Skip to main content Accessibility help
×
Home
  • Print publication year: 2012
  • Online publication date: October 2012

13 - Importance of microbes in peatland dynamics, restoration, and reclamation

from Part II - The challenges of reclamation in boreal ecosystems

References

Andersen, R. (2006). Suivi de la restauration écologique des tourbières ombrotrophes: le point de vue microbiologique. Le Naturaliste Canadien, 130, 25–31.
Andersen, R., Francez, A., Rochefort, L. (2006). The physicochemical and microbiological status of a restored bog in Québec: identification of relevant criteria to monitor success. Soil Biology and Biochemistry, 38, 1375–1387.
Andersen, R., Grasset, L., Thormann, M., Rochefort, L., Francez, A. (2010a). Changes in microbial community structure and function following Sphagnum peatland restoration. Soil Biology and Biochemistry, 42, 291–301.
Andersen, R., Pouliot, R., Rochefort, L., Francez, A., Artz, R. (2010b). Restoring the carbon accumulation function in cutover bogs: do micro-organisms matter?Reclamation and Restoration of Boreal Peatland and Forest Ecosystems: Toward a Sustainable Future Meeting, Edmonton, AB, March 25–27, 2010.
Andersen, R., Rochefort, L., Poulin, M. (2010c). Peat, water and plant tissue chemistry monitoring: a seven-year case-study in a restored peatland. Wetlands, 30, 159–170.
Anderson, J. and Domsch, K. (1978). A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry, 10, 215–221.
Artz, R. (2009). Microbial community structure and carbon substrate use in northern peatlands. In A. J. Baird, L. R. Belya, X. Comas, A. S. Reeve, L. D. Slater, eds., Carbon Cycling in Northern Peatlands. Geophysical monograph series 184, American Geophysical Union, Washington, DC.
Artz, R., Anderson, I., Chapman, S., et al. (2007). Changes in fungal community composition in response to vegetational succession during the natural regeneration of cutover peatlands. Microbial Ecology, 54, 508–522.
Artz, R., Chapman, S., Campbell, C. (2006). Substrate utilisation profiles of microbial communities in peat are depth dependent and correlate with whole soil FTIR profiles. Soil Biology and Biochemistry, 38, 2958–2962.
Artz, R., Chapman, S., Siegenthaler, A., et al. (2008). Functional microbial diversity in regenerating cutover peatlands responds to vegetation succession. Journal of Applied Ecology, 45, 1799–1809.
Bardgett, R. D., Freeman, C., Ostle, N. J. (2008). Microbial contributions to climate change through carbon cycle feedbacks. The ISME Journal, 2, 805–814.
Barkovskii, A. L., Fukui, H., Lesien, J., et al. (2009). Rearrangement of bacterial community structure during peat diagenesis. Soil Biology and Biochemistry, 41, 135–143.
Basiliko, N., Blodau, C., Roehm, C., Bengston, P., Moore, T. R. (2007). Regulation of decomposition and methane dynamics across natural, commercially mined, and restored northern peatlands. Ecosystems, 10, 1148–1165.
Basiliko, N., Yavitt, J., Dees, P., Merkel, S. (2003). Methane biogeochemistry and methanogen communities in two northern peatland ecosystems, New York State. Geomicrobiology Journal, 20, 563–577.
Belova, S., Pankratov, T., Dedysh, S. (2006). Bacteria of the genus Burkholderia as a typical component of the microbial community of Sphagnum peat bogs. Microbiology, 75, 90–96.
Belyea, L. R. (1996). Separating the effects of litter quality and microenvironment on decomposition rates in a patterned peatland. Oikos, 77, 529–539.
Bergner, B., Johnstone, J., Treseder, K. K. (2004). Experimental warming and burn severity alter soil CO2 flux and soil functional groups in a recently burned boreal forest. Global Change Biology, 10, 1996–2004.
Biryukova, O. V., Fedorak, P. M., Quideau, S. A. (2007). Biodegradation of naphthenic acids by rhizosphere microorganisms. Chemosphere, 67, 2058–2064.
Blodau, C., Basiliko, N., Mayer, B., Moore, T. R. (2006). The fate of experimentally deposited nitrogen in mesocosms from two Canadian peatlands. Science of the Total Environment, 364, 215–228.
Bradford, M. A., Davies, C. A., Frey, S. D., et al. (2008). Thermal adaptation of soil microbial respiration to elevated temperature. Ecology Letters, 11, 1316–1327.
