Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T21:08:48.663Z Has data issue: false hasContentIssue false

11 - The Global Atmospheric Circulation of Saturn

Published online by Cambridge University Press:  13 December 2018

Kevin H. Baines
Affiliation:
University of Wisconsin, Madison
F. Michael Flasar
Affiliation:
NASA-Goddard Space Flight Center
Norbert Krupp
Affiliation:
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Tom Stallard
Affiliation:
University of Leicester
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achterberg, R. K. and Flasar, F. M. (1996), Planetary-scale thermal waves in Saturn’s upper troposphere. Icarus, 119, 350369.Google Scholar
Achterberg, R. K., Gierasch, P. J., Conrath, B. J., Fletcher, L. N., Hesman, B. E., Bjoraker, G. L. and Flasar, F. M. (2014), Changes to Saturn’s zonal-mean tropospheric thermal structure after the 2010–2011 northern hemisphere storm. Astrophys. J., 786, 92.Google Scholar
Anderson, J. D., and Schubert, G. (2007), Saturn’s gravitational field, internal rotation, and interior structure. Science, 317, 13841387.Google Scholar
Andrews, D. G., Holton, J. R., and Leovy, C. B. (1987), Middle Atmosphere Dynamics. New York: Academic Press.Google Scholar
Antuñano, A., Río-Gaztelurrutia, T., Sánchez-Lavega, A., and Hueso, R. (2015), Dynamics of Saturn’s polar regions. Journal of Geophysical Research (Planets), 120, 155176.CrossRefGoogle Scholar
Atreya, S. K. (2006), Saturn probes: Why, where, how? Proceedings: International Planetary Probe Workshop, IPPW-4, Pasadena, California.Google Scholar
Aurnou, J., Heimpel, M., Allen, L., King, E. and Wicht, J. (2008), Convective heat transfer and the pattern of thermal emission on the gas giants. Geophysical Journal International, 173, 793801.Google Scholar
Aurnou, J. M. and Olson, P. L. (2001), Strong zonal winds from thermal convection in a rotating spherical shell. Geophys. Res. Lett., 28, 25572560.CrossRefGoogle Scholar
Baines, K. H., Momary, T. W., Fletcher, L. N., Showman, A. P., Roos-Serote, M., Brown, R. H., Buratti, B. J., Clark, R. N. and Nicholson, P. D. (2009), Saturn’s north polar cyclone and hexagon at depth revealed by Cassini/VIMS. Planet. Space Sci., 57, 16711681.Google Scholar
Baldwin, M. P. et al. (2001), The quasi-biennial oscillation. Reviews of Geophysics, 39, 179230.CrossRefGoogle Scholar
Barcilon, A. and Gierasch, P. (1970), A moist, Hadley cell model for Jupiter’s cloud bands. Journal of Atmospheric Sciences, 27, 550560.Google Scholar
Barnet, C. D., Westphal, J. A., Beebe, R. F. and Huber, L. F. (1992), Hubble Space Telescope observations of the 1990 equatorial disturbance on Saturn: Zonal winds and central meridian albedos. Icarus, 100, 499511.Google Scholar
Beebe, R. F., Ingersoll, A. P., Hunt, G. E., Mitchell, J. L. and Muller, J.-P. (1980), Measurements of wind vectors, eddy momentum transports, and energy conversions in Jupiter’s atmosphere from Voyager 1 images. Geophys. Res. Lett., 7, 14.Google Scholar
Bezard, B. and Gautier, D. (1985), A seasonal climate model of the atmospheres of the giant planets at the Voyager encounter time: I. Saturn’s stratosphere. Icarus, 61, 296310.Google Scholar
Busse, F. H. (1976), A simple model of convection in the Jovian atmosphere. Icarus, 29, 255260.Google Scholar
Busse, F. H. (1994), Convection driven zonal flows and vortices in the major planets. Chaos, 4, 123134.Google Scholar
Busse, F. H. (2002), Convective flows in rapidly rotating spheres and their dynamo action. Physics of Fluids, 14, 13011314.Google Scholar
Cai, T. and Chan, K. L. (2012), Three-dimensional numerical simulation of convection in giant planets: Effects of solid core size. Planet. Space. Sci, 71, 125130.Google Scholar
Cao, H. and Stevenson, D. J. (2015), Gravity and zonal flows of giant planets: From the Euler equation to the thermal wind equation. ArXiv e-prints.Google Scholar
Cavalié, T., Dobrijevic, M., Fletcher, L. N., Loison, J.-C., Hickson, K. M., Hue, V. and Hartogh, P. (2015), Photochemical response to the variation of temperature in the 2011–2012 stratospheric vortex of Saturn. Astron. Astrophys., 580, A55.Google Scholar
Cess, R. D. and Caldwell, J. (1979), A Saturnian stratospheric seasonal climate model. Icarus, 38, 349357.Google Scholar
Chan, K. L. and Mayr, H. G. (2013), Numerical simulation of convectively generated vortices: Application to the Jovian planets. Earth Planet. Sci. Lett., 371, 212219.Google Scholar
Cho, J. Y.-K. and Polvani, L. M. (1996), The emergence of jets and vortices in freely evolving, shallow-water turbulence on a sphere. Physics of Fluids, 8, 15311552.Google Scholar
