediction of neon depletion in Jupiter’s atmosphere (abstract), EOS Abstr., AGU Fall Mtg., 76, 343.
Rousselot, P., Pirali, O., Jehin, E. et al. (2014), Toward a unique nitrogen isotopic ratio in cometary ices, Astrophys. J. Lett, 780, L17 (5 pp.).
Salmon, J., Charnoz, S., Crida, A. et al. (2010), Long-term and large-scale viscous evolution of dense planetary rings, Icarus, 209, 771785.
Seager, S. and Sasselov, D. (2000), Theoretical transmission spectra during extrasolar giant planet transits, Astrophys. J., 537, 916921.
Sekine, Y., Genda, H., Sugita, S. et al. (2011), Replacement and late formation of atmospheric N2 on undifferentiated Titan by impacts, Nature Geoscience, 4, 359362.
Sekine, Y., Sugita, S., Shido, T. et al. (2005), The role of Fischer Tropsch catalysis in the origin of methane-rich Titan, Icarus, 178, 154164.
Sing, D. K., Pont, F., Aigrain, S. et al. (2011), Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: High-altitude atmospheric haze in the optical and near-ultraviolet with STIS, Mon. Not. R. Astron. Soc., 416, 14431455.
Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W. et al. (2010), The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b, Nature, 465, 10491053.
Spiegel, D. S. and Burrows, A. (2013), Thermal processes governing hot-Jupiter radii, Astrophys. J., 772, 7689.
Spiegel, D. S., Silverio, K. and Burrows, A. (2009), Can TiO explain thermal inversions in the upper atmospheres of irradiated giant planets?, Astrophys. J., 699, 14871500.
Sromovsky, L. A., Fry, P. M. and Kim, J. H. (2011), Methane on Uranus: The case for a compact CH4 cloud layer at low latitudes and a severe CH4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy, Icarus, 215, 292312.
Stevenson, K. B., Desert, J.-M., Line, M. R. et al. (2014), Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy, Science, 346, 838841.
Sudarsky, D., Burrows, A. and Hubeny, I. (2003), Theoretical spectra and atmospheres of extrasolar giant planets, Astrophys. J., 588, 11211148.
Sumi, T., Kamiya, K., Udalski, A. et al. (2011), Unbound or distant planetary mass population detected by gravitational microlensing, Nature, 473, 349352.
Szula×i, J., Morbidelli, A., Crida, A. et al. (2014), Accretion of Jupiter-mass planets in the limit of vanishing viscosity, Astrophys. J., 782, 6575.
Tanigawa, T., Ohtsuki, K. and Machida, M. N. (2012), Distribution of accreting gas and angular momentum onto circumplanetary disks, Astrophys. J., 747, 4762.
Triaud, A. H. M. J., Collier Cameron, A., Queloz, D. et al. (2010), Spin-orbit angle measurements for six southern transiting planets: New insights into the dynamical origins of hot Jupiters, Astron. and Astrophys, 524, A25.
Tsiganis, K., Gomes, R., Morbidelli, A. et al. (2005), Origin of the orbital architecture of the giant planets of the Solar System, Nature, 435, 459461.
Turner, N. J., Fromang, S., Gammie, C. et al. (2014), Transport and accretion in planet-forming disks, in Protostars and Planets VI, edited by Beuter, H., Klessen, R., Dullemond, C., and Henning, T.. University of Arizona Press, Tucson, AZ.
Turner, N. J., Lee, M. H. and Sano, T. (2010), The formation environment of the Galilean moons. American Astronomical Society, DPS Meeting No. 42, Abst. 24.08.
Turner, N. J., Lee, M. H. and Sano, T. (2014), Magnetic coupling in the disks around young gas giant planets, Astrophys. J., 783, 1428.
Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J. M. et al. (2003), An extended upper atmosphere around the extrasolar planet HD209458b, Nature, 422, 143146.
Visscher, C. and Fegley, B. (2005), Chemical constraints on the water and total oxygen abundances in the deep atmosphere of Saturn, Astrophys. J., 623, 12211227.
Vogel, N., Heber, V. S., Baur, H. et al. (2011), Argon, krypton, and xenon in the bulk solar wind as collected by the genesis mission, Geochim. Cosmochim. Acta, 75, 30573071.
von Zahn, U., Hunten, D. M. and Lehmacher, G. (1998), Helium in Jupiter’s atmosphere: results from the Galileo probe helium interferometer experiment, J. Geophys. Res., 103, 2281522830.
von Zahn, U., Komer, S., Wieman, H. et al. (1983), Composition of the Venus atmosphere, in Venus, edited by Hunten, D. M., Colin, L., Donahue, T. M., and Moroz, V. I., pp. 297430, University of Arizona Press, Tucson, AZ.
Walsh, K., Morbidelli, A., Raymond, S. N. et al. (2011), A low mass for Mars from Jupiter’s early gas-driven migration, Nature, 475, 206209.
Ward, W. R. (1997), Protoplanet migration by nebula tides, Icarus, 126, 261281.
Webster, C. R., Mahaffy, P. R., Flesch, G. J. et al. (2013), Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere, Science, 341, 260263.
Weidenschilling, S. J. (1984), Evolution of grains in a turbulent solar nebula, Icarus, 60, 553568.
Wilson, H. F. and Militzer, B. (2010), Sequestration of noble gases in giant planet interiors, Phys. Rev. Lett., 104, 121101 (4 pp.).
Wilson, H. F. and Militzer, B. (2012), Solubility of water ice in metallic hydrogen: Consequences for core erosion in gas giant planets, Astrophys. J., 745, 5458.
Winn, J. N., Fabrycky, D., Albrecht, S. et al. (2010), Hot stars with hot Jupiters have high obliquities, Astrophys. J. Lett., 718, L145L149.
Wong, M. H., Atreya, S. K., Kuhn, W. R. et al. (2015), Fresh clouds: A parameterized updraft method for calculating cloud densities in one-dimensional models, Icarus, 245, 273281.
Wong, M. H., Atreya, S. K., Mahaffy, P. N. et al. (2013), Isotopes of nitrogen on Mars: atmospheric measurements by Curiosity’s mass spectrometer, Geophys. Res. Lett., 40, 60336037.
Wong, M. H., Mahaffy, P. R., Atreya, S. K. et al. (2004), Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter, Icarus, 171, 153170.
Youdin, A. N. and Goodman, J. (2005), Streaming instabilities in protoplanetary disks, Astrophys. J., 620, 459469.
Youdin, A. N. and Mitchell, J. L. (2010), The mechanical greenhouse: Burial of heat by turbulence in hot Jupiter atmospheres, Astrophys. J., 721, 11131126.