Bräuer, S. L., Cadillo-Quiroz, H., Yashiro, E., Yavitt, J. B., Zinder, S. H. (2006). Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature, 442, 192–194.
Cadillo-Quiroz, H., Bräuer, S., Yashiro, E., et al. (2006). Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA. Environmental Microbiology, 8, 1428–1440.
Cadillo-Quiroz, H., Yashiro, E., Yavitt, J. B., Zinder, S. H. (2008a). Archaeal community in a minerotrophic fen and T-RFLP-directed isolation of a novel hydrogenotrophic methanogen. Applied and Environmental Microbiology, 74, 2059–2068.
Cadillo-Quiroz, H., Yashiro, E., Yavitt, J. B., Zinder, S. H. (2008b). Characterization of the archaeal community in a minerotrophic fen and terminal restriction fragment length polymorphism-directed isolation of a novel hydrogenotrophic methanogen. Applied and Environmental Microbiology, 74, 2059.
Cadillo-Quiroz, H., Yavitt, J. B., Zinder, S. H. (2009). Methanosphaerula palustris gen. nov., sp. nov., a hydrogenotrophic methanogen isolated from a minerotrophic fen peatland. International Journal of Systematic and Evolutionary Microbiology, 59, 928.
Campbell, C. D., Chapman, S. J., Cameron, C. M., Davidson, M. S., Potts, J. M. (2003). A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Applied and Environmental Microbiology, 69, 3593.
Certini, G. (2005). Effects of fire on properties of forest soils: a review. Oecologia, 143, 1–10.
Chapman, S., Buttler, A., Francez, A., et al. (2003). Exploitation of northern peatlands and biodiversity maintenance: a conflict between economy and ecology. Frontiers in Ecology and the Environment, 1, 525–532.
Chen, Y., Dumont, M. G., McNamara, N. P., et al. (2008). Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP PLFA analyses. Environmental Microbiology, 10, 446–459.
Chen, Y. and Murrell, J. C. (2010). Geomicrobiology: methanotrophs in moss. Nature Geoscience, 3, 595–596.
Clymo, R. and Bryant, C. (2008). Diffusion and mass flow of dissolved carbon dioxide, methane, and dissolved organic carbon in a 7-m deep raised peat bog. Geochimica et Cosmochimica Acta, 72, 2048–2066.
Clymo, R., Turunen, J., Tolonen, K. (1998). Carbon accumulation in peatland. Oikos, 81, 368–388.
Crill, P., Bartlett, K., Harriss, R., et al. (1988). Methane flux from Minnesota peatlands. Global Biogeochemical Cycles, 2, 371–384.
Croft, M., Rochefort, L., Beauchamp, C. J. (2001). Vacuum-extraction of peatlands disturbs bacterial population and microbial biomass carbon. Applied Soil Ecology, 18, 1–12.
Cudlin, P., Kieliszewska-Rokicka, B., Rudawska, M., et al. (2007). Fine roots and ectomycorrhizas as indicators of environmental change. Plant Biosystems–An International Journal Dealing with all Aspects of Plant Biology, 141, 406–425.
Currey, P. M., Johnson, D., Sheppard, L. J., et al. (2010). Turnover of labile and recalcitrant soil carbon differ in response to nitrate and ammonium deposition in an ombrotrophic peatland. Global Change Biology, 16, 2307–2321.
Davidson, E. A. and Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165–173.
Dedysh, S. (2002). Methanotrophic bacteria of acidic Sphagnum peat bogs. Microbiology, 71, 638–650.
Dedysh, S. (2009). Exploring methanotroph diversity in acidic northern wetlands: molecular and cultivation-based studies. Microbiology, 78, 655–669.
Dedysh, S. N., Panikov, N. S., Tiedje, J. M. (1998). Acidophilic methanotrophic communities from Sphagnum peat bogs. Applied and Environmental Microbiology, 64, 922.
Dedysh, S. N., Pankratrov, T. A., Belova, S. E., Kulichevskaya, I. S., Liesack, W. (2006). Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. Applied and Environmental Microbiology, 72, 2110.
Degens, B. P., Schipper, L. A., Sparling, G. P., Duncan, L. C. (2001). Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance?Soil Biology and Biochemistry, 33, 1143–1153.
Del Rio, L., Hadwin, A., Pinto, L., MacKinnon, M., Moore, M. (2006). Degradation of naphthenic acids by sediment micro organisms. Journal of Applied Microbiology, 101, 1049–1061.
Dickinson, C. (1983). Micro-organisms in peatlands. In A. J. P. Gore, ed., Ecosystems of the World. New Haven, CT: Yale University Press.
Dise, N. B. and Verry, E. S. (2001). Suppression of peatland methane emission by cumulative sulfate deposition in simulated acid rain. Biogeochemistry, 53, 143–160.
Dorrepaal, E., Toet, S., Van Logtestijn, R. S. P., et al. (2009). Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature, 460, 616–619.
Fisk, M., Ruether, K., Yavitt, J. (2003). Microbial activity and functional composition among northern peatland ecosystems. Soil Biology and Biochemistry, 35, 591–602.
Francez, A., Gogo, S., Josselin, N. (2000). Distribution of potential CO2 and CH4 productions, denitrification and microbial biomass C and N in the profile of a restored peatland in Brittany (France). European Journal of Soil Biology, 36, 161–168.
Freeman, C., Fenner, N., Ostle, N., et al. (2004). Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature, 430, 195–198.
Freeman, C., Nevison, G., Hughes, S., Reynolds, B., Hudson, J. (1998). Enzymic involvement in the biogeochemical responses of a Welsh peatland to a rainfall enhancement manipulation. Biology and Fertility of Soils, 27, 173–178.
Freitag, T. E. and Prosser, J. I. (2009). Correlation of methane production and functional gene transcriptional activity in a peat soil. Applied and Environmental Microbiology, 75, 6679.
Freitag, T. E., Toet, S., Ineson, P., Prosser, J. I. (2010). Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog. FEMS Microbiology Ecology, 73, 157–165.
Galand, P., Juottonen, H., Fritze, H., Yrjälä, K. (2005). Methanogen communities in a drained bog: effect of ash fertilization. Microbial Ecology, 49, 209–217.
Galand, P. E. (2004). Methanogenic Archaea in Boreal Peatlands. Diss., University of Helsinki, Helsinki.
Galand, P. E., Saarnio, S., Fritze, H., Yrjälä, K. (2002). Depth related diversity of methanogen Archaea in Finnish oligotrophic fen. FEMS Microbiology Ecology, 42, 441–449.
Galloway, M. and Branfireun, B. (2004). Mercury dynamics of a temperate forested wetland. Science of The Total Environment, 325, 239–254.
Garland, J. L. (1996). Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biology and Biochemistry, 28, 213–221.
Gilbert, D., Amblard, C., Bourdier, G., Francez, A. J. (1998). The microbial loop at the surface of a peatland: structure, function, and impact of nutrient input. Microbial Ecology, 35, 83–93.
Gilbert, D., Francez, A. J., Amblard, C., Bourdier, G. (1999). The microbial communities at the surface of the Sphagnum peatlands: good indicators of human disturbances?Ecologie, 30, 45–52.
Gilbert, D. and Mitchell, E. (2006). Microbial diversity in Sphagnum peatlands. In I. P. Martini, A. Matinez Cortizas, W. Chesworth, eds., Peatlands: Basin Evolution and Depository of Records on Global Environmental and Climatic Changes. Developments in Earth Surface Processes series. Amsterdam: Elsevier, pp. 287–318.
Glatzel, S., Basiliko, N., Moore, T. (2004). Carbon dioxide and methane production potentials of peats from natural, harvested and restored sites, Eastern Québec, QC. Wetlands, 24, 261–267.
Golovchenko, A., Tikhonova, E. Y., Zvyagintsev, D. (2007). Abundance, biomass, structure, and activity of the microbial complexes of minerotrophic and ombrotrophic peatlands. Microbiology, 76, 630–637.
Graf, M. D. (2009). Literature Review on the Restoration of Alberta's Boreal Wetlands Affected by Oil, Gas and in situ Oil Sands Development. Prepared for Ducks Unlimited, Canada.
Graf, M. D., Rezanezhad, F., Andersen, R., et al. (2009). Response of fen plants on peat contaminated with oil sands process-affected waters. Project funded by Suncor Energy Inc., 2009–2010.
Grayston, S. J., Wang, S., Campbell, C. D., Edwards, A. C. (1998). Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biology and Biochemistry, 30, 369–378.
Greenwood, P. F., Wibrow, S., George, S. J., Tibbett, M. (2009). Hydrocarbon biodegradation and soil microbial community response to repeated oil exposure. Organic Geochemistry, 40, 293–300.
Hadwin, A. K. M., Del Rio, L. F., Pinto, L. J., et al. (2006). Microbial communities in wetlands of the Athabasca oil sands: genetic and metabolic characterization. FEMS Microbiology Ecology, 55, 68–78.
Hamberger, A., Horn, M. A., Dumont, M. G., Murrell, J. C., Drake, H. L. (2008). Anaerobic consumers of monosaccharides in a moderately acidic fen. Applied and Environmental Microbiology, 74, 3112.
Hanson, R. S. and Hanson, T. E. (1996). Methanotrophic bacteria. Microbiology and Molecular Biology Reviews, 60, 439.
Harris, J. (2003). Measurements of the soil microbial community for estimating the success of restoration. European Journal of Soil Science, 54, 801–808.
Hart, S. C., Deluca, T. H., Newman, G. S., MacKenzie, M. D., Boyle, S. I. (2005). Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. Forest Ecology and Management, 220, 166–184.
Heinemeyer, A., Ineson, P., Ostle, N., Fitter, A. (2006). Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytologist, 171, 159–170.
Herman, D. C., Fedorak, P. M., MacKinnon, M. D., Costerton, J. (1994). Biodegradation of naphthenic acids by microbial populations indigenous to oil sands tailings. Canadian Journal of Microbiology, 40, 467–477.
Hogg, E. H. (1993). Decay potential of hummock and hollow Sphagnum peats at different depths in a Swedish raised bog. Oikos, 269–278.
Jaatinen, K., Fritze, H., Laine, J., Laiho, R. (2007). Effects of short and long term water level drawdown on the populations and activity of aerobic decomposers in a boreal peatland. Global Change Biology, 13, 491–510.
Jaatinen, K., Laiho, R., Vuorenmaa, A., et al. (2008). Responses of aerobic microbial communities and soil respiration to water level drawdown in a northern boreal fen. Environmental Microbiology, 10, 339–353.
Jaatinen, K., Tuittila, E. S., Laine, J., Yrjälä, K., Fritze, H. (2005). Methanotrophic bacteria in Finnish raised bog complex: effects of site fertility and drainage. Pro Terra, 22, 40–41.
Jassey, V. E. J., Gilbert, D., Binet, P., Toussaint, M. L., Chiapusio, G. (2011). Effect of a temperature gradient on Sphagnum fallax and its associated living microbial communities: a study under controlled conditions. Canadian Journal of Microbiology, 57, 226–235.
Johnson, L. C. and Damman, A. W. H. (1991). Species-controlled Sphagnum decay on a south Swedish raised bog. Oikos, 61, 234–242.
Johnson, L. C., Damman, A. W. H., Malmer, N. (1990). Sphagnum macrostructure as an indicator of decay and compaction in peat cores from an ombrotrophic south Swedish peat-bog. Journal of Ecology, 78, 633–647.
Juottonen, H. (2008). Archaea, Bacteria, and Methane Production along Environmental Gradients in Fens and Bogs. Ph.D. thesis, University of Helsinki, Helsinki.
Juottonen, H., Galand, P. E., Tuitilla, E. S., et al. (2005). Methanogen communities and bacteria along an ecohydrological gradient in a northern raised bog complex. Environmental Microbiology, 7, 1547–1557.
Kachalkin, A., Glushakova, A., Yurkov, A., Chernov, I. Y. (2008). Characterization of yeast groupings in the phyllosphere of Sphagnum mosses. Microbiology, 77, 474–481.
Kasischke, E. S., ChristensenJ. R. N., Stocks, B. J. (1995). Fire, global warming, and the carbon balance of boreal forests. Ecological Applications, 5, 437–451.
Kasischke, E. S. and Johnstone, J. F. (2005). Variation in postfire organic layer thickness in a black spruce forest complex in interior Alaska and its effects on soil temperature and moisture. Canadian Journal of Forest Research, 35, 2164–2177.
Kasischke, E. S. and Turetsky, M. R. (2006). Recent changes in the fire regime across the North American boreal region – spatial and temporal patterns of burning across Canada and Alaska. Geophysical Research Letters, 33, L09703.
Kellogg, L. E. and Bridgham, S. D. (2003). Phosphorus retention and movement across an ombrotrophic-minerotrophic peatland gradient. Biogeochemistry, 63, 299–315.
Kelly, C. A., Dise, N. B., Martens, C. S. (1992). Temporal variations in the stable carbon isotopic composition of methane emitted from Minnesota peatlands. Global Biogeochemical Cycles, 6, 263–269.
Kim, S. Y., Lee, S. H., Freeman, C., Fenner, N., Kang, H. (2008). Comparative analysis of soil microbial communities and their responses to the short-term drought in bog, fen, and riparian wetlands. Soil Biology and Biochemistry, 40, 2874–2880.
Kip, N., Van Winden, J. F., Pan, Y., et al. (2010). Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nature Geoscience, 3, 617–621.
Kirschbaum, M. U. F. (2004). Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Global Change Biology, 10, 1870–1877.
Knorr, W., Prentice, I. C., House, J. I., Holland, E. A. (2005). Long-term sensitivity of soil carbon turnover to warming. Nature, 433, 298–301.
Kuhry, P. (1994). The role of fire in the development of Sphagnum-dominated peatlands in western boreal Canada. Journal of Ecology, 82, 899–910.
Laggoun Défarge, F., Mitchell, E., Gilbert, D., et al. (2008). Cut over peatland regeneration assessment using organic matter and microbial indicators (bacteria and testate amoebae). Journal of Applied Ecology, 45, 716–727.
Laiho, R. (2006). Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biology and Biochemistry, 38, 2011–2024.
Larmola, T., Tuittila, E. S., Tiirola, M., et al. (2010). The role of Sphagnum mosses in the methane cycling of a boreal mire. Ecology, 91, 2356–2365.
Latter, P. M., Cragg, J., Heal, O. (1967). Comparative studies on the microbiology of four moorland soils in the northern Pennines. Journal of Ecology, 55, 445–464.
Limpens, J., Berendse, F., Klees, H. (2003). N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytologist, 157, 339–347.
Limpens, J., Heijmans, M. M. P. D., Berendse, F. (2006). The nitrogen cycle in boreal peatlands. Boreal Peatland Ecosystems, 188, 195–230.
Lumley, T. C., Gignac, L. D., Currah, R. S. (2001). Microfungus communities of white spruce and trembling aspen logs at different stages of decay in disturbed and undisturbed sites in the boreal mixedwood region of Alberta. Botany, 79, 76–92.
Malcolm, G. M., López-Gutiérrez, J. C., Koide, R. T., Eissenstat, D. M. (2008). Acclimation to temperature and temperature sensitivity of metabolism by ectomycorrhizal fungi. Global Change Biology, 14, 1169–1180.
Marilley, L. and Aragno, M. (1999). Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Applied Soil Ecology, 13, 127–136.
Mastepanov, M., Sigsgaard, C., Dlugokencky, E. J., et al. (2008). Large tundra methane burst during onset of freezing. Nature, 456, 628–630.
Merilä, P., Galand, P. E., Fritze, H., et al. (2006). Methanogen communities along a primary succession transect of mire ecosystems. FEMS Microbiology Ecology, 55, 221–229.
Mitchell, E. A. D., Gilbert, D., Buttler, A., et al. (2003). Structure of microbial communities in Sphagnum peatlands and effect of atmospheric carbon dioxide enrichment. Microbial Ecology, 46, 187–199.
Moore, P. and Bellamy, D. (1974). Peatlands. London, UK: Elek Science.
Morales, S. E., Mouser, P. J., Ward, N., et al. (2006). Comparison of bacterial communities in New England Sphagnum bogs using terminal restriction fragment length polymorphism (T-RFLP). Microbial Ecology, 52, 34–44.
Myers-Smith, I., Harden, J., Wilmking, M., et al. (2008). Wetland succession in a permafrost collapse: interactions between fire and thermokarst. Biogeosciences, 5, 1273–1286.
Newell, S., Moran, M., Wicks, R., Hodson, R. (1995). Productivities of microbial decomposers during early stages of decomposition of leaves of a freshwater sedge. Freshwater Biology, 34, 135–148.
Newman, E. and Reddell, P. (1987). The distribution of mycorrhizas among families of vascular plants. New Phytologist, 106, 745–751.
Nyman, J. (1999). Effect of crude oil and chemical additives on metabolic activity of mixed microbial populations in fresh marsh soils. Microbial Ecology, 37, 152–162.
Oechel, W. C., Vourlitis, G. L., Hastings, S. J., et al. (2000). Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature, 406, 978–981.
Op Den Camp, H. J. M., Islam, T., Stott, M. B., et al. (2009). Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environmental Microbiology Reports, 1, 293–306.
Opelt, K., Berg, C., Schönmann, S., Eberl, L., Berg, G. (2007). High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region. ISME Journal, 1, 502–516.
Pankratov, T. and Dedysh, S. (2009). Cellulolytic streptomycetes from Sphagnum peat bogs and factors controlling their activity. Microbiology, 78, 227–233.
Pankratov, T. A., Kulichevskaya, I. S., Liesack, W., Dedysh, S. N. (2006). Isolation of aerobic, gliding, xylanolytic and laminarinolytic bacteria from acidic Sphagnum peatlands and emended description of Chitinophaga arvensicola Kampfer et al., 2006. International Journal of Systematic and Evolutionary Microbiology, 56, 2761–2764.
Peltoniemi, K., Fritze, H., Laiho, R. (2009). Response of fungal and actinobacterial communities to water-level drawdown in boreal peatland sites. Soil Biology and Biochemistry, 41, 1902–1914.
Pendall, E., Bridgham, S., Hanson, P. J., et al. (2004). Below ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytologist, 162, 311–322.
Pester, M., Bittner, N., Deevong, P., Wagner, M., Loy, A. (2010). A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland. ISME Journal, 4, 1591–1602.
Piercey, M., Thormann, M., Currah, R. (2002). Saprobic characteristics of three fungal taxa from ericalean roots and their association with the roots of Rhododendron groenlandicum and Picea mariana in culture. Mycorrhiza, 12, 175–180.
Popp, T. J., Chanton, J. P., Whiting, G. J., Grant, N. (2000). Evaluation of methane oxidation in the rhizosphere of a Carex dominated fen in northcentral Alberta, Canada. Biogeochemistry, 51, 259–281.
Potila, H. (2004). Mycorrhizal Fungi and Nitrogen Dynamics in Drained Peatland. Ph.D. thesis, University of Helsinki, Helsinki.
Poulin, M., Rochefort, L., Pellerin, S., Thibault, J. (2004). Threats and protection for peatlands in Eastern Canada. Géocarrefour, 79, 331–344.
Price, J., Heathwaite, A., Baird, A. (2003). Hydrological processes in abandoned and restored peatlands: an overview of management approaches. Wetlands Ecology and Management, 11, 65–83.
Price, J. S., McClaren, R. G., Rudolph, D. L. (2010). Landscape restoration after oil sands mining: conceptual design and hydrological modelling for fen reconstruction. International Journal of Mining, Reclamation and Environment, 24, 109–123.
Putkinen, A., Juottonen, H., Juutinen, S., et al. (2009). Archaeal rRNA diversity and methane production in deep boreal peat. FEMS Microbiology Ecology, 70, 87–98.
Quilliam, R. S. and Jones, D. L. (2010). Fungal root endophytes of the carnivorous plant Drosera rotundifolia. Mycorrhiza, 20, 341–348.
Raghoebarsing, A. A., Pol, A., Van De Pas-Schoonen, K. T., et al. (2006). A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440, 918–921.
Raghoebarsing, A. A., Smolders, A. J. P., Schmid, M. C., et al. (2005). Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature, 436, 1153–1156.
Read, D. J., Leake, J. R., Perez-Moreno, J. (2004). Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Botany, 82, 1243–1263.
Rochefort, L., Quinty, F., Campeau, S., Johnson, K., Malterer, T. (2003). North American approach to the restoration of Sphagnum dominated peatlands. Wetlands Ecology and Management, 11, 3–20.
Rooney Varga, J. N., Giewat, M. W., Duddleston, K. N., Chanton, J. P., Hines, M. E. (2007). Links between archaeal community structure, vegetation type and methanogenic pathway in Alaskan peatlands. FEMS Microbiology Ecology, 60, 240–251.
Selosse, M. A., Setaro, S., Glatard, F., et al. (2007). Sebacinales are common mycorrhizal associates of Ericaceae. New Phytologist, 174, 864–878.
Sibly, R. M. and Calow, P. (1989). A life-cycle theory of responses to stress. Biological Journal of the Linnean Society, 37, 101–116.
Strack, M., Waddington, J., Tuittila, E. S. (2004). Effect of water table drawdown on northern peatland methane dynamics: implications for climate change. Global Biogeochemical Cycles, 18, GB4003.
Sundh, I., Borgå, P., Nilsson, M., Svensson, B. H. (1995). Estimation of cell numbers of methanotrophic bacteria in boreal peatlands based on analysis of specific phospholipid fatty acids. FEMS Microbiology Ecology, 18, 103–112.
Sundh, I., Nilsson, M., Borga, P. (1997). Variation in microbial community structure in two boreal peatlands as determined by analysis of phospholipid fatty acid profiles. Applied and Environmental Microbiology, 63, 1476.
Tape, K., Sturm, M., Racine, C. (2006). The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Global Change Biology, 12, 686–702.
Thormann, M. (2006a). The role of fungi in boreal peatlands. Boreal Peatland Ecosystems, 188, 101–123.
Thormann, M. and Rice, A. (2007). Fungi from peatlands. Fungal Diversity, 24, 241–299.
Thormann, M. N. (2006b). Diversity and function of fungi in peatlands: a carbon cycling perspective. Canadian Journal of Soil Science, 86, 281.
Thormann, M. N., Bayley, S. E., Currah, R. S. (2001a). Comparison of decomposition of belowground and aboveground plant litters in peatlands of boreal Alberta, Canada. Botany, 79, 9–22.
Thormann, M. N., Bayley, S. E., Currah, R. S. (2004a). Microcosm tests of the effects of temperature and microbial species number on the decomposition of Carex aquatilis and Sphagnum fuscum litter from southern boreal peatlands. Canadian Journal of Microbiology, 50, 793–802.
Thormann, M. N., Currah, R. S., Bayley, S. E. (1999). The mycorrhizal status of the dominant vegetation along a peatland gradient in southern boreal Alberta, Canada. Wetlands, 19, 438–450.
Thormann, M. N., Currah, R. S., Bayley, S. E. (2001b). Microfungi isolated from Sphagnum fuscum from a southern boreal bog in Alberta, Canada. Bryologist, 104, 548–559.
Thormann, M. N., Currah, R. S., Bayley, S. E. (2003). Succession of microfungal assemblages in decomposing peatland plants. Plant and Soil, 250, 323–333.
Thormann, M. N., Currah, R. S., Bayley, S. E. (2004b). Patterns of distribution of microfungi in decomposing bog and fen plants. Botany, 82, 710–720.
Thormann, M. N., Rice, A. V., Beilman, D. W. (2007). Yeasts in peatlands: a review of richness and roles in peat decomposition. Wetlands, 27, 761–773.
Treseder, K. and Allen, M. (2000). Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytologist, 147, 189–200.
Treseder, K. K., Mack, M. C., Cross, A. (2004). Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecological Applications, 14, 1826–1838.
Trinder, C., Johnson, D., Artz, R. (2009). Litter type, but not plant cover, regulates initial litter decomposition and fungal community structure in a recolonising cutover peatland. Soil Biology and Biochemistry, 41, 651–655.
Trinder, C. J., Johnson, D., Artz, R. R. E. (2008). Interactions among fungal community structure, litter decomposition and depth of water table in a cutover peatland. FEMS Microbiology Ecology, 64, 433–448.
Tunlid, A., Ringelberg, D., Phelps, T., Low, C., White, D. (1989). Measurement of phospholipid fatty acids at picomolar concentrations in biofilms and deep subsurface sediments using gas chromatography and chemical ionization mass spectrometry. Journal of Microbiological Methods, 10, 139–153.
Tunlid, A. and White, D. C. (1990). Use of lipid biomarkers in environmental samples. In A. Fox, S. L. Morgan, L. Larsson, G. Odham, eds., Analytical Microbiology Methods: Chromatography and Mass Spectrometry. New York, NY: Plemun Press, pp. 259–274.
Turetsky, M., Amiro, B., Bosch, E., Bhatti, J. (2004). Historical burn area in western Canadian peatlands and its relationship to fire weather indices. Global Biogeochemical Cycles, 18, GB4014.
Turetsky, M., Wieder, K., Halsey, L., Vitt, D. (2002). Current disturbance and the diminishing peatland carbon sink. Geophysical Research Letters, 29, 21–1.
Turetsky, M., Wieder, R., Williams, C., Vitt, D. (2000). Organic matter accumulation, peat chemistry, and permafrost melting in peatlands of boreal Alberta. Ecoscience, 7, 379–392.
Van Der Heijden, M. G. A., Bardgett, R. D., Van Straalen, N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296–310.
Vance, E., Brookes, P., Jenkinson, D. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707.
Verhoeven, J. T. A., Keuter, A., Van Logtestijn, R., Van Kerkhoven, M. B., Wassen, M. (1996). Control of local nutrient dynamics in mires by regional and climatic factors: a comparison of Dutch and Polish sites. Journal of Ecology, 84, 647–656.
Viereck, L. A. (1982). Effects of fire and firelines on active layer thickness and soil temperatures in interior Alaska. US Forest Service.
Vile, M. A., Bridgham, S. D., Wieder, R. K., Novák, M. (2003). Atmospheric sulfur deposition alters pathways of gaseous carbon production in peatlands. Global Biogeochemical Cycles, 17, 1058.
Vitt, D., Halsey, L., Bauer, I., Campbell, C. (2000). Spatial and temporal trends in carbon storage of peatlands of continental western Canada through the Holocene. Canadian Journal of Earth Sciences, 37, 683–693.
Vitt, D. H., Halsey, L. A., Zoltai, S. C. (1994). The bog landforms of continental western Canada in relation to climate and permafrost patterns. Arctic and Alpine Research, 26, 1–13.
Vitt, D., Koropchak, S., Xu, B., et al. (2010). Rebuilding Peatlands on Mineral Soils Utilizing Lessons Learned from Past Peatland Initiation. Reclamation and Restoration of Boreal Peatland and Forest Ecosystems: Toward a Sustainable Future. Southern Illinois University,Carbondale, IL.
Vitt, D. H., Wieder, R. K., Xu, B., Kaskie, M., Koropchak, S. (2011). Peatland establishment on mineral soils: effects of water level, amendments, and species after two growing seasons. Ecological Engineering, 37, 354–363.
Waddington, J., Greenwood, M., Petrone, R., Price, J. (2003). Mulch decomposition impedes recovery of net carbon sink function in a restored peatland. Ecological Engineering, 20, 199–210.
Walbridge, M. R. and Navaratnam, J. A. (2006). Phosphorous in boreal peatlands. Boreal Peatland Ecosystems, 188, 231–258.
Waldrop, M. P. and Harden, J. W. (2008). Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest. Global Change Biology, 14, 2591–2602.
Waughman, G. and Bellamy, D. (1980). Nitrogen fixation and the nitrogen balance in peatland ecosystems. Ecology, 61, 1185–1198.
Weber, K. P. and Legge, R. L. (2010). Dynamics in the bacterial community-level physiological profiles and hydrological characteristics of constructed wetland mesocosms during start-up. Ecological Engineering, 37, 666–677.
Welsh, D. T. (2000). Ecological significance of compatible solute accumulation by micro organisms: from single cells to global climate. FEMS Microbiology Reviews, 24, 263–290.
Whitby, C. (2010). Microbial naphthenic acid degradation. Advances in Applied Microbiology, 70, 93–125.
Wieder, R. K. and Lang, G. E. (1988). Cycling of inorganic and organic sulfur in peat from Big Run Bog, West Virginia. Biogeochemistry, 5, 221–242.
Wieder, R. K., Scott, K. D., Kamminga, K., et al. (2009). Postfire carbon balance in boreal bogs of Alberta, Canada. Global Change Biology, 15, 63–81.
Wieder, R. K., Yavitt, J. B., Lang, G. E. (1990). Methane production and sulfate reduction in two Appalachian peatlands. Biogeochemistry, 10, 81–104.
Williams, R. T. and Crawford, R. L. (1983). Microbial diversity of Minnesota peatlands. Microbial ecology, 9, 201–214.
Winsborough, C. and Basiliko, N. (2009). Bacterial and Fungal Activities of Northern Peatland Ecosystems. Eos Transactions, American Geophysical Union, 90, B73A-15.
Yan, W., Artz, R. R. E. and Johnson, D. (2008). Species-specific effects of plants colonising cutover peatlands on patterns of carbon source utilisation by soil microorganisms. Soil Biology and Biochemistry, 40, 544–549.
Yesmin, L., Gammack, S. M., Cresser, M. S. (1996). Effects of atmospheric nitrogen deposition on ericoid mycorrhizal infection of Calluna vulgaris growing in peat soils. Applied Soil Ecology, 4, 49–60.
Young, B., Varner, R., Larmola, T., Bubier, J. (2010). The role of sphagnum mosses in methane cycling of a temperate fen. Abstract 0292, presented at 2010 Fall Meeting, American Geophysical Union, San Francisco, CA.
Zadorina, E., Slobodova, N., Boulygina, E., et al. (2009). Analysis of the diversity of diazotrophic bacteria in peat soil by cloning of the nifH gene. Microbiology, 78, 218–226.
Zak, D. R., Pegitzer, K. S., King, J. S., Holmes, W. E. (2000). Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytologist, 147, 201–222.
Zinder, S. H. (1993). Physiological ecology of methanogens. In J. G. Ferry, ed., Methanogenesis: Ecology, Physiology, Biochemistry and Genetics. New York, NY: Chapman and Hall, pp. 128–206.
Zoltai, S., Morrissey, L., Livingston, G., Groot, W. (1998). Effects of fires on carbon cycling in North American boreal peatlands. Environmental Reviews, 6, 13–24.