Choi, D. S., Showman, A. P. and Brown, R. H. (2009), Cloud features and zonal wind measurements of Saturn’s atmosphere as observed by Cassini/VIMS. Journal of Geophysical Research (Planets), 114, E04,007.Google Scholar
Christensen, U. R. (2001), Zonal flow driven by deep convection in the major planets. Geophys. Res. Lett., 28, 25532556.Google Scholar
Christensen, U. R. (2002), Zonal flow driven by strongly super-critical convection in rotating spherical shells. Journal of Fluid Mechanics, 470, 115133.CrossRefGoogle Scholar
Conrath, B. J., Gierasch, P. J. and Leroy, S. S. (1990), Temperature and circulation in the stratosphere of the outer planets. Icarus, 83, 255281.Google Scholar
Conrath, B. J. and Pirraglia, J. A. (1983), Thermal structure of Saturn from Voyager infrared measurements: Implications for atmospheric dynamics. Icarus, 53, 286292.Google Scholar
Del Genio, A. D., Achterberg, R. K., Baines, K. H., Flasar, F. M., Read, P. L., Sánchez-Lavega, A. and Showman, A. P. (2009), Saturn Atmospheric Structure and Dynamics. Saturn from Cassini-Huygens, eds. Dougherty, M. K., Esposito, L. W. and Krimigis, S. M., Springer, pp. 113159.Google Scholar
Del Genio, A. D. and Barbara, J. M. (2012), Constraints on Saturn’s tropospheric general circulation from Cassini ISS images. Icarus, 219, 689700.Google Scholar
Desch, M. D. and Kaiser, M. L. (1981), Voyager measurement of the rotation period of Saturn’s magnetic field. Geophys. Res. Lett., 8, 253256.CrossRefGoogle Scholar
Dowling, T. E. (1995a), Dynamics of jovian atmospheres. Annual Review of Fluid Mechanics, 27, 293334.Google Scholar
Dowling, T. E. (1995b), Estimate of Jupiter’s deep zonal-wind profile from Shoemaker-Levy 9 data and Arnol’d’s second stability criterion. Icarus, 117, 439442.Google Scholar
Dowling, T. E. (2014), Saturn’s longitude: Rise of the second branch of shear-stability theory and fall of the first. International Journal of Modern Physics D, 23, 1430006.Google Scholar
Dritschel, D. G. and McIntyre, M. E. (2008), Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. Journal of Atmospheric Sciences, 65, 855874.Google Scholar
Duarte, L. D. V., Gastine, T. and Wicht, J. (2013), Anelastic dynamo models with variable electrical conductivity: An application to gas giants. Phys. Earth Planet. Int., 222, 2234.Google Scholar
Dunkerton, T. (1978), On the mean meridional mass motions of the stratosphere and mesosphere. J. Atmos. Sci., 35, 23252333.2.0.CO;2>CrossRefGoogle Scholar
Dyudina, U. A., Ingersoll, A. P., Ewald, S. P., Porco, C. C., Fischer, G. and Yair, Y. (2013), Saturn’s visible lightning, its radio emissions, and the structure of the 2009–2011 lightning storms. Icarus, 226, 10201037.Google Scholar
Dyudina, U. A. et al. (2007), Lightning storms on Saturn observed by Cassini ISS and RPWS during 2004–2006. Icarus, 190, 545555.CrossRefGoogle Scholar
Dyudina, U. A. (2008), Dynamics of Saturn’s South Polar Vortex. Science, 319, 1801.Google Scholar
Evonuk, M. and Glatzmaier, G. A. (2004), 2D studies of various approximations used for modeling convection in giant planets. Geophysical and Astrophysical Fluid Dynamics, 98, 241255.Google Scholar
Evonuk, M. and Glatzmaier, G. A. (2006), A 2D study of the effects of the size of a solid core on the equatorial flow in giant planets. Icarus, 181, 458464.Google Scholar
Evonuk, M. and Glatzmaier, G. A. (2007), The effects of rotation rate on deep convection in giant planets with small solid cores. Planet. Space Sci., 55, 407412.Google Scholar
Fischer, G. et al. (2011), A giant thunderstorm on Saturn. Nature, 475, 7577.Google Scholar
Flasar, F. M. et al. (2004), An intense stratospheric jet on Jupiter. Nature, 427, 132135.Google Scholar
Flasar, F. M. (2005), Temperatures, winds, and composition in the Saturnian system. Science, 307, 12471251.Google Scholar
Fletcher, L. N., Baines, K. H., Momary, T. W., Showman, A. P., Irwin, P. G. J., Orton, G. S., Roos-Serote, M. and Merlet, C. (2011), Saturn’s tropospheric composition and clouds from Cassini/VIMS 4.6–5.1 µm nightside spectroscopy. Icarus, 214, 510533.CrossRefGoogle Scholar
Fletcher, L. N., Orton, G. S., Teanby, N. A., Irwin, P. G. J. and Bjoraker, G. L. (2009), Methane and its isotopologues on Saturn from Cassini/CIRS observations. Icarus, 199, 351367.Google Scholar
Fletcher, L. N. et al. (2007), Characterising Saturn’s vertical temperature structure from Cassini/CIRS. Icarus, 189, 457478.Google Scholar
