Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T07:27:08.962Z Has data issue: false hasContentIssue false

9 - Neutron, Gamma-Ray, and X-Ray Spectroscopy

Theory and Applications

from Part I - Theory of Remote Compositional Analysis Techniques and Laboratory Measurements

Published online by Cambridge University Press:  15 November 2019

Janice L. Bishop
Affiliation:
SETI Institute, California
James F. Bell III
Affiliation:
Arizona State University
Jeffrey E. Moersch
Affiliation:
University of Tennessee, Knoxville
Get access

Summary

Neutrons, gamma rays, and X-rays are used to measure the subsurface elemental composition of Solar System bodies, providing insights into their formation and evolution. Neutrons and gamma rays are highly penetrating particles made by the steady bombardment of the regolith of airless bodies by galactic cosmic rays. Gamma rays are also made by the decay of natural radioelements. The escaping radiation can be detected in close-proximity orbits and analyzed to determine subsurface elemental composition to depths of a few decimeters. Because the radiation sensors have nearly omnidirectional response, spatial resolution depends on orbital altitude. X-ray fluorescence is induced by solar X-rays. Consequently, X-ray spectroscopy is most useful for studies of objects in the inner Solar System. Characteristic elemental X-rays are made within the uppermost ~100 micrometers of the surface. The suite of elements analyzed overlaps that of nuclear spectroscopy, providing complementary geochemical information. Because X-rays are easily collimated, relatively high spatial resolution measurements are possible. This chapter presents the fundamentals of neutron, gamma-ray, and X-ray production, transport, and detection along with an overview of the measurement principles, including modeling, analysis, and mapping methods.

Type
Chapter
Information
Remote Compositional Analysis
Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces
, pp. 191 - 238
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, I. & Trombka, J. (1970) Geochemical exploration of the Moon and planets. Springer-Verlag, New York.Google Scholar
Adler, I., Trombka, J., Gerard, J., et al. (1972a) Apollo 15 geochemical X-ray fluorescence experiment: Preliminary report. Science, 175, 436440.CrossRefGoogle ScholarPubMed
Adler, I., Trombka, J., Gerard, J., et al. (1972b) Apollo 16 geochemical X-ray fluorescence experiment: Preliminary report. Science, 177, 256259.CrossRefGoogle ScholarPubMed
Adler, I., Trombka, J.I., Yin, L.I., Gorenstein, P., Bjorkholm, P., & Gerard, J. (1973a) Lunar composition from Apollo orbital measurements. Naturwissenschaften, 60, 231242.CrossRefGoogle Scholar
Adler, I., Trombka, J.I., Lowman, P., et al. (1973b) Apollo 15 and 16 results of the integrated geochemical experiment. The Moon, 7, 487504.CrossRefGoogle Scholar
Agostinelli, S., Allison, J., Amako, K., et al. (2003) Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506, 250303.CrossRefGoogle Scholar
Alha, L., Huovelin, J., Nygård, K., et al. (2009) Ground calibration of the Chandrayaan-1 X-ray Solar Monitor (XSM). Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, 607, 544553.CrossRefGoogle Scholar
Arai, T., Okada, T., Yamamoto, Y., Ogawa, K., Shirai, K., & Kato, M. (2008) Sulfur abundance of asteroid 25143 Itokawa observed by X-ray fluorescence spectrometer onboard Hayabusa. Earth, Planets and Space, 60, 2131.CrossRefGoogle Scholar
Athiray, P.S., Sudhakar, M., Tiwari, M.K., et al. (2013) Experimental validation of XRF inversion code for Chandrayaan-1. Planetary and Space Science, 89, 183187.CrossRefGoogle Scholar
Athiray, P.S., Narendranath, S., Sreekumar, P., & Grande, M. (2014) C1XS results—First measurement of enhanced sodium on the lunar surface. Planetary and Space Science, 104, 279287.CrossRefGoogle Scholar
