Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T08:55:37.315Z Has data issue: false hasContentIssue false

31 - Tools for integrative genomics: Genome-wide RNAi and expression profiling in Drosophila

Published online by Cambridge University Press:  31 July 2009

Michael Boutros
Affiliation:
German Cancer Research Center
Marc Hild
Affiliation:
Novartis Institute for Biomedical Research
Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Andrew Fire
Affiliation:
Stanford University, California
Get access

Summary

Introduction

Recent years have seen the sequencing of the complete genome of human and major model organisms, opening – and demanding – new discovery paradigms. By using a combination of high-throughput methodologies and sophisticated information analysis, several new approaches promise to add function to the raw “sequence” blueprint of life. Currently, high-throughput technologies have been applied to study the transcriptome, by expression profiling (Brown and Botstein, 1999) and ChIP on chip (Wyrick and Young, 2002), the proteome (2D gel-electrophoresis and mass-spectrometry analysis) and protein–protein interactions [(two-hybrid screens, affinity-tag purification coupled with mass-spectrometry, protein chips) (Uetz et al., 2000; Gavin et al., 2002; Drewes and Bouwmeester, 2003; Giot et al., 2003; Li et al., 2004)]. Genome-wide reverse genetic approaches have recently entered the field. In yeast, deletion strains for every gene transcript have been constructed and allow the functional analysis on a genome-wide scale (Wagner et al., 1997; Giaever et al., 2002). Similarly, genome-wide RNAi experiments promise to deliver functional information both in whole-animal assays and focused cell-based screening applications. Typically, hypothesis-driven experiments have relied on combining the strength of different experimental approaches to infer statements about functional properties. It can be similarly expected that in the medium term, a combination of multiple “data-rich” genomic technologies will be required to formulate and test hypotheses about system properties. Ultimately, this should enable us to accurately change physiological systems to prevent or cure disease conditions.

Genome-wide functional screens have become one of the key next challenges to systematically discover gene function.