Fletcher, L. N. (2008), Temperature and composition of Saturn’s polar hot spots and hexagon. Science, 319, 7981.CrossRefGoogle ScholarPubMed
Fletcher, L. N. (2010), Seasonal change on Saturn from Cassini/CIRS observations, 2004–2009. Icarus, 208, 337352.Google Scholar
Fletcher, L. N. (2011), Thermal structure and dynamics of Saturn’s northern springtime disturbance. Science, 332, 14131417.Google Scholar
Fletcher, L. N. (2012), The origin and evolution of Saturn’s 2011–2012 stratospheric vortex. Icarus, 221, 560586.Google Scholar
Fletcher, L. N. (2015), Seasonal evolution of Saturn’s polar temperatures and composition. Icarus, 250, 131153.CrossRefGoogle Scholar
Fouchet, T., Guerlet, S., Strobel, D. F., Simon-Miller, A. A., Bézard, B. and Flasar, F. M. (2008), An equatorial oscillation in Saturn’s middle atmosphere. Nature, 453, 200202.CrossRefGoogle ScholarPubMed
Fouchet, T., Moses, J. I. and Conrath, B. J. (2009), Saturn: Composition and chemistry. Saturn from Cassini-Huygens, eds. Dougherty, M. K., Esposito, L. W. and Krimigis, S. M., Springer, pp. 83112.Google Scholar
Friedson, A. J. and Moses, J. I. (2012), General circulation and transport in Saturn’s upper troposphere and stratosphere. Icarus, 218, 861875.Google Scholar
Galanti, E. and Kaspi, Y. (2016), An adjoint-based method for the inversion of the Juno and Cassini gravity measurements into wind fields. Astrophys. J., 820, 91.Google Scholar
Galanti, E. and Kaspi, Y. (2017), Decoupling Jupiter’s deep and atmospheric flows using the upcoming Juno gravity measurements and a dynamical inverse model. Icarus, 286, 4655.Google Scholar
Galanti, E., Kaspi, Y. and Tziperman, E. (2017), A full, self-consistent treatment of thermal wind balance on fluid planets. J. Fluid Mech., 810.Google Scholar
Garcia-Melendo, E., Hueso, R., Sánchez-Lavega, A., Legarreta, J., del Rio-Gaztelurrutia, T., Pérez-Hoyos, S. and Sanz-Requena, J. F. (2013), Atmospheric dynamics of saturn’s 2010 giant storm. Nature Geoscience, 6, 525529.Google Scholar
García-Melendo, E., Pérez-Hoyos, S., Sánchez-Lavega, A. and Hueso, R. (2011), Saturn’s zonal wind profile in 2004–2009 from Cassini ISS images and its long-term variability. Icarus, 215, 6274.Google Scholar
Gastine, T. and Wicht, J. (2012), Effects of compressibility on driving zonal flow in gas giants. Icarus, 219, 428442.Google Scholar
Gastine, T., Wicht, J. and Aurnou, J. M. (2013), Zonal flow regimes in rotating anelastic spherical shells: An application to giant planets. Icarus, 225, 156172.Google Scholar
Gastine, T., Wicht, J., Duarte, L. D. V., Heimpel, M. and Becker, A. (2014), Explaining Jupiter’s magnetic field and equatorial jet dynamics. Geophys. Res. Lett., 41, 54105419.Google Scholar
Gezari, D. Y., Mumma, M. J., Espenak, F., Deming, D., Bjoraker, G., Woods, L. and Folz, W. (1989), New features in Saturn’s atmosphere revealed by high-resolution thermal infrared images. Nature, 342, 777780.CrossRefGoogle Scholar
Gierasch, P. J., Magalhaes, J. A. and Conrath, B. J. (1986), Zonal mean properties of Jupiter’s upper troposphere from Voyager infrared observations. Icarus, 67, 456483.Google Scholar
Gierasch, P. J. et al. (2000), Observation of moist convection in Jupiter’s atmosphere. Nature, 403, 628630.Google Scholar
Giles, R. S., Fletcher, L. N. and Irwin, P. G. J. (2017), Latitudinal variability in Jupiter’s tropospheric disequilibrium species: GeH4, AsH3, and PH3. Icarus, in press.Google Scholar
Gillett, F. C. and Orton, G. S. (1975), Center-to-limb observations of Saturn in the thermal infrared. Astrophys. J. Lett., 195, L47L49.Google Scholar
Glatzmaier, G. A. (2008), A note on “Constraints on deep-seated zonal winds inside Jupiter and Saturn.” Icarus, 196, 665666.Google Scholar
Glatzmaier, G. A., Evonuk, M. and Rogers, T. M. (2009), Differential rotation in giant planets maintained by density-stratified turbulent convection. Geophys. Astrophy. Fluid Dyn., 103, 3151.Google Scholar
Greathouse, T. K., Lacy, J. H., Bézard, B., Moses, J. I., Griffith, C. A. and Richter, M. J. (2005), Meridional variations of temperature, C2H2 and C2H6 abundances in Saturn’s stratosphere at southern summer solstice. Icarus, 177, 1831.Google Scholar
Grevesse, N., Asplund, M., and Sauval, J. (2005), The new solar composition. In Element Stratification in Stars: 40 Years of Atomic Diffusion, eds. Alecian, G., Richard, O. and Vauclair, S., pp. 2130, EAS Publications Series.Google Scholar
Guerlet, S., Fouchet, T., Bézard, B., Flasar, F. M. and Simon-Miller, A. A. (2011), Evolution of the equatorial oscillation in Saturn’s stratosphere between 2005 and 2010 from Cassini/CIRS limb data analysis. Geophys. Res. Lett., 38, 9201.CrossRefGoogle Scholar