Battistoni, G., Cerutti, F., Fasso, A., Ferrari, A., & Muraro, S. (2007) The FLUKA code: Description and benchmarking. AIP Conference Proceedings, 896, 3149.CrossRefGoogle Scholar
Beck, A.W., Lawrence, D.J., Peplowski, P.N., et al. (2015) Using HED meteorites to interpret neutron and gamma-ray data from asteroid 4 Vesta. Meteoritics and Planetary Science, 50, 13111337.CrossRefGoogle Scholar
Bevington, P.R. & Robinson, D.K. (1992) Data reduction and error analysis for the physical sciences, 2nd edn. McGraw-Hill, New York.Google Scholar
Bielefeld, M.J., Andre, C.G., Clark, P.E., Adler, I., Eliason, E., & Trombka, J. (1977) Imaging of lunar surface chemistry from orbital X-ray data. 8th Lunar Planet Sci. Conf.Google Scholar
Birks, J.B. (1964) Theory and practice of scintillation counting. Pergamon Press, Oxford.Google Scholar
Boynton, W., Feldman, W., Squyres, S., et al. (2002) Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science, 297, 8185.CrossRefGoogle ScholarPubMed
Boynton, W., Feldman, W., Mitrofanov, I., et al. (2004) The Mars Odyssey gamma-ray spectrometer instrument suite. Space Science Reviews, 110, 3783.CrossRefGoogle Scholar
Boynton, W.V., Taylor, G.J., Evans, L.G., et al. (2007) Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. Journal of Geophysical Research, 112, E12S99, DOI:10.1029/2007JE002887.CrossRefGoogle Scholar
Brown, E. & Firestone, R.B. (1986) Table of radioactive isotopes (Shirley, V.S, ed.). John Wiley & Sons, New York.Google Scholar
Brückner, J., Korfer, M., Wanke, H., et al. (1991) Proton-induced radiation damage in germanium detectors. IEEE Transactions on Nuclear Science, 38, 209217.CrossRefGoogle Scholar
Cherepy, N.J., Hull, G., Drobshoff, A.D., et al. (2008) Strontium and barium iodide high light yield scintillators. Applied Physics Letters, 92, 083508.CrossRefGoogle Scholar
Cherepy, N.J., Payne, S.A., Sturm, B.W., et al. (2013) Instrument development and gamma spectroscopy with strontium iodide. IEEE Transactions on Nuclear Science, 60, 955958.CrossRefGoogle Scholar
Clark, B.C., Baird, A.K., Rose, H.J., et al. (1977) The Viking X Ray Fluorescence Experiment: Analytical methods and early results. Journal of Geophysical Research, 82, 45774594.CrossRefGoogle Scholar
Clark, P.E. & Adler, I. (1978) Utilization of independent solar flux measurements to eliminate nongeochemical variation in X-ray fluorescence data. 9th Lunar Planet. Sci. Conf., 3029–3036.Google Scholar
Clark, P.E. & Hawke, B.R. (1981) Compositional variation in the Hadley Apennine region. 12th Lunar Planet. Sci. Conf., 727–749.Google Scholar
Clark, P.E. & Hawke, B.R. (1991) The lunar farside: The nature of highlands east of Mare Smythii. Earth, Moon, and Planets, 53, 93107.CrossRefGoogle Scholar
Clark, P.E. & Rilee, M.L. (2010) Remote sensing tools for exploration: Observing and interpreting the electromagnetic spectrum. Springer Science+Business Media, New York.CrossRefGoogle Scholar
Clark, P.E. & Trombka, J.I. (1997) Remote X-ray spectrometry for NEAR and future missions: Modeling and analyzing X-ray production from source to surface. Journal of Geophysical Research, 102, 1636116384.CrossRefGoogle Scholar
Crawford, I.A., Joy, K.H., Kellett, B.J., et al., (2009) The scientific rationale for the C1XS X-ray spectrometer on India’s Chandrayaan-1 mission to the moon. Planetary and Space Science, 57, 725734.CrossRefGoogle Scholar
Del Zanna, G., Dere, K.P., Young, P.R., Landi, E., & Mason, H.E. (2015) CHIANTI – An atomic database for emission lines. Version 8. A&A, 582, A56.Google Scholar
Dere, K.P., Landi, E., Young, P.R., Del Zanna, G., Landini, M., & Mason, H.E. (2009) CHIANTI – an atomic database for emission lines. A&A, 498, 915929.Google Scholar
Donnelly, J., Thompson, A., O’Sullivan, D., et al. (2012) Actinide and ultra-heavy abundances in the local galactic cosmic rays: an analysis of the results from the LDEF ultra-heavy cosmic-ray experiment. The Astrophysical Journal, 747(1), DOI:10.1088/0004-637X/747/1/40.CrossRefGoogle Scholar