Type
Chapter
Information
RNA Interference Technology
From Basic Science to Drug Development
, pp. 433 - 446
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashrafi, K., Chang, F. Y., Watts, J. L., Fraser, A. G., Kamath, R. S., Ahringer, J. and Ruvkun, G. (2003). Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature, 421, 268–272CrossRefGoogle ScholarPubMed
Boutros, M., Kiger, A. A., Armknecht, S., Kerr, K., Hild, M., Koch, B., Haas, S. A., Paro, R. and Perrimon, N. (2004).Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science, 303, 832–835CrossRefGoogle ScholarPubMed
Brown, P. O. and Botstein, D. (1999). Exploring the new world of the genome with DNA microarrays. Nature Genetics, 21, 33–37CrossRefGoogle ScholarPubMed
Clemens, J. C., Worby, C. A., Simonson-Leff, N., Muda, M., Maehama, T., Hemmings, B. A. and Dixon, J. E. (2000). Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proceedings of the National Academy of Sciences USA, 97, 6499–6503CrossRefGoogle ScholarPubMed
Drewes, G. and Bouwmeester, T. (2003). Global approaches to protein-protein interactions. Current Opinion in Cell Biology, 15, 199–205CrossRefGoogle ScholarPubMed
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811CrossRefGoogle ScholarPubMed
Fraser, A. G., Kamath, R. S., Zipperlen, P., Martinez-Campos, M., Sohrmann, M. and Ahringer, J. (2000). Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature, 408, 325–330CrossRefGoogle ScholarPubMed
Gavin, A. C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J. M., Michon, A. M., Cruciat, C. M.Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M. A., Copley, R. R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G. and Superti-Furga, G. (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415, 141–147CrossRefGoogle ScholarPubMed
Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Veronneau, S., Dow, S., Lucau-Danila, A., Anderson, K., Andre, B.Arkin, A. P., Astromoff, A., El-Bakkoury, M., Bangham, R., Benito, R., Brachat, S., Campanaro, S., Curtiss, M., Davis, K., Deutschbauer, A., Entian, K. D., Flaherty, P., Foury, F., Garfinkel, D. J., Gerstein, M., Gotte, D., Guldener, U., Hegemann, J. H., Hempel, S., Herman, Z., Jaramillo, D. F., Kelly, D. E., Kelly, S. L., Kotter, P., LaBonte, D., Lamb, D. C., Lan, N., Liang, H., Liao, H., Liu, L., Luo, C., Lussier, M., Mao, R., Menard, P., Ooi, S. L., Revuelta, J. L., Roberts, C. J., Rose, M., Ross-Macdonald, P., Scherens, B., Schimmack, G., Shafer, B., Shoemaker, D. D., Sookhai-Mahadeo, S., Storms, R. K., Strathern, J. N., Valle, G., Voet, M., Volckaert, G., Wang, C. Y., Ward, T. R., Wilhelmy, J., Winzeler, E. A., Yang, Y., Yen, G., Youngman, E., Yu, K., Bussey, H., Boeke, J. D., Snyder, M., Philippsen, P., Davis, R. W. and Johnston, M. (2002). Functional profiling of the Saccharomyces cerevisiae genome. Nature, 418, 387–391CrossRefGoogle ScholarPubMed
Giot, L., Bader, J. S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y. L., Ooi, C. E., Godwin, B., Vitols, E., Vijayadamodar, G., Pochart, P., Machineni, H., Welsh, M., Kong, Y., Zerhusen, B., Malcolm, R., Varrone, Z., Collis, A., Minto, M., Burgess, S., McDaniel, L., Stimpson, E., Spriggs, F., Williams, J., Neurath, K., Ioime, N., Agee, M., Voss, E., Furtak, K., Renzulli, R., Aanensen, N., Carrolla, S., Bickelhaupt, E., Lazovatsky, Y., DaSilva, A., Zhong, J., Stanyon, C. A., Finley, R. L. Jr., White, K. P., Braverman, M., Jarvie, T., Gold, S., Leach, M., Knight, J., Shimkets, R. A., McKenna, M. P., Chant, J. and Rothberg, J. M. (2003). A protein interaction map of Drosophila melanogaster. Science, 302, 1727–1736CrossRefGoogle ScholarPubMed
Gonczy, P., Echeverri, C., Oegema, K., Coulson, A., Jones, S. J., Copley, R. R., Duperon, J., Oegema, J., Brehm, M., Cassin, E. et al. (2000). Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature, 408, 331–336CrossRefGoogle Scholar
Goshima, G. and Vale, R. D. (2003). The roles of microtubule-based motor proteins in mitosis: Comprehensive RNAi analysis in the Drosophila S2 cell line. Journal of Cell Biology, 162, 1003–1016CrossRefGoogle ScholarPubMed
Haas, S. A., Hild, M., Wright, A. P., Hain, T., Talibi, D. and Vingron, M. (2003). Genome-scale design of PCR primers and long oligomers for DNA microarrays. Nucleic Acids Research, 31, 5576–5581CrossRefGoogle ScholarPubMed