Guerlet, S., Fouchet, T., Bézard, B., Simon-Miller, A. A. and Michael Flasar, F. (2009), Vertical and meridional distribution of ethane, acetylene and propane in Saturn’s stratosphere from CIRS/Cassini limb observations. Icarus, 203, 214232.Google Scholar
Guerlet, S. et al. (2014), Global climate modeling of Saturn’s atmosphere. Part I: Evaluation of the radiative transfer model. Icarus, 238, 110124.Google Scholar
Hanel, R. et al. (1981), Infrared observations of the Saturnian system from Voyager 1. Science, 212, 192200.Google Scholar
Hanel, R. (1982), Infrared observations of the Saturnian system from Voyager 2. Science, 215, 544548.Google Scholar
Haynes, P. H., McIntyre, M. E., Shepherd, T. G., Marks, C. J. and Shine, K. P. (1991), On the “Downward Control” of extratropical diabatic circulations by eddy-induced mean zonal forces. Journal of Atmospheric Sciences, 48, 651680.Google Scholar
Heimpel, M. and Aurnou, J. (2007), Turbulent convection in rapidly rotating spherical shells: A model for equatorial and high latitude jets on Jupiter and Saturn. Icarus, 187, 540557.Google Scholar
Heimpel, M., Aurnou, J. and Wicht, J. (2005), Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature, 438, 193196.Google Scholar
Heimpel, M. and Gómez Pérez, N. (2011), On the relationship between zonal jets and dynamo action in giant planets. Geophys. Res. Lett., 38, L14,201.Google Scholar
Helled, R., Galanti, E. and Kaspi, Y. (2015), Saturn’s fast spin determined from its gravitational field and oblateness. Nature, 520, 202204.Google Scholar
Hesman, B. E. et al. (2009), Saturn’s latitudinal C2H2 and C2H6 abundance profiles from Cassini/CIRS and ground-based observations. Icarus, 202, 249259.Google Scholar
Hesman, B. E. (2012), Elusive ethylene detected in Saturn’s northern storm Region. Astrophys. J., 760, 24.Google Scholar
Holton, J. R. and Hakim, G. J. (2013), An Introduction to Dynamic Meteorology, 5th Ed. San Diego, CA: Academic Press.Google Scholar
Howett, C. J. A., Irwin, P. G. J., Teanby, N. A., Simon-Miller, A., Calcutt, S. B., Fletcher, L. N. and de Kok, R. (2007), Meridional variations in stratospheric acetylene and ethane in the southern hemisphere of the Saturnian atmosphere as determined from Cassini/CIRS measurements. Icarus, 190, 556572.Google Scholar
Huang, H.-P. and Robinson, W. A. (1998), Two-dimensional turbulence and persistent zonal jets in a global barotropic model. Journal of Atmospheric Sciences, 55, 611632.Google Scholar
Hubbard, W. B. (1984), Planetary Interiors. New York, NY: Van Nostrand Reinhold Co., 1984, 343 p.Google Scholar
Hubbard, W. B. (1999), Gravitational signature of Jupiter’s deep zonal flows. Icarus, 137, 357359.Google Scholar
Hubbard, W. B. (2012), High-precision Maclaurin-based models of rotating liquid planets. Astrophys. J. Lett., 756, L15.Google Scholar
Hubbard, W. B. (2013), Conventric Maclaurian spheroid models of rotating liquid planets. Astrophys. J., 768(1).Google Scholar
Hubbard, W. B., Nellis, W. J., Mitchell, A. C., Holmes, N. C., McCandless, P. C. and Limaye, S. S. (1991), Interior structure of Neptune: Comparison with Uranus. Science, 253, 648651.CrossRefGoogle ScholarPubMed
Hubbard, W. B., Schubert, G., Kong, D. and Zhang, K. (2014), On the convergence of the theory of figures. Icarus, 242, 138141.Google Scholar
Hueso, R. and Sánchez-Lavega, A. (2004), A three-dimensional model of moist convection for the giant planets II: Saturn’s water and ammonia moist convective storms. Icarus, 172, 255271.Google Scholar
Iacono, R., Struglia, M. V. and Ronchi, C. (1999), Spontaneous formation of equatorial jets in freely decaying shallow water turbulence. Physics of Fluids, 11, 12721274.CrossRefGoogle Scholar
Ingersoll, A. P. (1976), The atmosphere of Jupiter. Space Sci. Rev., 18, 603639.Google Scholar
Ingersoll, A. P. (1990), Atmospheric dynamics of the outer planets. Science, 248, 308315.CrossRefGoogle ScholarPubMed
Ingersoll, A. P., Beebe, R. F., Conrath, B. J. and Hunt, G. E. (1984), Structure and dynamics of Saturn’s atmosphere. In Saturn, eds. Gehrels, T. and Matthews, M. S., pp. 195238, Tucson, AZ: University of Arizona Press.Google Scholar
Ingersoll, A. P., Beebe, R. F., Mitchell, J. L., Garneau, G. W., Yagi, G. M. and Muller, J.-P. (1981), Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and 2 images. J. Geophys. Res., 86, 87338743.Google Scholar
Ingersoll, A. P. and Cuzzi, J. N. (1969), Dynamics of Jupiter’s cloud bands. Journal of Atmospheric Sciences, 26, 981985.Google Scholar
Ingersoll, A. P., Dowling, T. E., Gierasch, P. J., Orton, G. S., Read, P. L., Sánchez-Lavega, A., Showman, A. P., Simon-Miller, A. A. and Vasavada, A. R. (2004), Dynamics of Jupiter’s Atmosphere, pp. 105128 in Jupiter. The Planet, Satellites and Magnetosphere. Cambridge: Cambridge University Press.Google Scholar
Ingersoll, A. P., Gierasch, P. J., Banfield, D., Vasavada, A. R. and A3 Galileo Imaging Team (2000), Moist convection as an energy source for the large-scale motions in Jupiter’s atmosphere. Nature, 403, 630632.Google Scholar
Ingersoll, A. P., Orton, G. S., Munch, G., Neugebauer, G. and Chase, S. C. (1980), Pioneer Saturn infrared radiometer: Preliminary results. Science, 207, 439443.Google Scholar
Ingersoll, A. P. and Pollard, D. (1982), Motion in the interiors and atmospheres of Jupiter and Saturn: Scale analysis, anelastic equations, barotropic stability criterion. Icarus, 52, 6280.Google Scholar
Jacobson, R. A. (2007), The gravity field of the Uranian system and the orbits of the Uranian satellites and rings. AAS/Division for Planetary Sciences Meeting Abstracts #39, vol. 38, pp. 453453.Google Scholar
Jacobson, R. A. (2009), The orbits of the Neptunian satellites and the orientation of the pole of Neptune. Astrophys. J., 137, 43224329.Google Scholar
Jacobson, R. A. et al. (2006), The gravity field of the Saturnian system from satellite observations and spacecraft tracking data. Astrophys. J., 132, 25202526.Google Scholar
Janssen, M. A., et al. (2013), Saturn’s thermal emission at 2.2-cm wavelength as imaged by the Cassini RADAR radiometer. Icarus, 226, 522535.Google Scholar
Jones, C. A. (2014), A dynamo model of Jupiter’s magnetic field. Icarus, 241, 148159.Google Scholar
Jones, C. A., Boronski, P., Brun, A. S., Glatzmaier, G. A., Gastine, T., Miesch, M. S. and Wicht, J. (2011), Anelastic convection-driven dynamo benchmarks. Icarus, 216, 120135.Google Scholar
Jones, C. A. and Kuzanyan, K. M. (2009), Compressible convection in the deep atmospheres of giant planets. Icarus, 204, 227238.CrossRefGoogle Scholar
Kaspi, Y. (2008), Turbulent convection in an anelastic rotating sphere: A model for the circulation on the giant planets, Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar
Kaspi, Y. (2013), Inferring the depth of the zonal jets on Jupiter and Saturn from odd gravity harmonics. Geophys. Res. Lett., 40, 676680.Google Scholar
Kaspi, Y., Davighi, J. E., Galanti, E. and Hubbard, W. B. (2016), The gravitational signature of internal flows in giant planets: Comparing the thermal wind approach with barotropic potential-surface methods. Icarus, 276, 170181.Google Scholar
Kaspi, Y., Flierl, G. R. and Showman, A. P. (2009), The deep wind structure of the giant planets: Results from an anelastic general circulation model. Icarus, 202, 525542.Google Scholar
Kaspi, Y., Hubbard, W. B., Showman, A. P. and Flierl, G. R. (2010), Gravitational signature of Jupiter’s internal dynamics. Geophys. Res. Lett., 37, L01,204.Google Scholar
Kaspi, Y., Showman, A. P., Hubbard, W. B., Aharonson, O. and Helled, R. (2013), Atmospheric confinement of jet streams on Uranus and Neptune. Nature, 497, 344347.Google Scholar
Kirk, R. L. and Stevenson, D. J. (1987), Hydromagnetic constraints on deep zonal flow in the giant planets. Astrophys. J., 316, 836846.Google Scholar
Kliore, A. J., Patel, I. R., Lindal, G. F., Sweetnam, D. N., Hotz, H. B., Waite, J. H. and McDonough, T. (1980), Structure of the ionosphere and atmosphere of Saturn from Pioneer 11 Saturn radio occultation. J. Geophys. Res., 85, 58575870.Google Scholar
Kong, D., Zhang, K. and Schubert, G. (2012), On the variation of zonal gravity coefficients of a giant planet caused by its deep zonal flows. Astrophys. J., 748.Google Scholar
Laraia, A. L., Ingersoll, A. P., Janssen, M. A., Gulkis, S., Oyafuso, F. and Allison, M. (2013), Analysis of Saturn’s thermal emission at 2.2 cm wavelength: Spatial distribution of ammonia vapor. Icarus, 226, 641654.Google Scholar
Leovy, C. B., Friedson, A. J. and Orton, G. S. (1991), The quasiquadrennial oscillation of Jupiter’s equatorial stratosphere. Nature, 354, 380382.CrossRefGoogle Scholar
Li, L., Ingersoll, A. P. and Huang, X. (2006), Interaction of moist convection with zonal jets on Jupiter and Saturn. Icarus, 180, 113123.Google Scholar
Li, L., Ingersoll, A. P., Vasavada, A. R., Porco, C. C., del Genio, A. D. and Ewald, S. P. (2004), Life cycles of spots on Jupiter from Cassini images. Icarus, 172, 923.Google Scholar