Duderstadt, J.J. & Hamilton, L.J. (1976) Nuclear reactor analysis. John Wiley & Sons, New York.Google Scholar
Elphic, R.C., Lawrence, D.J., Feldman, W.C., et al. (1998) Lunar Fe and Ti abundances: Comparison of Lunar Prospector and Clementine data. Science, 281, 14931496.CrossRefGoogle ScholarPubMed
Elphic, R.C., Lawrence, D.J., Feldman, W.C., et al. (2000) Lunar rare earth element distribution and ramifications for FeO and TiO2: Lunar Prospector neutron spectrometer observations. Journal of Geophysical Research, 105, 2033320345.CrossRefGoogle Scholar
Elphic, R., Lawrence, D., Feldman, W., et al. (2005) Using models of permanent shadow to constrain lunar polar water ice abundances. 36th Lunar Planet. Sci. Conf., Abstract #2297.Google Scholar
Elphic, R.C., Eke, V.R., Teodoro, L.F.A., Lawrence, D.J., & Bussey, D.B.J. (2007) Models of the distribution and abundance of hydrogen at the lunar south pole. Geophysical Research Letters, 34, L13204, DOI:10.1029/2007GL029954.CrossRefGoogle Scholar
Evans, L.G., Starr, R.D., Brückner, J., et al. (2001) Elemental composition from gamma-ray spectroscopy of the NEAR-Shoemaker landing site on 433 Eros. Meteoritics and Planetary Science, 36, 16391660.CrossRefGoogle Scholar
Evans, R.D. (1955) The atomic nucleus. McGraw-Hill, New York.Google Scholar
Feldman, W.C., Auchampaugh, G.F., & Byrd, R.C. (1991) A novel fast-neutron detector for space applications. Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, 306, 350365.CrossRefGoogle Scholar
Feldman, W.C., Lawrence, D.J., Elphic, R.C., Vaniman, D.T., Thomsen, D.R., & Barraclough, B.L. (2000) Chemical information content of lunar thermal and epithermal neutrons. Journal of Geophysical Research, 105, 20,34720,363.CrossRefGoogle Scholar
Feldman, W.C., Maurice, S., Lawrence, D.J., et al. (2001) Evidence for water ice near the lunar poles. Journal of Geophysical Research, 106, 2323123251.CrossRefGoogle Scholar
Feldman, W., Prettyman, T., Tokar, R., et al. (2002) Fast neutron flux spectrum aboard Mars Odyssey during cruise. Journal of Geophysical Research, 107, DOI:10.1029/2001JA000295.CrossRefGoogle Scholar
Feldman, W., Prettyman, T., Maurice, S., et al. (2004a) Global distribution of near-surface hydrogen on Mars. Journal of Geophysical Research, 109, E09006, DOI:10.1029/2003JE002160.CrossRefGoogle Scholar
Feldman, W.C., Ahola, K., Barraclough, B.L., et al. (2004b) Gamma-ray, neutron, and alpha-particle spectrometers for the Lunar Prospector mission. Journal of Geophysical Research, 109, E07S06, DOI:10.1029/2003JE002207.CrossRefGoogle Scholar
Feldman, W.C., Pathare, A., Maurice, S., et al. (2011) Mars Odyssey neutron data: 2. Search for buried excess water ice deposits at nonpolar latitudes on Mars. Journal of Geophysical Research, 116, E11009.CrossRefGoogle Scholar
Fermi, E. (1950) Nuclear Physics: A course given by Enrico Fermi at the University of Chicago. Notes compiled by Jay Orear, A.H. Rosenfeld, and R.A. Schluter. University of Chicago Press, Chicago.Google Scholar
Floyd, S.R., Trombka, J.I., Leidecker, H.W., et al. (1999) Radiation effects on the proportional counter X-ray detectors on board the NEAR spacecraft. Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, 422, 577581.CrossRefGoogle Scholar
Gaskell, R.W., Barnouin-Jha, O.S., Scheeres, D.J., et al. (2008) Characterizing and navigating small bodies with imaging data. Meteoritics and Planetary Science, 43, 10491061.CrossRefGoogle Scholar
Gasnault, O., Feldman, W.C., Maurice, S., et al. (2001) Composition from fast neutrons: Application to the Moon. Geophysical Research Letters, 28, 37973800.CrossRefGoogle Scholar
Gleeson, L.J. & Axford, W.I. (1968) Solar modulation of galactic cosmic rays. The Astrophysical Journal, 154, 10111026.CrossRefGoogle Scholar
Glodo, J., Higgins, W.M., van Loef, E.V.D., & Shah, K.S. (2008) Scintillation properties of 1 Inch Cs2LiYCl6: CeCrystals. Nuclear Science, IEEE Transactions on, 55, 12061209.CrossRefGoogle Scholar
Goldsten, J.O., Mcnutt, R.L., Gold, R.E., et al. (1997) The X-ray/gamma-ray spectrometer on the Near Earth Asteroid Rendezvous Mission. In: The near Earth asteroid rendezvous mission (Russell, C.T., ed.). Springer, Dordrecht, 169216.CrossRefGoogle Scholar
Goldsten, J.O., Rhodes, E.A., Boynton, W.V., et al. (2007) The MESSENGER gamma-ray and neutron spectrometer. Space Science Reviews, 131, 339391.CrossRefGoogle Scholar
Goorley, J.T., James, M.R., Booth, T.E., et al. (2013) Initial MCNP6 release overview: MCNP6 version 1.0. Los Alamos National Laboratory document LA-UR-13–22934.CrossRefGoogle Scholar
Grande, M. (2001) The D-CIXS X-ray spectrometer on Esa’s Smart-1 Mission to the Moon. In: Earth–moon relationships (Barbieri, C. & Rampazzi, F., eds.). Springer, Dordrecht, 143152.CrossRefGoogle Scholar
Grande, M., Dunkin, S., Heather, D., et al. (2002) The D-CIXS X-ray spectrometer, and its capabilities for lunar science. Advances in Space Research, 30, 19011907.CrossRefGoogle Scholar
Grande, M., Browning, R., Waltham, N., et al. (2003) The D-CIXS X-ray mapping spectrometer on SMART-1. Planetary and Space Science, 51, 427433.CrossRefGoogle Scholar
Grande, M., Kellett, B.J., Howe, C., et al. (2007) The D-CIXS X-ray spectrometer on the SMART-1 mission to the Moon: First results. Planetary and Space Science, 55, 494502.CrossRefGoogle Scholar
Grande, M., Maddison, B., Sreekumar, P., et al. (2009) The Chandrayaan-1 X-ray spectrometer. Current Science, 96, 517519.Google Scholar
Hagerty, J.J., Lawrence, D.J., Hawke, B.R., Vaniman, D.T., Elphic, R.C., & Feldman, W.C. (2006) Refined thorium abundances for lunar red spots: Implications for evolved, nonmare volcanism on the Moon. Journal of Geophysical Research, 111, E06002, DOI:10.1029/2005JE002592.CrossRefGoogle Scholar
Hardgrove, C., Moersch, J., & Drake, D. (2011) Effects of geochemical composition on neutron die-away measurements: Implications for Mars Science Laboratory’s Dynamic Albedo of Neutrons experiment. Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, 659, 442455.CrossRefGoogle Scholar
Hauser, W. & Feshbach, H. (1952) The inelastic scattering of neutrons. Physical Review, 87, 366373.CrossRefGoogle Scholar
Howe, C.J., Drummond, D., Edeson, R., et al. (2009) Chandrayaan-1 X-ray Spectrometer (C1XS)—Instrument design and technical details. Planetary and Space Science, 57, 735743.CrossRefGoogle Scholar
Huovelin, J., Alha, L., Andersson, H., et al. (2002) The SMART-1 X-ray solar monitor (XSM): Calibrations for D-CIXS and independent coronal science. Planetary and Space Science, 50, 13451353.CrossRefGoogle Scholar
Jenkins, R. (1999) X-ray fluorescence spectrometry. Wiley-Interscience, New York.CrossRefGoogle Scholar
Knoll, G.F. (1989) Radiation detection and measurement. John Wiley & Sons, New York.Google Scholar
Kobayashi, M., Hasebe, N., Miyachi, T., et al. (2013) The Kaguya gamma-ray spectrometer: Instrumentation and in-flight performances. Journal of Instrumentation, 8, P04010–P04010.CrossRefGoogle Scholar
Lawrence, D., Feldman, W., Barraclough, B., et al. (2000) Thorium abundances on the lunar surface. Journal of Geophysical Research, 105, 20307–20331.CrossRefGoogle Scholar
Lawrence, D., Feldman, W., Elphic, R., et al. (2002) Iron abundances on the lunar surface as measured by the Lunar Prospector gamma-ray and neutron spectrometers. Journal of Geophysical Research, 107, 5130, DOI: 10.1029/2001JE001530.CrossRefGoogle Scholar
Lawrence, D.J., Elphic, R.C., Feldman, W.C., Prettyman, T.H., Gasnault, O., & Maurice, S. (2003) Small-area thorium features on the lunar surface. Journal of Geophysical Research, 108, 5102, DOI:10.1029/2003JE002050, E9.CrossRefGoogle Scholar
Lawrence, D.J., Maurice, S., & Feldman, W.C. (2004) Gamma-ray measurements from Lunar Prospector: Time series data reduction for the gamma-ray spectrometer. Journal of Geophysical Research, 109, E07S05, DOI:10.1029/2003JE002206.CrossRefGoogle Scholar
Lawrence, D.J., Feldman, W.C., Elphic, R.C., et al. (2006) Improved modeling of Lunar Prospector neutron spectrometer data: Implications for hydrogen deposits at the lunar poles. Journal of Geophysical Research, 111, E08001, DOI:10.1029/2005JE002637.CrossRefGoogle Scholar
Lawrence, D.J., Puetter, R.C., Elphic, R.C., et al. (2007) Global spatial deconvolution of Lunar Prospector Th abundances. Geophysical Research Letters, 34, L03201, DOI:10.1029/2006GL028530.CrossRefGoogle Scholar
Lawrence, D.J., Feldman, W.C., Goldsten, J.O., et al. (2010) Identification and measurement of neutron-absorbing elements on Mercury’s surface. Icarus, 209, 195209.CrossRefGoogle Scholar
Lawrence, D., Feldman, W., Evans, L., et al. (2012) Hydrogen at Mercury’s north pole? Update on MESSENGER Neutron Measurements, 1802.Google Scholar
Lawrence, D.J., Peplowski, P.N., Prettyman, T.H., et al. (2013a) Constraints on Vesta’s elemental composition: Fast neutron measurements by Dawn’s gamma ray and neutron detector. Meteoritics and Planetary Science, 48, 22712288.CrossRefGoogle ScholarPubMed
Lawrence, D.J., Feldman, W.C., Goldsten, W.C., et al. (2013b) Evidence for water ice near Mercury’s north pole from MESSENGER neutron spectrometer measurements. Science, 339, 292296.CrossRefGoogle ScholarPubMed
Lewis, E.E. & Miller, W.F. (1984) Computational methods of neutron transport. John Wiley & Sons, New York.Google Scholar
Lingenfelter, R.E., Canfield, E.H., & Hess, W.N. (1961) The lunar neutron flux. Journal of Geophysical Research, 66, 26652671.CrossRefGoogle Scholar
Lingenfelter, R.E., Canfield, E.H., & Hampel, V.E. (1972) The lunar neutron flux revisited. Earth and Planetary Science Letters, 16, 355369.CrossRefGoogle Scholar
Little, R.C., Feldman, W.C., Maurice, S., et al. (2003) Latitude variation of the subsurface lunar temperature: Lunar Prospector thermal neutrons. Journal of Geophysical Research, 108, 5046, DOI:10.1029/2001JE001497, E5.CrossRefGoogle Scholar
Litvak, M.L., Mitrofanov, I.G., Barmakov, Y.N., et al. (2008) The Dynamic Albedo of Neutrons (DAN) Experiment for NASA’s 2009 Mars Science Laboratory. Astrobiology, 8, 605612.CrossRefGoogle ScholarPubMed
Litvak, M.L., Mitrofanov, I.G., Hardgrove, C., et al. (2016) Hydrogen and chlorine abundances in the Kimberley formation of Gale crater measured by the DAN instrument on board the Mars Science Laboratory Curiosity rover. Journal of Geophysical Research, 121, 836845.CrossRefGoogle Scholar
Lodders, K. & Fegley, B., Jr. (1998) The planetary scientist’s companion. Oxford University Press on Demand.CrossRefGoogle Scholar
Mandel’shtam, S.L., Tindo, I.P., Cheremukhin, G.S., Sorokin, L.S., & Dmitriev, A.B. (1968) X radiation of the Moon and X-ray cosmic background in the lunar Sputnik Luna-12. Kosmicheskie Issledovaniia, 6, 119127.Google Scholar
Maurice, S., Lawrence, D.J., Feldman, W.C., Elphic, R.C., & Gasnault, O. (2004) Reduction of neutron data from Lunar Prospector. Journal of Geophysical Research, 109, E07S04, DOI:10.1029/2003JE002208.CrossRefGoogle Scholar
Maurice, S., Feldman, W., Prettyman, T., Diez, B., & Gasnault, O. (2007) Reduction of Mars Odyssey neutron data, 38th Lunar Planet. Sci. Conf., Abstract #2036.Google Scholar
McKinney, G.W., Lawrence, D.J., Prettyman, T.H., et al. (2006) MCNPX benchmark for cosmic ray interactions with the Moon.Journal of Geophysical Research, 111, E06004, DOI:10.1029/2005je002551.CrossRefGoogle Scholar
Metropolis, N. & Ulam, S. (1949) The Monte Carlo method. Journal of the American Statistical Association, 44, 335341.CrossRefGoogle ScholarPubMed
Metzger, A.E., