Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T07:26:06.774Z Has data issue: false hasContentIssue false

2 - The Origin and Evolution of Saturn, with Exoplanet Perspective

Published online by Cambridge University Press:  13 December 2018

Kevin H. Baines
Affiliation:
University of Wisconsin, Madison
F. Michael Flasar
Affiliation:
NASA-Goddard Space Flight Center
Norbert Krupp
Affiliation:
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Tom Stallard
Affiliation:
University of Leicester
Get access

Summary

Saturn formed beyond the snow line in the primordial solar nebula, and that made it possible for it to accrete a large mass. Disk instability and core accretion models have been proposed for Saturn’s formation, but core accretion is favored on the basis of its volatile abundances, internal structure, hydrodynamic models, chemical characteristics of protoplanetary disk, etc. The observed frequency, properties, and models of exoplanets provide additional supporting evidence for core accretion. The heavy elements with mass greater than 4He make up the core of Saturn, but are presently poorly constrained, except for carbon. The C/H ratio is super-solar, and twice that in Jupiter. The enrichment of carbon and other heavy elements in Saturn and Jupiter requires special delivery mechanisms for volatiles to these planets. In this chapter we will review our current understanding of the origin and evolution of Saturn and its atmosphere, using a multi-faceted approach that combines diverse sets of observations on volatile composition and abundances, relevant properties of the moons and rings, comparison with the other gas giant planet, Jupiter, and analogies to the extrasolar giant planets, as well as pertinent theoretical models.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, I., Hayashi, C. and Nakazawa, K. (1976), The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula, Prog. Theor. Phys., 56, 17561771.Google Scholar
Adams, F. C., Hollenbach, D., Laughlin, G. et al. (2004), Photoevaporation of circumstellar disks due to external far-ultraviolet radiation in stellar aggregates, Astrophys. J., 611, 360379.CrossRefGoogle Scholar
Alibert, Y. and Mousis, O. (2007), Formation of Titan in Saturn’s subnebula: Constraints from Huygens probe measurements, Astron. Astrophys., 465, 10511060.Google Scholar
Alibert, Y., Mousis, O. and Benz, W. (2005a), On the Volatile enrichments and composition of Jupiter, Astrophys. J., 622, L145L148.Google Scholar
Alibert, Y., Mousis, O., Mordasini, C. et al. (2005b), New Jupiter and Saturn formation models meet observations, Astrophys. J., 626, L57L60.Google Scholar
Ali-Dib, M., Mousis, O., Petit, J. M. et al. (2014), Carbon-rich planet formation in a solar composition disk, Astrophys. J., 785, 125131.CrossRefGoogle Scholar
Altwegg, K., Balsiger, H., Bar-Nun, A. et al. (2015), 67P/ Churyumov-Gerasimenko: A Jupiter family comet with a high D/H ratio, Science, 347(6220). 1261952–11261952–3.Google Scholar
Amelin, Y. A., Kaltenbach, A., Iizuka, T. et al. (2010), U-Pb chronology of the solar system’s oldest solids with variable 238U/235U, Earth Planet. Sci. Lett., 300, 343350.Google Scholar
Anders, E. and Grevesse, N. (1989), Abundances of the elements: meteoritic and solar, Geochim. Cosmochim. Acta, 53, 197214.Google Scholar
Armitage, P. (2010), Astrophysics of Planet Formation, Cambridge University Press, Cambridge.Google Scholar
Arpigny, C., Jehin, E., Manfroid, J. et al. (2003), Anomalous nitrogen isotope ratio in comets, Science, 301, 15221524.Google Scholar
Asplund, M., Grevesse, N., Sauval, J. et al. (2009), The chemical composition of the Sun, Annu. Rev. Astron. Astrophys, 47, 481522.Google Scholar
Atreya, S. K. (1986), Atmospheres and Ionospheres of the Outer Planets and their Satellites, pp. 6679. Springer-Verlag, New York-Heidelberg.Google Scholar
Atreya, S. K., Adams, E. Y., Niemann, H. B. et al. (2006), Titan’s methane cycle, Planet. Space Sci., 54, 11771187.Google Scholar
Atreya, S. K., Donahue, T. M. and Kuhn, W. R. (1978), Evolution of a nitrogen atmosphere on Titan, Science, 201, 611613.Google Scholar
Atreya, S. K., Lorenz, R. D. and Waite, J. H. (2009), Volatile origin and cycles: Nitrogen and methane, in Titan from Cassini-Huygens, edited by Brown, R. H., Lebreton, J. P., and Waite, J., pp. 177199, Springer Dordrecht, Heidelberg-London-New York.Google Scholar
Atreya, S. K., Mahaffy, P. R., Niemann, H. B. et al. (2003), Composition and origin of the atmosphere of Jupiter: An update, and implications for the extrasolar giant planets, Planet. Space Sci., 51, 105112.Google Scholar
Atreya, S. K., Trainer, M. G., Franz, H B. et al. (2013), Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity, and implications for atmospheric loss, Geophys. Res. Lett., 40, 56055609.Google Scholar
Atreya, S. K. and Wong, A. S. (2005), Coupled chemistry and clouds of the giant planets: A case for multiprobes, Space Sci. Rev., 116, 121136.Google Scholar
Atreya, S. K., Wong, M. H., Owen, T. C. et al. (1999), A Comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing, and origin, Planet. Space Sci., 47, 12431262.Google Scholar
Ayliffe, B. and Bate, M. (2009a), Circumplanetary disc properties obtained from radiation hydrodynamical simulations of gas accretion by protoplanets, MNRAS, 397, 657665.Google Scholar
Ayliffe, B. and Bate, M. (2009b), Gas accretion on to planetary cores: Three-dimensional self-gravitating radiation hydrodynamical calculations, MNRAS, 393, 4964.Google Scholar