Li, L. et al. (2008), Strong jet and a new thermal wave in Saturn’s equatorial stratosphere. Geophys. Res. Lett., 35, 23,208.Google Scholar
Li, L. (2011), Equatorial winds on Saturn and the stratospheric oscillation. Nature Geoscience, 4, 750752.Google Scholar
Li, L. (2013), Strong temporal variation over one Saturnian year: From Voyager to Cassini. Scientific Reports, 3, 2410.Google Scholar
Li, L. (2015), Saturn’s giant storm and global radiant energy. Geophys. Res. Lett., 42, 21442148.Google Scholar
Lian, Y. and Showman, A. P. (2008), Deep jets on gas-giant planets. Icarus, 194, 597615.Google Scholar
Lian, Y. and Showman, A. P. (2010), Generation of equatorial jets by large-scale latent heating on the giant planets. Icarus, 207, 373393.Google Scholar
Limaye, S. S. (1986), Jupiter: New estimates of the mean zonal flow at the cloud level. Icarus, 65, 335352.Google Scholar
Lindal, G., Sweetnam, D. and Eshleman, V. (1985), The atmosphere of Saturn: An analysis of the voyager radio occultation measurements. The Astronomical Journal, 90, 11361146.Google Scholar
Lindzen, R. S., and Holton, J. R. (1968), A theory of the quasi-biennial oscillation. Journal of Atmospheric Sciences, 25, 10951107.2.0.CO;2>CrossRefGoogle Scholar
Little, B., Anger, C. D., Ingersoll, A. P., Vasavada, A. R., Senske, D. A., Breneman, H. H., Borucki, W. J. and The Galileo SSI Team (1999), Galileo images of lightning on Jupiter. Icarus, 142, 306323.Google Scholar
Liu, J., Goldreich, P. M. and Stevenson, D. J. (2008), Constraints on deep-seated zonal winds inside Jupiter and Saturn. Icarus, 196, 653664.CrossRefGoogle Scholar
Liu, J. and Schneider, T. (2010), Mechanisms of jet formation on the giant planets. Journal of Atmospheric Sciences, 67, 36523672.Google Scholar
Liu, J., Schneider, T. and Fletcher, L. N. (2014), Constraining the depth of Saturn’s zonal winds by measuring thermal and gravitational signals. Icarus, 239, 260272.Google Scholar
Liu, J., Schneider, T. and Kaspi, Y. (2013), Predictions of thermal and gravitational signals of Jupiter’s deep zonal winds. Icarus, 224, 114125.Google Scholar
MacGorman, D. R. and Rust, D. (1998), The Electrical Nature of Storms. Oxford: Oxford University Press.Google Scholar
Marcus, P. S. (1993), Jupiter’s Great Red Spot and other vortices. Annu. Rev. Astron. Astrophys., 31, 523573.Google Scholar
Moore, A. M., Arango, H. G., Broquet, G., Powell, B. S., Weaver, A. T. and Zavala-Garay, J. (2011), The regional ocean modeling system (ROMS) 4-dimensional variational data assimilation systems. Part I: System overview and formulation. Prog. Oceanogr., 91, 3449.Google Scholar
Moses, J. and Greathouse, T. (2005), Latitudinal and seasonal models of stratospheric photochemistry on Saturn: Comparison with infrared data from IRTF/TEXES. Journal of Geophysical Research, 110(E9), E09,007.Google Scholar
Moses, J. I., Armstrong, E. S., Fletcher, L. N., Friedson, A. J., Irwin, P. G. J., Sinclair, J. A. and Hesman, B. E. (2015), Evolution of stratospheric chemistry in the Saturn storm beacon region. Icarus, 261, 149168.Google Scholar
Moses, J. I., Liang, M.-C., Yung, Y. L. and Shia, R.-L. (2007), Two-Dimensional Photochemical Modeling of Hydrocarbon Abundances on Saturn. Lunar and Planetary Science Conference, vol. 38 of Lunar and Planetary Inst. Technical Report, p. 2196.Google Scholar
Nellis, W. J. (2000), Metallization of fluid hydrogen at 140 GPa (1.4 Mbar): Implications for Jupiter. Planet. Space Sci., 48, 671677.Google Scholar
Nicholson, P. D., McGhee, C. A. and French, R. G. (1995), Saturn’s central flash from the 3 July 1989 occultation of 28 SGR. Icarus, 113, 5783.Google Scholar
Nozawa, T. and Yoden, S. (1997), Formation of zonal band structure in forced two-dimensional turbulence on a rotating sphere. Physics of Fluids, 9, 20812093.Google Scholar
Okuno, A. and Masuda, A. (2003), Effect of horizontal divergence on the geostrophic turbulence on a beta-plane: Suppression of the Rhines effect. Physics of Fluids, 15, 5665.Google Scholar
Ollivier, J. L., Billebaud, F., Drossart, P., Dobrijévic, M., Roos-Serote, M., August-Bernex, T. and Vauglin, I. (2000), Seasonal effects in the thermal structure of Saturn’s stratosphere from infrared imaging at 10 microns. Astronomy and Astrophysics, 356, 347356.Google Scholar
O’Neill, M. E., Emanuel, K. A. and Flierl, G. R. (2015), Polar vortex formation in giant-planet atmospheres due to moist convection. Nature Geoscience, 8, 523526.Google Scholar