Hannon, G. J. (2002). RNA interference. Nature, 418, 244–251CrossRefGoogle ScholarPubMed
Hay, B. A., Wassarman, D. A. and Rubin, G. M. (1995). Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell, 83, 1253–1262CrossRefGoogle ScholarPubMed
Hild, M., Beckmann, B., Haas, S., Koch, B., Solovyev, V., Busold, C., Fellenberg, K., Boutros, M., Vingron, M., Sauer, F., Hoheisel, J. and Paro, R. (2003). An integrated gene annotation and transcriptional profiling approach towards the full gene content of the Drosophila genome. Genome Biology, 5, R3CrossRefGoogle ScholarPubMed
Kamath, R. S., Fraser, A. G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Bot, N., Moreno, S., Sohrmann, M., Welchman, D. P., Zipperlen, P. and Ahringer, J. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 421, 231–237CrossRefGoogle ScholarPubMed
Kiger, A., Baum, B., Jones, S., Jones, M., Coulson, A., Echeverri, C. and Perrimon, N. (2003). A functional genomic analysis of cell morphology using RNA interference. J. Biology, 2, 27CrossRefGoogle ScholarPubMed
Li, S., Armstrong, C. M., Bertin, N., Ge, H., Milstein, S., Boxem, M., Vidalain, P. O., Han, J. D., Chesneau, A., Hao Goldberg, D. S., Li, N., Martinez, M., Rual, J. F., Lamesch, P., Xu, L., Tewari, M., Wong, S. L., Zhang, L. V., Berriz, G. F., Jacotot, L., Vaglio, P., Reboul, J., Hirozane-Kishikawa, T., Li, Q., Gabel, H. W., Elewa, A., Baumgartner, B., Rose, D. J., Yu, H., Bosak, S., Sequerra, R., Fraser, A., Mango, S. E., Saxton, W. M., Strome, S., Heuvel, S., Piano, F., Vandenhaute, J., Sardet, C., Gerstein, M., Doucette-Stamm, L., Gunsalus, K. C., Harper, J. W., Cusick, M. E., Roth, F. P., Hill, D. E. and Vidal, M. (2004). A map of the interactome network of the metazoan C. elegans. Science, 303, 540–543CrossRefGoogle ScholarPubMed
Lum, L., Yao, S., Mozer, B., Rovescalli, A., Kessler, D., Nirenberg, M. and Beachy, P. A. (2003). Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science, 299, 2039–2045CrossRefGoogle ScholarPubMed
Misra, S., Crosby, M. A., Mungall, C. J., Matthews, B. B., Campbell, K. S., Hradecky, P., Huang, Y., Kaminker, J. S., Millburn, G. H., Prochnik, S. E., Smith, C. D., Tupy, J. L., Whitfied, E. J., Bayraktaroglu, L., Berman, B. P., Bettencourt, B. R., Celniker, S. E., Grey, A. D., Drysdale, R. A., Harris, N. L., Richter, J., Russo, S., Schroeder, A. J., Shu, S. Q., Stapleton, M., Yamada, C., Ashburner, M., Gelbart, W. M., Rubin, G. M. and Lewis, S. E. (2002). Annotation of the Drosophila melanogaster euchromatic genome: Asystematic review. Genome Biology, 3, RESEARCH0083–3CrossRefGoogle Scholar
Montgomery, M. K. and Fire, A. (1998). Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression. Trends in Genetics, 14, 255–258CrossRefGoogle ScholarPubMed
Nagy, A., Perrimon, N., Sandmeyer, S. and Plasterk, R. (2003). Tailoring the genome: the power of genetic approaches. Nature Genetics, 33 Suppl, 276–284CrossRefGoogle ScholarPubMed
Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. and Ezekowitz, R. A. (2002). Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature, 416, 644–648CrossRefGoogle ScholarPubMed
Rogers, S. L., Wiedemann, U., Stuurman, N. and Vale, R. D. (2003). Molecular requirements for actin-based lamella formation in Drosophila S2 cells. Journal of Cell Biology, 162, 1079–1088CrossRefGoogle ScholarPubMed
Salamov, A. A. and Solovyev, V. V. (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Research 2000, 10, 516–522Google ScholarPubMed
Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S. and Rothberg, J. M. (2000). A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 403, 623–627CrossRefGoogle ScholarPubMed
Wagner, U., Brownlees, J., Irving, N. G., Lucas, F. R., Salinas, P. C. and Miller, C. C. (1997). Overexpression of the mouse dishevelled-1 protein inhibits GSK-3beta- mediated phosphorylation of tau in transfected mammalian cells. Federation of European Biochemical Society Letters, 411, 369–372CrossRefGoogle ScholarPubMed
Wyrick, J. J. and Young, R. A. (2002). Deciphering gene expression regulatory networks. Current Opinion in Genetics & Development, 12, 130–136CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×