Ayliffe, B. and Bate, M. (2012), The growth and hydrodynamic collapse of a protoplanet envelope, MNRAS, 427, 25972612.Google Scholar
Baraffe, I., Chabrier, G. and Barman, T. (2008), Structure evolution of super-Earth to super-Jupiter exoplanets. I. Heavy element enrichment in the interior, Astron. Astrophys., 482, 315332.Google Scholar
Baraffe, I., Chabrier, G., Fortney, J. et al. (2014), Planetary internal structures, in Protostars and Planets VI, edited by Beuther, H., Klessen, R., Dullemond, C., and Henning, Th, University of Arizona Press, Tucson, AZ.Google Scholar
Barstow, J. K., Aigrain, S., Irwin, P. G. J. et al. (2014), Clouds on the Hot Jupiter HD189733b: Constraints from the Reflection Spectrum, Astrophys. J. 786, 154.Google Scholar
Baruteau, C., Crida, A., Paardekooper, S. J. et al. (2014), Planet-disc interactions and early evolution of planetary systems, in Protostars and Planets VI, edited by Beuter, H., Klessen, R., Dullemond, C., and Henning, T.. University of Arizona Press, Tucson, AZ.Google Scholar
Bate, M. R., Lubow, S. H., Ogilvie, G. I. et al. (2003), Three-dimensional calculations of high- and low-mass planets embedded in protoplanetary discs, MNRAS, 341, 213229.Google Scholar
Batygin, K. and Stevenson, D. J. (2010), Inflating hot Jupiters with ohmic dissipation, Astrophys. J., 714, L238L243.Google Scholar
Birkby, J. L., de Kok, R. J., Brogi, M. et al. (2013), Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 μm, MNRAS, 436, 3539.Google Scholar
Bitsch, B., Crida, A., Morbidelli, A. et al. (2013), Stellar irradiated discs and implications on migration of embedded planets. I. Equilibrium discs, Astron. Astrophys., 549, A124137.CrossRefGoogle Scholar
Bitsch, B., Morbidelli, A., Lega, E. et al. (2014), Stellar irradiated discs and implications on migration of embedded planets. II. Accreting-discs, Astron. Astrophys., 564, A135146.Google Scholar
Black, D. C. (1972), The origins of trapped helium, neon, and argon isotopic variations in meteorites-I, Geochim. Cosmochim. Acta, 36, 347375.Google Scholar
Bockelée-Morvan, D., Biver, N., Jehin, E. et al. (2008), Large excess of heavy nitrogen in both hydrogen cyanide and cyanogen from comet 17P/Holmes, Astrophys. J., 679, L49L52.CrossRefGoogle Scholar
Bolton, S. J., Adriani, S., Adumitroaie, V., Allison, M., Anderson, J., Atreya, S. K. et al. (2017), Jupiter’s interior and deep atmosphere: the initial pole-to-pole passes with the Juno spacecraft, Science, 356, 821–825.Google Scholar
Bodenheimer, P., Lin, D. N. C. and Mardling, R. A. (2001), On the tidal inflation of short-period extrasolar planets, Astrophys. J., 548, 466472.Google Scholar
Boss, A. P. (2000), Possible rapid gas giant planet formation in the solar nebula and other protoplanetary disks, Astrophys. J., 536, L101L104.Google Scholar
Briggs, F. H. and Sackett, P. D. (1989), Radio observations of Saturn as a probe of its atmosphere and cloud structure, Icarus, 80, 77103.Google Scholar
Brogi, M., Snellen, L. A. G., de Kok, R. J. et al. (2012), The signature of orbital motion from the dayside of the planet τ Boötis b, Nature, 486, 502504.Google Scholar
Burrows, A., Hubeny, I., Budaj, J. et al. (2007), Possible solutions to the radius anomalies of transiting giant planets, Astrophys. J., 661, 502514.Google Scholar
Cameron, A. G. W. (1973), Abundances of the elements in the solar system, Space Sci. Rev. 15, 121146.CrossRefGoogle Scholar
Cameron, A. G. W. (1979), The interaction between giant gaseous protoplanets and the primitive solar nebula, The Moon and the Planets, 21, 173183.Google Scholar
Cameron, A. G. W. (1982), Elemental and nuclidic abundances in the solar system, in Essays in Nuclear Astrophysics, edited by Fowler, W. A., pp. 2343, Cambridge University Press.Google Scholar
Canup, R. M. (2010), Origin of Saturn’s rings and inner moons by mass removal from a lost Titan-sized satellite, Nature, 468, 943946.Google Scholar
Canup, R. M. and Ward, W. R. (2002), Formation of the Galilean satellites: Conditions of accretion, Astron. J., 124, 34043423.Google Scholar
Castillo-Rogez, J., Johnson, T. V., Lee, M. H. et al. (2009), 26Al decay: Heat production and a revised age for Iapetus, Icarus, 204, 658662.Google Scholar
Charbonneau, D., Knutson, H. A., Barman, T. et al. (2008), The broadband infrared emission spectrum of the exoplanet HD 189733b, Astrophys. J., 686, 2, 13411348.Google Scholar
Charnoz, S., Crida, A., Castillo-Rogez, J. C. et al. (2011), Accretion of Saturn’s mid-sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate-poor rings versus silicate-rich moons, Icarus, 216, 535550.Google Scholar
Charnoz, S., Salmon, J. and Crida, A. (2010), The recent formation of Saturn’s moonlets from viscous spreading of the main rings, Nature, 465, 752754.Google Scholar
Chiang, E. and Goldreich, P. (1997), Spectral energy distributions of T Tauri stars with passive circumstellar disks, Astrophys. J., 490, 368376.Google Scholar
Chick, K. M. and Cassen, P. (1997), Thermal processing of interstellar dust grains in the primitive solar environment, Astrophys. J., 477, 398409.CrossRefGoogle Scholar
Conrath, B. J. and Gautier, D. (2000), Saturn helium abundance: A reanalysis of Voyager measurements, Icarus, 144, 124134.Google Scholar
Conrath, B. J., Gautier, D., Hanel, R. A. et al. (1984), The helium abundance of Saturn from Voyager measurements, Astrophys. J., 282, 807815.CrossRefGoogle Scholar
Conrath, B. J., Hanel, R. A. and Samuelson, R. E. (1989), Thermal structure and heat balance of the outer planets, in Origin and Evolution of Planetary and Satellite Atmospheres, edited by. Atreya, S. K., Pollack, J. B., and Matthews, M. S., pp. 513538, University of Arizona Press, Tucson, AZ.CrossRefGoogle Scholar