O’Neill, M. E., Emanuel, K. A. and Flierl, G. R. (2016), Weak jets and strong cyclones: Shallow-water modeling of giant planet polar caps. Journal of Atmospheric Sciences, 73, 18411855.Google Scholar
Orton, G. S. and Ingersoll, A. P. (1980), Saturn’s atmospheric temperature structure and heat budget. J. Geophys. Res., 85, 58715881.Google Scholar
Orton, G. S. and Yanamandra-Fisher, P. A. (2005), Saturn’s temperature field from high-resolution middle-infrared imaging. Science, 307, 696698.Google Scholar
Orton, G. S. et al. (1991), Thermal maps of Jupiter: Spatial organization and time dependence of stratospheric temperatures, 1980 to 1990. Science, 252, 537542.Google Scholar
Orton, G. S. (2008), Semi-annual oscillations in Saturn’s low-latitude stratospheric temperatures. Nature, 453, 196199.Google Scholar
Parisi, M., Galanti, E., Finocchiaro, S., Iess, L. and Kaspi, Y. (2016), Probing the depth of Jupiter’s Great Red Spot with the Juno gravity experiment. Icarus, 267, 232242.Google Scholar
Pedlosky, J. (1987), Geophysical Fluid Dynamics, 2nd Ed. New York, NY: Springer-Verlag.Google Scholar
Peek, B. M. (1958), The Planet Jupiter. London: Faber and Faber.Google Scholar
Phillips, O. M. (1969), Turbulent flow. Science, 163, 14411442.Google Scholar
Porco, C. C. et al. (2003), Cassini imaging of Jupiter’s atmosphere, satellites, and rings. Science, 299, 15411547.Google Scholar
Read, P. L., Conrath, B. J., Fletcher, L. N., Gierasch, P. J., Simon-Miller, A. A. and Zuchowski, L. C. (2009a), Mapping potential vorticity dynamics on Saturn: Zonal mean circulation from Cassini and Voyager data. Planet. Space Sci., 57, 16821698.Google Scholar
Read, P. L., Dowling, T. E. and Schubert, G. (2009b), Saturn’s rotation period from its atmospheric planetary-wave configuration. Nature, 460, 608610.Google Scholar
Rieke, G. H. (1975), The thermal radiation of Saturn and its rings. Icarus, 26, 3744.Google Scholar
Rogers, J. H. (1995), The Giant Planet Jupiter. New York, NY: Cambridge University Press.Google Scholar
Salyk, C., Ingersoll, A. P., Lorre, J., Vasavada, A. and Del Genio, A. D. (2006), Interaction between eddies and mean flow in Jupiter’s atmosphere: Analysis of Cassini imaging data. Icarus, 185, 430442.Google Scholar
Sanchez-Lavega, A., Rojas, J. F. and Sada, P. V. (2000), Saturn’s zonal winds at cloud level. Icarus, 147, 405420.Google Scholar
Sánchez-Lavega, A. et al. (2011), Deep winds beneath Saturn’s upper clouds from a seasonal long-lived planetary-scale storm. Nature, 475, 7174.Google Scholar
Sánchez-Lavega, A. (2012), Ground-based observations of the long-term evolution and death of Saturn’s 2010 Great White Spot. Icarus, 220, 561576.Google Scholar
Sayanagi, K. M., Dyudina, U. A., Ewald, S. P., Fischer, G., Ingersoll, A. P., Kurth, W. S., Muro, G. D., Porco, C. C. and West, R. A. (2013), Dynamics of Saturn’s great storm of 2010–2011 from Cassini ISS and RPWS. Icarus, 223, 460478.Google Scholar
Sayanagi, K. M., Dyudina, U. A., Ewald, S. P., Muro, G. D. and Ingersoll, A. P. (2014), Cassini ISS observation of Saturn’s string of pearls. Icarus, 229, 170180.Google Scholar
Sayanagi, K. M. and Showman, A. P. (2007), Effects of a large convective storm on Saturn’s equatorial jet. Icarus, 187, 520539.Google Scholar
Schinder, P. J. et al. (2011), Saturn’s equatorial oscillation: Evidence of descending thermal structure from Cassini radio occultations. Geophys. Res. Lett., 38, 8205.Google Scholar
Schneider, T. (2006), The general circulation of the atmosphere. Annual Review of Earth and Planetary Sciences, 34, 655688.Google Scholar
Schneider, T. and Liu, J. (2009), Formation of jets and equatorial superrotation on Jupiter. J. Atmos. Sci., 66, 579601.Google Scholar
Scott, R. K. and Dritschel, D. G. (2012), The structure of zonal jets in geostrophic turbulence. J. Fluid Mech., 711, 576598.Google Scholar
Scott, R. K. and Polvani, L. (2007), Forced-dissipative shallow water turbulence on the sphere and the atmospheric circulation of the giant planets. J. Atmos. Sci, 64, 31583176.Google Scholar
Scott, R. K. and Polvani, L. (2008), Equatorial superrotation in shallow atmospheres. Geophys. Res. Lett., 35, L24, 202.Google Scholar
Showman, A. P. (2007), Numerical simulations of forced shallow-water turbulence: Effects of moist convection on the large-scale circulation of Jupiter and Saturn. J. Atmos. Sci., 64, 31323157.Google Scholar
Showman, A. P., Cho, J. Y.-K. and Menou, K. (2010), Atmospheric circulation of exoplanets. In Exoplanets, ed. Seager, S., pp. 471516, Tucson, AZ: University of Arizona Press.Google Scholar
