Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T22:09:50.751Z Has data issue: false hasContentIssue false

8 - Optic nerve formation

Published online by Cambridge University Press:  22 August 2009

David W. Sretavan
Affiliation:
Department of Ophthalmology, University of California, San Francisco, CA 94143, USA
Evelyne Sernagor
Affiliation:
University of Newcastle upon Tyne
Stephen Eglen
Affiliation:
University of Cambridge
Bill Harris
Affiliation:
University of Cambridge
Rachel Wong
Affiliation:
Washington University, St Louis
Get access

Summary

Introduction

The optic nerve is the anatomical pathway through which visual information received in the retina is conveyed along the axons of retinal ganglion cells (RGCs) to central visual targets for processing. In terms of its cellular organization, the optic nerve is relatively simple compared with other white matter tracts in the CNS. Unlike most CNS axon pathways, which typically contain ascending and descending axons from multiple neuronal populations, axons within the optic nerve all originate from RGCs in the eye, and all project in the same direction away from the retina towards the brain. There are no neurons in the optic nerve, and all resident cell nuclei belong to optic nerve glial cells. Given these organizational features, the developing optic nerve is an attractive experimental system and, not surprisingly, has been widely used in studies of axon guidance, glial differentiation, glial migration and myelination. Similarly, the adult optic nerve has also served extremely well as a model for studies of axonal transport and axon regeneration. This chapter describes the developmental mechanisms governing major aspects of optic nerve formation such as the determination of optic stalk cell fate, axon guidance and glia migration. The aim is to highlight our current understanding of these developmental processes, which at a basic level are fundamental to development of all regions of the nervous system.

Phases of optic nerve development

In considering optic nerve development, it is useful to conceptually divide the process into three phases.

Type
Chapter
Information
Retinal Development , pp. 150 - 171
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, R. H. (2002). Vascular patterning by Eph receptor tyrosine kinases and ephrins. Semin. Cell Dev. Biol., 13, 55–60CrossRefGoogle ScholarPubMed
Adams, R. H., Betz, H. and Puschel, A. W. (1996). A novel class of murine semaphorins with homology to thrombospondin is differentially expressed during early embryogenesis. Mech. Dev., 57, 33–45CrossRefGoogle ScholarPubMed
Bagri, A. and Tessier-Lavigne, M. (2002). Neuropilins as Semaphorin receptors: in vivo functions in neuronal cell migration and axon guidance. Adv. Exp. Med. Biol., 515, 13–31CrossRefGoogle ScholarPubMed
Bertuzzi, S., Hindges, R., Mui, S. H., O'Leary, D. D. and Lemke, G. (1999). The homeodomain protein vax1 is required for axon guidance and major tract formation in the developing forebrain. Genes Dev., 13, 3092–105CrossRefGoogle ScholarPubMed
Birgbauer, E., Cowan, C. A., Sretavan, D. W. and Henkemeyer, M. (2000). Kinase independent function of EphB receptors in retinal axon pathfinding to the optic disc from dorsal but not ventral retina. Development, 127, 1231–41Google Scholar
Birgbauer, E., Oster, S. F., Severin, C. G. and Sretavan, D. W. (2001). Retinal axon growth cones respond to EphB extracellular domains as inhibitory axon guidance cues. Development, 128, 3041–8Google ScholarPubMed
Brittis, P. A. and Silver, J. (1995). Multiple factors govern intra-retinal axon guidance: a time-lapse study. Mol. Cell. Neurosci., 6, 413–32CrossRefGoogle Scholar
Brittis, P. A., Canning, D. R. and Silver, J. (1992). Chondroitin sulfate as a regulator of neuronal patterning in the retina. Science, 255, 733–6CrossRefGoogle ScholarPubMed
Brodsky, M. C. (1994). Congenital optic disk anomalies. Surv. Ophthalmol., 39, 89–112CrossRefGoogle ScholarPubMed
Brose, K. and Tessier-Lavigne, M. (2000). Slit proteins: key regulators of axon guidance, axonal branching, and cell migration. Curr. Opin. Neurobiol., 10, 95–102CrossRefGoogle ScholarPubMed
Castellani, V., Chedotal, A., Schachner, M., Faivre-Sarrailh, C. and Rougon, G. (2000). Analysis of the L1-deficient mouse phenotype reveals cross-talk between Sema3A and L1 signaling pathways in axonal guidance. Neuron, 27, 237–49CrossRefGoogle ScholarPubMed
Chan, S. O. and Guillery, R. W. (1994). Changes in fiber order in the optic nerve and tract of rat embryos. J. Comp. Neurol., 344, 20–32CrossRefGoogle ScholarPubMed
Chen, W., Burgess, S. and Hopkins, N. (2001). Analysis of the zebrafish smoothened mutant reveals conserved and divergent functions of hedgehog activity. Development, 128, 2385–96Google ScholarPubMed
Chiang, C., Litingtung, Y., Lee, E.et al. (1996). Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature, 383, 407–13CrossRefGoogle ScholarPubMed
Chung, K. Y., Shum, D. K. and Chan, S. O. (2000). Expression of chondroitin sulfate proteoglycans in the chiasm of mouse embryos. J. Comp. Neurol., 417, 153–633.0.CO;2-D>CrossRefGoogle ScholarPubMed
Colello, R. J. and Guillery, R. W. (1992). Observations on the early development of the optic nerve and tract of the mouse. J. Comp. Neurol., 317, 357–78CrossRefGoogle ScholarPubMed
Colello, R. J., Devey, L. R., Imperato, E. and Pott, U. (1995). The chronology of oligodendrocyte differentiation in the rat optic nerve: evidence for a signaling step initiating myelination in the CNS. J. Neurosci., 15, 7665–72CrossRefGoogle ScholarPubMed
Dakubo, G. D., Wang, Y. P., Mazerolle, C.et al. (2003). Retinal ganglion cell-derived sonic hedgehog signaling is required for optic disc and stalk neuroepithelial cell development. Development, 130, 2967–80CrossRefGoogle ScholarPubMed
Dattani, M. L., Martinez-Barbera, J., Thomas, P. Q.et al. (2000). Molecular genetics of septo-optic dysplasia. Horm. Res., 53 Suppl1, 26–33Google ScholarPubMed
Deiner, M. S., Kennedy, T. E., Fazeli, A.et al. (1997). Netrin-1 and DCC mediate axon guidance locally at the optic disc: loss of function leads to optic nerve hypoplasia. Neuron, 19, 575–89CrossRefGoogle ScholarPubMed
Drescher, U. (2002). Eph family functions from an evolutionary perspective. Curr. Opin. Genet. Dev., 12, 397–402CrossRefGoogle ScholarPubMed
Ffrench-Constant, C., Miller, R. H., Burne, J. F. and Raff, M. C. (1988). Evidence that migratory oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells are kept out of the rat retina by a barrier at the eye-end of the optic nerve. J. Neurocytol., 17, 13–25CrossRefGoogle ScholarPubMed
Fitzgibbon, T. and Reese, B. E. (1996). Organization of retinal ganglion cell axons in the optic fiber layer and nerve of fetal ferrets. Vis. Neurosci., 13, 847–61CrossRefGoogle ScholarPubMed
Fraser, S. and Wormald, R. (2004). Epidemiology of Glaucoma. In Ophthalmology, 2nd edn, ed. Yanoff, M. and Duker, J. S.. St. Louis: Mosby, pp. 1413–1417Google Scholar
Furukawa, T., Kozak, C. A. and Cepko, C. L. (1997). rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. Proc. Natl. Acad. Sci. U. S. A., 94, 3088–93CrossRefGoogle ScholarPubMed
Garcion, E., Faissner, A. and Ffrench-Constant, C. (2001). Knock-out mice reveal a contribution of the extracellular matrix molecule tenascin-C to neural precursor proliferation and migration. Development, 128, 2485–96Google ScholarPubMed
Grindley, J. C., Davidson, D. R. and Hill, R. E. (1995). The role of Pax-6 in eye and nasal development. Development, 121, 1433–42Google ScholarPubMed
Guillery, R. W. and Walsh, C. (1987). Changing glial organization relates to changing fiber order in the developing optic nerve of ferrets. J. Comp. Neurol., 265, 203–17CrossRefGoogle ScholarPubMed
Halfter, W. (1996). Intraretinal grafting reveals growth requirements and guidance cues for optic axons in the developing avian retina. Dev. Biol., 177, 160–77CrossRefGoogle ScholarPubMed
Hallonet, M., Hollemann, T., Wehr, R.et al. (1998). Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain. Development, 125, 2599–610Google ScholarPubMed
Hallonet, M., Hollemann, T.Pieler, T. and Gruss, P. (1999). Vax1, a novel homeobox-containing gene, directs development of the basal forebrain and visual system. Genes Dev., 13, 3106–14CrossRefGoogle ScholarPubMed
Hernandez, M. R. (2000). The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog. Retin. Eye Res., 19, 297–321CrossRefGoogle ScholarPubMed
Hindges, R., McLaughlin, T., Genoud, N., Henkemeyer, M. and O'Leary, D. D. (2002). EphB forward signaling controls directional branch extension and arborization required for dorsal-ventral retinotopic mapping. Neuron, 35, 475–87CrossRefGoogle ScholarPubMed
Hogan, B. L., Horsburgh, G., Cohen, J.et al. (1986). Small eyes (Sey): a homozygous lethal mutation on chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. J. Embryol. Exp. Morphol., 97, 95–110Google ScholarPubMed
Holland, S. J., Gale, N. W., Mbamalu, G.et al. (1996). Bi-directional signaling through the EPH-family receptor Nuk and its transmembrane ligands. Nature, 383, 722–5CrossRefGoogle Scholar
Holland, S. J., Peles, E., Pawson, T. and Schlessinger, J. (1998). Cell-contact-dependent signaling in axon growth and guidance: Eph receptor tyrosine kinases and receptor protein tyrosine phosphatase beta. Curr. Opin. Neurobiol., 8, 117–27CrossRefGoogle ScholarPubMed
Hong, K., Hinck, L., Nishiyama, M.et al. (1999). A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell, 97, 927–41CrossRefGoogle ScholarPubMed
Horton, J. C., Greenwood, M. M. and Hubel, D. H. (1979). Non-retinotopic arrangement of fibers in cat optic nerve. Nature, 282, 720–2CrossRefGoogle Scholar
Inatani, M. and Tanihara, H. (2002). Proteoglycans in retina. Prog. Retin. Eye Res., 21, 429–47CrossRefGoogle ScholarPubMed
Ingham, P. W. and McMahon, A. P. (2001). Hedgehog signaling in animal development: paradigms and principles. Genes Dev., 15, 3059–87CrossRefGoogle ScholarPubMed
Jin, Z., Zhang, J., Klar, A.et al. (2003). Irx4-mediated regulation of Slit1 expression contributes to the definition of early axonal paths inside the retina. Development, 130, 1037–48CrossRefGoogle ScholarPubMed
Kakita, A. and Goldman, J. E. (1999). Patterns and dynamics of SVZ cell migration in the postnatal forebrain: monitoring living progenitors in slice preparations. Neuron, 23, 461–72CrossRefGoogle ScholarPubMed
Keino-Masu, K., Masu, M., Hinck, L.et al. (1996). Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell, 87, 175–85CrossRefGoogle ScholarPubMed
Kim, R. Y., Hoyt, W. F., Lessell, S. and Narahara, M. H. (1989). Superior segmental optic hypoplasia. A sign of maternal diabetes. Arch. Ophthalmol., 107, 1312–15CrossRefGoogle ScholarPubMed
Kullander, K. and Klein, R. (2002). Mechanisms and functions of Eph and ephrin signaling. Nat. Rev. Mol. Cell. Biol., 3, 475–86CrossRefGoogle Scholar
Macdonald, R., Barth, K. A., Xu, Q.et al. (1995). Midline signaling is required for Pax gene regulation and patterning of the eyes. Development, 121, 3267–78Google ScholarPubMed
Mann, F., Ray, S., Harris, W. and Holt, C. (2002). Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through ephrin-B ligands. Neuron, 35, 461–73CrossRefGoogle ScholarPubMed
Mason, C. A. and Sretavan, D. W. (1997). Glia, neurons, and axon pathfinding during optic chiasm development. Curr. Opin. Neurobiol., 7, 647–53CrossRefGoogle ScholarPubMed
Mathers, P. H., Grinberg, A., Mahon, K. A. and Jamrich, M. (1997). The Rx homeobox gene is essential for vertebrate eye development. Nature, 387, 603–7CrossRefGoogle ScholarPubMed
Milner, R., Edwards, G., Streuli, C. and Ffrench-Constant, C. (1996). A role in migration for the alpha V beta 1 integrin expressed on oligodendrocyte precursors. J. Neurosci., 16, 7240–52CrossRefGoogle Scholar
Milner, R., Anderson, H. J., Rippon, R. F.et al. (1997). Contrasting effects of mitogenic growth factors on oligodendrocyte precursor cell migration. Glia, 19, 85–903.0.CO;2-9>CrossRefGoogle ScholarPubMed
Nguyen-Ba-Charvet, K. T. and Chedotal, A. (2002). Role of Slit proteins in the vertebrate brain. J. Physiol. Paris, 96, 91–8CrossRefGoogle ScholarPubMed
Ono, K., Yasui, Y., Rutishauser, U. and Miller, R. H. (1997). Focal ventricular origin and migration of oligodendrocyte precursors into the chick optic nerve. Neuron, 19, 283–92CrossRefGoogle ScholarPubMed
Oster, S. F. and Sretauan, D. (2003). Connecting the eye to the brain. The molecular basis of ganglion cell axon guidance. Br. J. Ophthalmol., 87, 639–45CrossRefGoogle ScholarPubMed
Ott, H., Bastmeyer, M. and Stuermer, C. A. (1998). Neurolin, the goldfish homolog of DM-GRASP, is involved in retinal axon pathfinding to the optic disk. J. Neurosci., 18, 3363–72CrossRefGoogle ScholarPubMed
Payne, H. R. and Lemmon, V. (1993). Glial cells of the O-2A lineage bind preferentially to N-cadherin and develop distinct morphologies. Dev. Biol., 159, 595–607CrossRefGoogle ScholarPubMed
Perry, V. H. and Lund, R. D. (1990). Evidence that the lamina cribrosa prevents intra-retinal myelination of retinal ganglion cell axons. J. Neurocytol., 19, 265–72CrossRefGoogle Scholar
Petersen, R. A. and Walton, D. S. (1977). Optic nerve hypoplasia with good visual acuity and visual field defects: a study of children of diabetic mothers. Arch. Ophthalmol., 95, 254–8CrossRefGoogle ScholarPubMed
Plump, A. S., Erskine, L., Sabatier, C.et al. (2002). Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron, 33, 219–32CrossRefGoogle ScholarPubMed
Quigley, H. A. (1996). Number of people with glaucoma worldwide. Br. J. Ophthalmol., 80, 389–93CrossRefGoogle ScholarPubMed
Ramoa, A. S., Campbell, G. and Shatz, C. J. (1988). Dendritic growth and remodeling of cat retinal ganglion cells during fetal and postnatal development. J. Neurosci., 8, 4239–61CrossRefGoogle ScholarPubMed
Raper, J. A. (2000). Semaphorins and their receptors in vertebrates and invertebrates. Curr. Opin. Neurobiol., 10, 88–94CrossRefGoogle ScholarPubMed
Reese, B. E. (1996). The chronotopic re-ordering of optic axons. Perspect. Dev. Neurobiol., 3, 233–42Google Scholar
Reese, B. E. and Geller, S. F. (1995). Precocious invasion of the optic stalk by transient retinopetal axons. J. Comp. Neurol., 353, 572–84CrossRefGoogle ScholarPubMed
Ringstedt, T., Braisted, J. E., Brose, K.et al. (2000). Slit inhibition of retinal axon growth and its role in retinal axon pathfinding and innervation patterns in the diencephalon. J. Neurosci., 20, 4983–91CrossRefGoogle ScholarPubMed
Rougon, G. and Hobert, O. (2003). New insights into the diversity and function of neuronal immunoglobulin superfamily molecules. Annu. Rev. Neurosci., 26, 207–38CrossRefGoogle ScholarPubMed
Sanyanusin, P., Schimmenti, L. A., McNoe, L. A.et al. (1995). Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat. Genet., 9, 358–64CrossRefGoogle Scholar
Schimmenti, L. A., Cunliffe, H. E., McNoe, L. A.et al. (1997). Further delineation of renal-coloboma syndrome in patients with extreme variability of phenotype and identical PAX2 mutations. Am. J. Hum. Genet., 60, 869–78Google ScholarPubMed
Skoff, R. P., Price, D. L. and Stocks, A. (1976). Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve. II. Time of origin. J. Comp. Neurol., 169, 313–34CrossRefGoogle Scholar
Skoff, R. P., Toland, D. and Nast, E. (1980). Pattern of myelination and distribution of neuroglial cells along the developing optic system of the rat and rabbit. J. Comp. Neurol., 191, 237–53CrossRefGoogle ScholarPubMed
Small, R. K., Riddle, P. and Noble, M. (1987). Evidence for migration of oligodendrocyte – type-2 astrocyte progenitor cells into the developing rat optic nerve. Nature, 328, 155–7CrossRefGoogle ScholarPubMed
Snow, D. M. and Letourneau, P. C. (1992). Neurite outgrowth on a step gradient of chondroitin sulfate proteoglycan (CS-PG). J. Neurobiol., 23, 322–36CrossRefGoogle Scholar
Snow, D. M., Watanabe, M., Letourneau, P. C. and Silver, J. (1991). A chondroitin sulfate proteoglycan may influence the direction of retinal ganglion cell outgrowth. Development, 113, 1473–85Google ScholarPubMed
Spassky, N., Castro, F., Bras, B.et al. (2002). Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1. J. Neurosci., 22, 5992–6004CrossRefGoogle ScholarPubMed
Steineke, T. C. and Kirby, M. A. (1993). Early axon outgrowth of retinal ganglion cells in the fetal rhesus macaque. Brain Res. Dev. Brain Res., 74, 151–62CrossRefGoogle ScholarPubMed
Strom, R. C. and Williams, R. W. (1998). Cell production and cell death in the generation of variation in neuron number. J. Neurosci., 18, 9948–53CrossRefGoogle ScholarPubMed
Sugimoto, Y., Taniguchi, M., Yagi, T.et al. (2001). Guidance of glial precursor cell migration by secreted cues in the developing optic nerve. Development, 128, 3321–30Google ScholarPubMed
Suh, L. H., Oster, S. F., Soehrman, S. S., Grenningloh, G. and Sretavan, D. W. (2004). L1/Laminin modulation of growth cone response to EphB triggers growth pauses and regulates the microtubule destabilising protein SCG10. J. Neurosci., 24, 1976–86CrossRefGoogle Scholar
Take-uchi, M., Clarke, J. D. and Wilson, S. W. (2003). Hedgehog signaling maintains the optic stalk-retinal interface through the regulation of Vax gene activity. Development, 130, 955–68CrossRefGoogle ScholarPubMed
Taylor, D. (2005). Optic nerve axons: life and death before birth. Eye, 19, 499–527CrossRefGoogle ScholarPubMed
Torres, M., Gomez-Pardo, E. and Gruss, P. (1996). Pax2 contributes to inner ear patterning and optic nerve trajectory. Development, 122, 3381–91Google ScholarPubMed
Tsai, H. H., Frost, E., To, V.et al. (2002). The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell, 110, 373–83CrossRefGoogle ScholarPubMed
Tsai, H. H., Tessier-Lavigne, M. and Miller, R. H. (2003). Netrin 1 mediates spinal cord oligodendrocyte precursor dispersal. Development, 130, 2095–105CrossRefGoogle ScholarPubMed
Varga, Z. M., Amores, A., Lewis, K. E.et al. (2001). Zebrafish smoothened functions in ventral neural tube specification and axon tract formation. Development, 128, 3497–509Google ScholarPubMed
Walsh, F. S. and Doherty, P. (1997). Neural cell adhesion molecules of the immunoglobulin superfamily: role in axon growth and guidance. Annu. Rev. Cell. Dev. Biol., 13, 425–56CrossRefGoogle ScholarPubMed
Walther, C. and Gruss, P. (1991). Pax-6, a murine paired box gene, is expressed in the developing CNS. Development, 113, 1435–49Google ScholarPubMed
Wang, C., Rougon, G. and Kiss, J. Z. (1994). Requirement of polysialic acid for the migration of the O-2A glial progenitor cell from neurohypophyseal explants. J. Neurosci., 14, 4446–57CrossRefGoogle ScholarPubMed
Williams, R. W. and Rakic, P. (1985). Dispersion of growing axons within the optic nerve of the embryonic monkey. Proc. Natl. Acad. Sci. U. S. A., 82, 3906–10CrossRefGoogle ScholarPubMed
Williams, S. E., Mann, F., Erskine, L.et al. (2003). Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm. Neuron, 39, 919–35CrossRefGoogle ScholarPubMed
Ye, H. and Hernandez, M. R. (1995). Heterogeneity of astrocytes in human optic nerve head. J. Comp. Neurol., 362, 441–52CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×