Cossou, C., Raymond, S. and Pierens, A. (2013), Convergence zones for Type I migration: An inward shift for multiple planet systems, Astron. Astrophys., 553, L2 (5 pp.).Google Scholar
Crida, A. and Batygin, K. (2014), Spin-Orbit angle distribution and the origin of (mis)aligned hot Jupiters, Astron. Astrophys., 567, A42 (8 pp.).Google Scholar
Crida, A. and Charnoz, S. (2012), Formation of regular satellites from ancient massive rings in the solar system, Science, 338, 11961199.Google Scholar
Crida, A. and Morbidelli, A. (2007), Cavity opening by a giant planet in a protoplanetary disc and effects on planetary migration, MNRAS, 377, 13241336.Google Scholar
Crida, A., Morbidelli, A. and Masset, F. (2006), On the width and shape of gaps in protoplanetary disks, Icarus, 181, 587604.Google Scholar
Croll, B., Lafreniere, D., Albert, L. et al. (2011), Near-infrared thermal emission from WASP-12b: Detections of the secondary eclipse in Ks, H, and J, Astron. J., 141, 3042.Google Scholar
Currie, T., Burrows, A., Itoh, Y. et al. (2011), A combined Subaru/VLT/MMT 1–5 μm study of planets orbiting HR 8799: Implications for atmospheric properties, masses, and formation, Astrophys. J., 729, 128147.Google Scholar
Dahmen, G., Wilson, T. L. and Matteucci, F. (1995), The nitrogen isotope abundance in the galaxy 1: The galactic disk gradient, Astron. Astrophys., 295, 194198.Google Scholar
Dartois, E., Dutrey, A. and Guilloteau, S. (2003), Structure of the DM Tau outer disk: probing the vertical kinetic temperature gradient, Astron. Astrophys., 399, 773787.Google Scholar
Delgado-Mena, E., Israelian, G., González Hernández, J. I. et al. (2010), Chemical clues on the formation of planetary systems: C/O versus Mg/Si for HARPS GTO sample, Astrophys. J., 725, 23492358.Google Scholar
Deming, D., Wilkins, A., McCullough, P. et al. (2013), Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the wide field camera-3 on the Hubble Space Telescope, Astrophys. J., 774, 95112.CrossRefGoogle Scholar
Demory, B. J., de Wit, J., Lewis, N. et al. (2013), Inference of inhomogeneous clouds in an exoplanet atmosphere, Astrophys. J. Lett., 776, L25 (7 pp.).Google Scholar
de Pater, I. and Massie, S. T. (1985), Models of the millimeter-centimeter spectra of the giant planets, Icarus, 62, 143171.CrossRefGoogle Scholar
Dodson-Robinson, S. E., Bodenheimer, P., Laughlin, G. et al. (2008), Saturn forms by core accretion in 3.4 Myr, Astrophys. J., 688, L99L102.Google Scholar
Dubrulle, B., Morfill, G. and Sterzik, M. (1995), The dust subdisk in the protoplanetary nebula, Icarus, 114, 237246.CrossRefGoogle Scholar
Dürmann, C. and Kley, W. (2015), Migration of massive planets in accreting disks, Astron. Astrophys., 574, A52.CrossRefGoogle Scholar
Dyudina, U. A., Ingersoll, A. P., Ewald, S. P. et al. (2010), Detection of visible lightning on Saturn, Geophys. Res. Lett., 37, L09205.Google Scholar
Dyudina, U. A., Ingersoll, A. P., Ewald, S. P. et al. (2013), Saturn’s visible lightning, its radio emissions, and the structure of the 2009–2011 lightning storms, Icarus, 226, 10201037.Google Scholar
Eberhardt, P. (1974), A Neon-E-rich phase in the orgueil carbonaceous chondrite, Earth Planet. Sci. Lett., 24, 182187.Google Scholar
Estrada, P. R., Mosqueira, I. and Charnoz, S. (2009), The Ganymede, Titan, Callisto, Iapetus trend: Interpretation of Iapetus’ composition, AGU Fall Meeting Abstracts, C1148.Google Scholar
Evans, T. M., Pont, F., Sing, D. K. et al. (2013), The deep blue color of HD 189733b: albedo measurements with Hubble Space Telescope/space telescope imaging spectrograph at visible wavelengths, Astrophys. J. Lett. 772, L16 (5 pp.).Google Scholar
Fabrycky, D. and Tremaine, S. (2007), Shrinking binary and planetary orbits by Kozai cycles with Tidal friction, Astrophys. J., 669, 12981315.Google Scholar
Fegley, B. and Prinn, R. G. (1985), Equilibrium and nonequilibrium chemistry of Saturn’s atmosphere: Implications for the observability of PH3, N2, CO, and GeH4, Astrophys. J., 299, 10671078.Google Scholar
Flasar, F. M., Achterberg, R. K., Conrath, B. J. et al. (2005), Temperatures, winds, and composition in the Saturnian system, Science, 307, 12471251.CrossRefGoogle ScholarPubMed
Fletcher, L. N., Baines, K. H., Momary, T. W. et al. (2011), Saturn’s tropospheric composition and clouds from Cassini/VIMS 4.6–5.1 μm nightside spectroscopy, Icarus, 214, 510533.Google Scholar
Fletcher, L. N., Greathouse, T. K., Orton, G. S. et al. (2014), The origin of nitrogen on Jupiter and Saturn from the 15N/14N ratio, Icarus, 238, 170190.Google Scholar
Fletcher, L. N., Orton, G. S., Teanby, N. A. et al. (2009a), Phosphine on Jupiter and Saturn from Cassini/CIRS, Icarus, 202, 543564.Google Scholar
Fletcher, L. N., Orton, G. S., Teanby, N. A.(2009b), Methane and its isotopologues on Saturn from Cassini/CIRS Observations, Icarus, 199, 351367.Google Scholar
Folkner, W. M., Woo, R. and Nandi, S. (1998), Ammonia abundance in Jupiter’s atmosphere derived from attenuation of the Galileo Probe’s radio signal, J. Geophys. Res., 103, 2284722856.Google Scholar
Fortney, J. J., Lodders, K., Marley, M. S. et al. (2008), A unified theory for the atmospheres of the hot and very hot Jupiters: Two classes of irradiated atmospheres, Astrophys. J., 678, 14191435.CrossRefGoogle Scholar
Fouchet, T., Lellouch, E., Bezard, B. et al. (2000), ISO-SWS observations of Jupiter: measurement of the ammonia tropospheric profile and of the 15N/14N isotopic ratio, Icarus, 143, 223243.Google Scholar
Fujii, Y. I., Okuzumi, S. and Inutsuka, S. (2011), A fast and accurate calculation scheme for ionization degrees in protoplanetary and circumplanetary disks with charged dust grains, Astrophys. J., 743, 5361.Google Scholar
Fujii, Y. I., Okuzumi, S., Tanigawa, T. et al. (2014), On the viability of the magnetorotational instability in circumplanetary disks, Astrophys. J., 785, 101108.Google Scholar
Gaudi, B. S. and Winn, J. N. (2007), Prospects for the characterization and confirmation of transiting exoplanets via the Rossiter–McLaughlin effect, Astrophys. J., 655, 550563.Google Scholar
Gaulme, P., Schmider, F. X., Gay, J. et al. (2011), Detection of Jovian seismic waves: A new probe of its interior structure, Astron. Astrophys., 531, A104 (7 pp.).Google Scholar
Gautier, D., Hersant, F., Mousis, O. et al. (2001), Enrichments in volatiles in Jupiter: A new interpretation of the Galileo measurements. Astrophys. J., 550, L227L230.Google Scholar
Geiss, J. (1993), Primordial abundance of hydrogen and helium isotopes, in Origin and Evolution of the Elements, edited by Prantzos, N., Vangioni-Flam, E., and Cassé, M., pp. 89106, Cambridge University Press, Cambridge.Google Scholar
Geiss, J. and Gloeckler, G. (1998), Abundances of deuterium and helium-3 in the protosolar cloud, Space Sci. Rev., 84, 239250.Google Scholar
Geiss, J. and Reeves, H. (1972), Cosmic and solar system abundances of deuterium and helium-3, Astron. Astrophys., 18, 126132.Google Scholar
Gibb, E. L., Whittet, D. C. B., Boogert, A. C. A. et al. (2004), Interstellar ice: The infrared space observatory legacy, Astrophys. J. Supp. Ser., 151, 3573.CrossRefGoogle Scholar
Gorti, U., Dullemond, C. P. and Hollenbach, D. (2009), Time evolution of viscous circumstellar disks due to photoevaporation by far-ultraviolet, extreme-ultraviolet, and X-ray radiation from the central star, Astrophys. J., 705, 12371251.Google Scholar
Grevesse, N., Asplund, M. and Sauval, A. J. (2005), The new solar chemical composition, in Elements Stratification in Stars, 40 Years of Atomic Diffusion, edited by Alecian, G., Richard, O., and Vauclair, S., 17, pp. 2130, EAS Publications Series.Google Scholar
Grevesse, N., Asplund, M. and Sauval, A. J. (2007), The solar chemical composition, Space Sci. Rev., 130, 105114.Google Scholar
Grossman, A. S., Pollack, J. B., Reynolds, R. T. et al. (1980), The effect of dense cores on the structure and evolution of Jupiter and Saturn, Icarus, 42, 358379.Google Scholar
Guillot, T. and Hueso, R. (2006), The composition of Jupiter: Sign of a (relatively) late formation in a chemically evolved protosolar disc, MNRAS, 367, L47L51.Google Scholar
Guillot, T., Santos, N. C., Pont, F. et al. (2006), A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars, Astron. Astrophys, 453, L21L24.Google Scholar
Guillot, T. and Showman, A. P. (2002), Evolution of “51 Pegasus b-like” planets, Astron. Astrophys., 385, 156165.Google Scholar
Guillot, T., Stevenson, D. J., Hubbard, W. B. et al. (2004), The interior of Jupiter, in Jupiter. The Planet, Satellites and Magnetosphere, edited by Bagenal, F., Dowling, T. E., and McKinnon, W. B., pp. 3557, Cambridge University Press, Cambridge.Google Scholar
Hartogh, P., Lis, D. C., Bockelée-Morvan, D. et al. (2011), Ocean-like water in the Jupiter-family comet 103P/Hartley 2, Nature, 478, 218220. doi:10.1038/nature10519; pmid: 21976024.Google Scholar
Hayashi, C. (1981), Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula, Prog. Theor. Phys. Supp., 70, 3553.Google Scholar
Haynes, K., Mandell, A. M., Madhusudhan, N. et al. (2015), Spectroscopic evidence for a temperature inversion in the dayside atmosphere of hot Jupiter WASP-33b, Astrophys. J., 806, 146, 12 pp.Google Scholar
Helled, R. and Guillot, T. (2013), Interior models of Saturn: Including the uncertainties in shape and rotation, Astrophys. J., 767, 113119.Google Scholar
Helled, R. and Lunine, J. I. (2014), Measuring Jupiter’s water abundance by Juno: The link between interior and formation models, MNRAS, 441, 22732279.Google Scholar
Helling, C., Woitke, P., Rimmer, P. B. et al. (2014), Disk evolution, element abundances and cloud properties of young gas giant planets, Life, 4, 142173.Google Scholar
Hersant, F., Gautier, D., Tobie, G. et al. (2008), Interpretation of the carbon abundance in Saturn measured by Cassini, Planet. Space Sci., 56, 11031111.Google Scholar
Hoffman, J. H., Hodges, R. R., McElroy, M. B. et al. (1979), Composition and structure of the Venus atmosphere: Results from Pioneer Venus, Science, 205, 4952.Google Scholar
Howard, A. W. (2013), Observed properties of extrasolar planets, Science, 340, 572576.Google Scholar
Hubeny, I., Burrows, A. and Sudarsky, D. (2003), A possible bifurcation in atmospheres of strongly irradiated stars and planets, Astrophys. J., 594, 10111018.Google Scholar
Ida, S., Lin, D. N. C. and Nagasawa, M. (2013), Toward a deterministic model of planetary formation. VII. Eccentricity distribution of gas giants, Astrophys. J., 775, 4266.Google Scholar
Ikoma, M., Emori, H. and Nakazawa, K. (2001), Formation of giant planets in dense nebulae: Critical core mass revisited, Astrophys. J., 553, 991005.CrossRefGoogle Scholar
Ishimaru, R., Sekine, Y., Matsui, T. et al. (2011), Oxidizing proto-atmosphere on Titan: Constraint from N2 formation by impact shock, Astrophys. J. Lett., 741, L10 (6 pp.).Google Scholar
Janson, M., Brandt, T. D., Kuzuhara, M. et al. (2013), Direct imaging detection of methane in the atmosphere of GJ 504 b, Astrophys. J. Lett., 778, L4 (6 pp.).Google Scholar
Jewitt, D., Matthews, H. E., Owen, T. et al. (1997), The 12C/13C, 14N/15N and 32S/ 34S isotope ratios in comet Hale–Bopp (C/1995 O1), Science, 278, 9093.Google Scholar
Johansen, A., Oishi, J. S., Mac Low, M. et al. (2007), Rapid planetesimal formation in turbulent circumstellar disks, Nature, 448, 10221025.Google Scholar
Johansen, A. and Youdin, A. (2007), Protoplanetary disk turbulence driven by the streaming instability: Nonlinear saturation and particle concentration, Astrophys. J., 662, 627641.Google Scholar
Johansen, A., Youdin, A. and Mac Low, M. M. (2009), Particle clumping and planetesimal formation depend strongly on metallicity, Astrophys. J., 704, L75L79.Google Scholar
Johnson, J. A., Aller, K. M., Howard, A. W. et al. (2010), Giant planet occurrence in the stellar mass-metallicity plane, PASP, 122, 905915.Google Scholar
Jones, T. D. and Lewis, J. S. (1987), Estimated impact shock production of N2 and organic compounds on early Titan, Icarus, 72, 381393.CrossRefGoogle Scholar
Karkoschka, E. and Tomasko, M. G. (2011), The haze and methane distributions on Neptune from HST-STIS spectroscopy, Icarus, 211, 328340.Google Scholar
Knutson, H. A., Howard, A. W. and Isaacson, H. (2010), A correlation between stellar activity and hot Jupiter emission spectra, Astrophys. J., 720, 15691576.Google Scholar
Kokubo, E. and Ida, S. (1998), Oligarchic growth of protoplanets, Icarus, 131, 171178.Google Scholar
Konopacky, Q. M., Barman, T. S., Macintosh, B. A. et al. (2013), Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere, Science, 339, 13981401.Google Scholar
Kouchi, A., Yamamoto, T., Kozasa, T. et al. (1994), Conditions for condensation and preservation of amorphous ice and crystallinity of astrophysical ices, Astron. Astrophys., 290, 10091018.Google Scholar
Kreidberg, L., Bean, J. L., Désert, J. M. et al. (2014), A precise water abundance measurement for the hot Jupiter WASP-43b, Astrophys J. Lett., 793, L27 (6 pp.).Google Scholar
Lainey, V., Jacobson, R. A., Tajeddine, R. et al. (2015), New constraints on Saturn’s interior from Cassini astrometric data. Submitted.Google Scholar
Lainey, V., Karatakin, Ö., Desmars, J. et al. (2012), Strong tidal dissipation in Saturn and constraints on Enceladus’ thermal state from astrometry, Astrophys. J., 752, 1432.Google Scholar
Lambrechts, M. and Johansen, A. (2012), Rapid growth of gas-giant cores by pebble accretion, Astron. Astrophys., 544, A32.Google Scholar
Lambrechts, M., Johansen, A. and Morbidelli, A. (2014), Separating gas-giant and ice-giant planets by halting pebble accretion, Astron. Astrophys., 572, A35.Google Scholar
Laraia, A. L., Ingersoll, A. P., Janssen, M. A. et al. (2013), Analysis of Saturn’s thermal emission at 2.2-cm wavelength: Spatial distribution of ammonia vapor, Icarus, 226, 641654.Google Scholar
Leconte, J., Chabrier, G., Baraffe, I. et al. (2010), Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity, Astron. Astrophys., 516, A64 (13 pp.).Google Scholar
Lee, J. M., Fletcher, L. N. and Irwin, P. G. J. (2012), Optimal estimation retrievals of the atmospheric structure and composition of HD 189733b from secondary eclipse spectroscopy, MNRAS, 420, 170182.Google Scholar
Lellouch, E., Bézard, B., Fouchet, T. et al. (2001), The deuterium abundance in Jupiter and Saturn from ISO-SWS observations, Astron. Astrophys., 370, 610622.Google Scholar
Li, C. and Ingersoll, A. P. (2015), Moist convection in hydrogen atmospheres and the frequency of Saturn’s giant storms, Nat. Geosci. 8, 398403.Google Scholar
Lin, D. N. C., Bodenheimer, P. and Richardson, D. C. (1996), Orbital migration of the planetary companion of 51 Pegasi to its present location, Nature, 380, 606607.Google Scholar
Lin, D. N. C. and Papaloizou, J. (1986), On the tidal interaction between protoplanets and the protoplanetary disk. III. Orbital migration of protoplanets, Astrophys. J., 309, 846857.Google Scholar
Lodders, K. (2004), Jupiter formed with more tar than ice, Astrophys. J., 611, 587597.Google Scholar
Lodders, K. (2008), The solar argon abundance, Astrophys. J., 674, 607611.Google Scholar
Lodders, K. and Fegley, B. (2002), Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. I. Carbon, nitrogen, and oxygen, Icarus, 155, 393424.Google Scholar
Lodders, K., Palme, H. and Gail, H. P. (2009), Abundances of the elements in the solar system, in Landolt-Börnstein New Series, Astron. and Astrophys., edited by Trümper, J. E., vol. VI/4B, pp. 560630, Springer-Verlag, Berlin.Google Scholar
Lunine, J. I., Atreya, S. K. and Pollack, J. B. (1989), Present state and chemical evolution of the atmospheres of Titan, Triton, and Pluto, in Origin and Evolution of Planetary and Satellite Atmospheres, edited by Atreya, S. K., Pollack, J. B., and Matthews, M. S., pp. 605665, University of Arizona Press, Tucson, AZ.Google Scholar
Lyra, W., Paardekooper, S. and Mac Low, M. (2010), Orbital migration of low-mass planets in evolutionary radiative models: Avoiding catastrophic infall, Astrophys. J. Lett., 715, L68L73.Google Scholar
Machida, M. N., Kokubo, E., Inutsuka, S. I. et al. (2008), Angular momentum accretion onto a gas giant planet, Astrophys. J., 685, 12201236.Google Scholar
Macintosh, B., Graham, J. R., Barman, T. et al. (2015), Discovery and spectroscopy of the young Jovian planet 51 Eri b with the Gemini Planet Imager, Science, 350, 6467.CrossRefGoogle Scholar
Madhusudhan, N. (2012), C/O ratio as a dimension for characterizing exoplanetary atmospheres, Astrophys. J., 758, 3657.Google Scholar
Madhusudhan, N., Amin, M. A. and Kennedy, G. M. (2014c), Toward chemical constraints on hot Jupiter migration, Astrophys. J. Lett., 794, 12.Google Scholar
Madhusudhan, N., Crouzet, N., McCullough, P. R. et al. (2014a), H2O abundances in the atmospheres of three hot Jupiters, Astrophys. J. Lett., 791, L9 (5 pp.).Google Scholar
Madhusudhan, N., Harrington, J., Stevenson, K. B. et al. (2011a), A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b, Nature, 469, 6467.Google Scholar
Madhusudhan, N., Knutson, H., Fortney, J. et al. (2014b), Exoplanetary atmospheres, in Protostars and Planets VI, edited by Beuther, H., Klessen, R., Dullemond, C., and Henning, Th., University of Arizona Press, Tucson, AZ.Google Scholar
Madhusudhan, N., Mousis, O., Johnson, T. V. et al. (2011b), Carbon-rich giant planets: atmospheric chemistry, thermal inversions, spectra, and formation conditions, Astrophys. J., 743, 191202.Google Scholar
Madhusudhan, N. and Seager, S. (2010), On the inference of thermal inversions in hot Jupiter atmospheres, Astrophys. J., 725, 261274.Google Scholar
Mahaffy, P. R., Donahue, T. M., Atreya, S. K. et al. (1998), Galileo Probe measurements of D/H and 3He/4He in Jupiter’s atmosphere, Space Sci. Rev., 84, 251263.Google Scholar
Mahaffy, P. R., Niemann, H. B., Alpert, A. et al. (2000), Noble gas abundances and isotope ratios in the atmosphere of Jupiter from the Galileo probe mass spectrometer, J. Geophys. Res. (Planets), 105 (E6), 1506115071.Google Scholar
Mahaffy, P. R., Webster, C. R., Stern, J. C. et al. (2014), The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars, Science, 347, 415417.Google Scholar
Mandell, A., Haynes, K., Sinukoff, E. et al. (2013), Exoplanet transit spectroscopy using WFC3: WASP-12 b, WASP-17 b, and WASP-19 b, Astrophys. J., 779, 128.Google Scholar
Mandt, K. E., Mousis, O., Lunine, J. I. et al. (2014), Protosolar ammonia as the unique source of Titan’s nitrogen, Astrophys. J. Lett., 788, L24 (5 pp.).Google Scholar
Marboeuf, U., Thiabaud, A., Alibert, A. et al. (2014), From stellar nebula to planetesimals, Astron. Astrophys., 570, 35.Google Scholar
Marley, M. S., Saumon, D., Cushing, M. et al. (2012), Masses, radii, and cloud properties of the HR 8799 planets, Astrophys. J., 753, 135152.Google Scholar
Marois, C., Zuckerman, B., Konopacky, Q. M. et al. (2010), Images of a fourth planet orbiting HR 8799, Science, 468, 10801083.Google Scholar
Marty, B., Chaussidon, M., Wiens, R. C. et al. (2011), A 15N-poor isotopic composition for the solar system as shown by genesis solar wind samples, Science, 332, 15331536.Google Scholar
Masset, F. and Snellgrove, M. (2001), Reversing type II migration: Resonance trapping of a lighter giant protoplanet, MNRAS, 320, L55L59.CrossRefGoogle Scholar
Mathew, K. J. and Marti, K. (2001), Early evolution of Martian volatiles: Nitrogen and noble gas components in ALH84001 and Chassigny, J. Geophys. Res., 106, 14011422.Google Scholar
Matter, A., Guillot, T. and Morbidelli, A. (2009), Calculation of the enrichment of the giant planet envelopes during the “late heavy bombardment,” Planet. Space Sci., 57, 816821.Google Scholar
Mayer, L., Quinn, T., Wadsley, K. et al. (2002), Formation of giant planets by fragmentation of protoplanetary disks, Science, 298, 17561759.Google Scholar
McCullough, P. R., Crouzet, N., Deming, D. et al. (2014), Water vapor in the spectrum of the extrasolar planet HD 189733b: 1. The transit, Astrophys. J., 791, 55.Google Scholar
McKay, C. P., Scattergood, T. W., Pollack, J. B. et al. (1988), High-temperature shock formation of N2 and organics on primordial Titan, Nature, 332, 520522.Google Scholar
Menou, K. (2012), Thermo-resistive instability of hot planetary atmospheres, Astrophys. J., 754, L9L14.Google Scholar
Mizuno, H. (1980), Formation of the giant planets, Progr. Theor. Phys. 64, 544557.Google Scholar
Morbidelli, A. and Crida, A. (2007), The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk, Icarus, 191, 158171.Google Scholar
Morbidelli, A. and Nesvorny, D. (2012), Dynamics of pebbles in the vicinity of a growing planetary embryo: Hydro-dynamical simulations, Astron. Astrophys., 546, A1825.Google Scholar
Morbidelli, A., Szulágyi, J., Crida, A. et al. (2014), Meridional circulation of gas into gaps opened by giant planets in three-dimensional low-viscosity disks, Icarus, 232, 266270.Google Scholar
Mordasini, C., Alibert, Y. and Benz, W. (2009), Extrasolar planet population synthesis. I. Method, formation, tracks, and mass-distance distribution, Astron. Astrophys., 501, 11391160.CrossRefGoogle Scholar
Moses, J. I., Madhusudhan, N., Visscher, C. et al. (2013), Chemical consequences of the C/O ratio on hot Jupiters: Examples from WASP-12b, CoRoT-2b, XO-1b, and HD 189733b, Astrophys. J., 763, 2551.Google Scholar
Mousis, O., Alibert, Y. and Benz, W. (2006), Saturn’s internal structure and carbon enrichment, Astron. Astrophys., 449, 411415.Google Scholar
Mousis, O., Gautier, D. and Bockelée-Morvan, D. (2002), An evolutionary turbulent model of Saturn’s subnebula: Implications for the origin of the atmosphere of Titan, Icarus, 156, 162175.Google Scholar
Mousis, O., Lunine, J. I., Madhusudhan, N. et al. (2012), Nebular water depletion as the cause of Jupiter’s low oxygen abundance, Astrophys. J. 751, L7 (5 pp.).Google Scholar
Mousis, O., Lunine, J. I., Pasek, M. et al. (2009a), A primordial origin for the atmospheric methane of Saturn’s moon Titan, Icarus, 204, 749751.Google Scholar
Mousis, O., Lunine, J. I., Thomas, C. et al. (2009b), Clathration of volatiles in the solar nebula and implications for the origin of Titan’s atmosphere, Astrophys. J., 691, 17801786.Google Scholar
Mousis, O., Marboeuf, U., Lunine, J. I. et al. (2009c), Determination of the minimum masses of heavy elements in the envelopes of Jupiter and Saturn, Astrophys. J., 696, 13481354.Google Scholar
Nettelmann, N., Püstow, R. and Redmer, R. (2013), Saturn layered structure and homogeneous evolution models with different EOSs, Icarus, 225, 548557.Google Scholar
Niemann, H. B., Atreya, S. K., Bauer, S. J. et al. (2005), The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe, Nature, 438, 779784.Google Scholar
Niemann, H. B., Atreya, S. K., Carignan, G. R. et al. (1998), The composition of the jovian atmosphere as determined by the Galileo probe mass spectrometer, J. Geophys. Res., 103, 2283122845.Google Scholar
Niemann, H. B., Atreya, S. K., Demick, J. E. et al. (2010), The composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini–Huygens probe gas chromatograph mass spectrometer experiment, J. Geophys. Res. (Planets), 115, E12006.Google Scholar
Notesco, G. and Bar-Nun, A. (2005), A ~25 K temperature of formation for the submicron ice grains which formed comets, Icarus, 175, 546550.Google Scholar
Öberg, K. I., Boogert, A. C. A., Pontoppidan, K. M. et al. (2011a), II, The Spitzer ice legacy: Ice evolution from cores to protostars, Astrophys. J., 740, 109124.Google Scholar
Öberg, K. I., Murray-Clay, R. and Bergin, E. A. (2011b), The effects of snowlines on C/O in planetary atmospheres, Astrophys. J. Lett., 743, L16 (5 pp.).Google Scholar
Owen, T. and Encrenaz, T. (2006), Compositional constraints on the giant planet formation, Planet. Space Sci. 54, 11881196.Google Scholar
Owen, T., Mahaffy, P., Niemann, H. et al. (1999), A low-temperature origin for the planetesimals that formed Jupiter, Nature, 402, 269270.Google Scholar
Owen, T., Mahaffy, P., Niemann, H. et al. (2001), Protosolar nitrogen, Astophys. J., 553, L77L79.Google Scholar
Paardekooper, S. J., Baruteau, C., Crida, A. et al. (2010), A torque formula for non-isothermal type I planetary migration: I. Unsaturated horseshoe drag, MNRAS, 401, 19501964.Google Scholar
Paardekooper, S. J., Baruteau, C. and Kley, W. (2011), A torque formula for non-isothermal Type I planetary migration: II. Effects of diffusion, MNRAS, 410, 293303.Google Scholar
Paardekooper, S. J. and Mellama, G. (2006), Halting type I planet migration in non-isothermal disks, Astron. Astrophys., 459, L17L20.Google Scholar
Palme, H. and Jones, A. (2003), Solar system abundances of the elements, in Treatise on Geochemistry, edited by Holland, H. D. and Turekian, K., Elsevier, pp. 4161.Google Scholar
Papaloizou, J. and Lin, D. N. C. (1984), On the tidal interaction between protoplanets and the primordial solar nebula: I. Linear calculation of the role of angular momentum exchange, Astrophys. J., 285, 818834.Google Scholar
Pollack, J. B., Hubickyj, O., Bodenheimer, P. et al. (1996), Formation of the giant planets by concurrent accretion of solids and gas, Icarus, 124, 6285.CrossRefGoogle Scholar
Pont, F., Sing, D. K., Gibson, N. P. et al. (2013), The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations, Mon. Not. R. Astron. Soc., 432, 29172944.Google Scholar
Prinn, R. G. and Fegley, B. (1981), Kinetic inhibition of CO and N2 reduction in circumplanetary nebulae: Implications for satellite composition, Astrophys. J., 249, 308317.Google Scholar
Prinn, R. G. and Fegley, B. (1989), Solar nebula chemistry: Origins of planetary, satellite and cometary volatiles, in Origin and Evolution of Planetary and Satellite Atmospheres, edited by Atreya, S. K., Pollack, J. B., and Matthews, M. S., pp. 78136, University of Arizona Press, Tucson, AZ.Google Scholar
Rasio, F. A. and Ford, E. B. (1996), Dynamical instabilities and the formation of extrasolar planetary systems, Science, 274, 954956.Google Scholar
Redfield, S., Endl, M., Cochran, W. D. et al. (2008), Sodium absorption from the exoplanetary atmosphere of HD 189733b detected in the optical transmission spectrum, Astrophys. J., 673, L87L90.Google Scholar
Remus, F., Mathis, S., Zahn, J. P. et al. (2012), Anelastic tidal dissipation in multi-layer planets, Astron. Astrophys., 541, A165 (17 pp.).Google Scholar
Rivier, G., Crida, A., Morbidelli, A. et al. (2012), Circum-planetary discs as bottlenecks for gas accretion onto giant planets, Astron. Astrophys., 548, A116 (7 pp.).Google Scholar
Rosman, K. J. R. and Taylor, P. D. P. (1998), Isotopic compositions of the elements, J. Phys. Chem. Ref. Data, 27, 12751287.Google Scholar
Roulston, M. S. and Stevenson, D. J. (1995), Prediction of neon depletion in Jupiter’s atmosphere (abstract), EOS Abstr., AGU Fall Mtg., 76, 343.Google Scholar
Rousselot, P., Pirali, O., Jehin, E. et al. (2014), Toward a unique nitrogen isotopic ratio in cometary ices, Astrophys. J. Lett, 780, L17 (5 pp.).Google Scholar
Salmon, J., Charnoz, S., Crida, A. et al. (2010), Long-term and large-scale viscous evolution of dense planetary rings, Icarus, 209, 771785.Google Scholar
Seager, S. and Sasselov, D. (2000), Theoretical transmission spectra during extrasolar giant planet transits, Astrophys. J., 537, 916921.Google Scholar
Sekine, Y., Genda, H., Sugita, S. et al. (2011), Replacement and late formation of atmospheric N2 on undifferentiated Titan by impacts, Nature Geoscience, 4, 359362.Google Scholar
Sekine, Y., Sugita, S., Shido, T. et al. (2005), The role of Fischer Tropsch catalysis in the origin of methane-rich Titan, Icarus, 178, 154164.Google Scholar
Sing, D. K., Pont, F., Aigrain, S. et al. (2011), Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: High-altitude atmospheric haze in the optical and near-ultraviolet with STIS, Mon. Not. R. Astron. Soc., 416, 14431455.Google Scholar
Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W. et al. (2010), The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b, Nature, 465, 10491053.Google Scholar
Spiegel, D. S. and Burrows, A. (2013), Thermal processes governing hot-Jupiter radii, Astrophys. J., 772, 7689.Google Scholar
Spiegel, D. S., Silverio, K. and Burrows, A. (2009), Can TiO explain thermal inversions in the upper atmospheres of irradiated giant planets?, Astrophys. J., 699, 14871500.Google Scholar
Sromovsky, L. A., Fry, P. M. and Kim, J. H. (2011), Methane on Uranus: The case for a compact CH4 cloud layer at low latitudes and a severe CH4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy, Icarus, 215, 292312.Google Scholar
Stevenson, K. B., Desert, J.-M., Line, M. R. et al. (2014), Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy, Science, 346, 838841.Google Scholar
Sudarsky, D., Burrows, A. and Hubeny, I. (2003), Theoretical spectra and atmospheres of extrasolar giant planets, Astrophys. J., 588, 11211148.Google Scholar
Sumi, T., Kamiya, K., Udalski, A. et al. (2011), Unbound or distant planetary mass population detected by gravitational microlensing, Nature, 473, 349352.Google Scholar
Szula×i, J., Morbidelli, A., Crida, A. et al. (2014), Accretion of Jupiter-mass planets in the limit of vanishing viscosity, Astrophys. J., 782, 6575.Google Scholar
Tanigawa, T., Ohtsuki, K. and Machida, M. N. (2012), Distribution of accreting gas and angular momentum onto circumplanetary disks, Astrophys. J., 747, 4762.Google Scholar
Triaud, A. H. M. J., Collier Cameron, A., Queloz, D. et al. (2010), Spin-orbit angle measurements for six southern transiting planets: New insights into the dynamical origins of hot Jupiters, Astron. and Astrophys, 524, A25.Google Scholar
Tsiganis, K., Gomes, R., Morbidelli, A. et al. (2005), Origin of the orbital architecture of the giant planets of the Solar System, Nature, 435, 459461.Google Scholar
Turner, N. J., Fromang, S., Gammie, C. et al. (2014), Transport and accretion in planet-forming disks, in Protostars and Planets VI, edited by Beuter, H., Klessen, R., Dullemond, C., and Henning, T.. University of Arizona Press, Tucson, AZ.Google Scholar
Turner, N. J., Lee, M. H. and Sano, T. (2010), The formation environment of the Galilean moons. American Astronomical Society, DPS Meeting No. 42, Abst. 24.08.Google Scholar
Turner, N. J., Lee, M. H. and Sano, T. (2014), Magnetic coupling in the disks around young gas giant planets, Astrophys. J., 783, 1428.Google Scholar
Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J. M. et al. (2003), An extended upper atmosphere around the extrasolar planet HD209458b, Nature, 422, 143146.Google Scholar
Visscher, C. and Fegley, B. (2005), Chemical constraints on the water and total oxygen abundances in the deep atmosphere of Saturn, Astrophys. J., 623, 12211227.Google Scholar
Vogel, N., Heber, V. S., Baur, H. et al. (2011), Argon, krypton, and xenon in the bulk solar wind as collected by the genesis mission, Geochim. Cosmochim. Acta, 75, 30573071.Google Scholar
von Zahn, U., Hunten, D. M. and Lehmacher, G. (1998), Helium in Jupiter’s atmosphere: results from the Galileo probe helium interferometer experiment, J. Geophys. Res., 103, 2281522830.Google Scholar
von Zahn, U., Komer, S., Wieman, H. et al. (1983), Composition of the Venus atmosphere, in Venus, edited by Hunten, D. M., Colin, L., Donahue, T. M., and Moroz, V. I., pp. 297430, University of Arizona Press, Tucson, AZ.Google Scholar
Walsh, K., Morbidelli, A., Raymond, S. N. et al. (2011), A low mass for Mars from Jupiter’s early gas-driven migration, Nature, 475, 206209.Google Scholar
Ward, W. R. (1997), Protoplanet migration by nebula tides, Icarus, 126, 261281.Google Scholar
Webster, C. R., Mahaffy, P. R., Flesch, G. J. et al. (2013), Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere, Science, 341, 260263.Google Scholar
Weidenschilling, S. J. (1984), Evolution of grains in a turbulent solar nebula, Icarus, 60, 553568.Google Scholar
Wilson, H. F. and Militzer, B. (2010), Sequestration of noble gases in giant planet interiors, Phys. Rev. Lett., 104, 121101 (4 pp.).Google Scholar
Wilson, H. F. and Militzer, B. (2012), Solubility of water ice in metallic hydrogen: Consequences for core erosion in gas giant planets, Astrophys. J., 745, 5458.Google Scholar
Winn, J. N., Fabrycky, D., Albrecht, S. et al. (2010), Hot stars with hot Jupiters have high obliquities, Astrophys. J. Lett., 718, L145L149.Google Scholar
Wong, M. H., Atreya, S. K., Kuhn, W. R. et al. (2015), Fresh clouds: A parameterized updraft method for calculating cloud densities in one-dimensional models, Icarus, 245, 273281.Google Scholar
Wong, M. H., Atreya, S. K., Mahaffy, P. N. et al. (2013), Isotopes of nitrogen on Mars: atmospheric measurements by Curiosity’s mass spectrometer, Geophys. Res. Lett., 40, 60336037.Google Scholar
Wong, M. H., Mahaffy, P. R., Atreya, S. K. et al. (2004), Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter, Icarus, 171, 153170.Google Scholar
Youdin, A. N. and Goodman, J. (2005), Streaming instabilities in protoplanetary disks, Astrophys. J., 620, 459469.Google Scholar
Youdin, A. N. and Mitchell, J. L. (2010), The mechanical greenhouse: Burial of heat by turbulence in hot Jupiter atmospheres, Astrophys. J., 721, 11131126.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×