Showman, A. P. and de Pater, I. (2005), Dynamical implications of Jupiter’s tropospheric ammonia abundance. Icarus, 174, 192204.Google Scholar
Showman, A. P., Gierasch, P. J. and Lian, Y. (2006), Deep zonal winds can result from shallow driving in a giant-planet atmosphere. Icarus, 182, 513526.Google Scholar
Showman, A. P., Kaspi, Y. and Flierl, G. R. (2011), Scaling laws for convection and jet speeds in the giant planets. Icarus, 211, 12581273.Google Scholar
Sinclair, J. A., Irwin, P. G. J., Fletcher, L. N., Moses, J. I., Greathouse, T. K., Friedson, A. J., Hesman, B., Hurley, J. and Merlet, C. (2013), Seasonal variations of temperature, acetylene and ethane in Saturn’s atmosphere from 2005 to 2010, as observed by Cassini-CIRS. Icarus, 225, 257271.Google Scholar
Sinton, W. M., Macy, W. W., Good, J. and Orton, G. S. (1980), Infrared scans of Saturn. Icarus, 42, 251256.Google Scholar
Smith, K. S. (2004), A local model for planetary atmospheres forced by small-scale convection. J. Atmos. Sciences, 61, 14201433.Google Scholar
Sromovsky, L. A., Baines, K. H., Fry, P. M. and Momary, T. W. (2016), Cloud clearing in the wake of Saturn’s Great Storm of 2010–2011 and suggested new constraints on Saturn’s He/H2 ratio. Icarus, 276, 141162.Google Scholar
Starr, V. P. (1968), Physics of Negative Viscosity Phenomena. New York, NY: McGraw-Hill.Google Scholar
Stone, P. H. (1973), The dynamics of the atmospheres of the major planets (article published in the Space Science Reviews special issue on “Outer Solar System Exploration: An Overview,” ed. by Long, J. E. and Rea, D. G.. Space Sci. Rev., 14, 444459.Google Scholar
Sukoriansky, S., Dikovskaya, N. and Galperin, B. (2007), On the “arrest” of inverse energy cascade and the Rhines scale. J. Atmos. Sci., 64, 33123327.Google Scholar
Sylvestre, M., Guerlet, S., Fouchet, T., Spiga, A., Flasar, F. M., Hesman, B. and Bjoraker, G. L. (2015), Seasonal changes in Saturn’s stratosphere inferred from Cassini/CIRS limb observations. Icarus, 258, 224238.Google Scholar
Thomson, S. I. and McIntyre, M. E. (2016), Jupiter’s unearthly jets: A new turbulent model exhibiting statistical steadiness without large-scale dissipation. Journal of Atmospheric Sciences, 73, 11191141.Google Scholar
Tokunaga, A. T., Caldwell, J., Gillett, F. C. and Nolt, I. G. (1978), Spatially resolved infrared observations of Saturn. II: The temperature enhancement at the south pole of Saturn. Icarus, 36, 216222.Google Scholar
Tziperman, E. and Thacker, W. C. (1989), An optimal-control/adjoint-equations approach to studying the oceanic general circulation. J. Phys. Oceanogr., 19, 14711485.Google Scholar
Uman, M. A. (2001), The Lightning Discharge. Mineola, NY: Dover Books.Google Scholar
Vallis, G. K. (2006), Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge: Cambridge University Press.Google Scholar
van Helden, A. (1984), Saturn through the telescope: A brief historical survey. In Saturn, eds. Gehrels, T. and Matthews, M.S., pp. 2343, Tucson, AZ: University of Arizona Press.Google Scholar
Vasavada, A. R., Hörst, S. M., Kennedy, M. R., Ingersoll, A. P., Porco, C. C., Del Genio, A. D. and West, R. A. (2006), Cassini imaging of Saturn: Southern-hemisphere winds and vortices. J. Geophys. Res., 111, E05004(E10), 113.Google Scholar
Vasavada, A. R. and Showman, A. P. (2005), Jovian atmospheric dynamics: An update after Galileo and Cassini. Reports of Progress in Physics, 68, 19351996.CrossRefGoogle Scholar
Warneford, E. S. and Dellar, P. J. (2014), Thermal shallow water models of geostrophic turbulence in Jovian atmospheres. Physics of Fluids, 26(1), 016,603.Google Scholar
Williams, G. P. (1978), Planetary circulations. I: Barotropic representation of Jovian and terrestrial turbulence. Journal of Atmospheric Sciences, 35, 13991426.Google Scholar
Williams, G. P. (2003), Jovian dynamics. Part III: Multiple, migrating, and equatorial jets. Journal of Atmospheric Sciences, 60, 12701296.Google Scholar
Yadav, R. K., Gastine, T. and Christensen, U. R. (2013), Scaling laws in spherical shell dynamos with free-slip boundaries. Icarus, 225, 185193.Google Scholar
Yair, Y., Fischer, G., Simôes, F., Renno, N. and Zarka, P. (2008), Updated review of planetary atmospheric electricity. Space Sci. Rev., 137, 2949.Google Scholar
Zhang, K., Kong, D. and Schubert, G. (2015), Thermal-gravitational wind equation for the wind-induced gravitational signature of giant gaseous planets: Mathematical derivation, numerical method and illustrative solutions. Astrophys. J., 806, 270279.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×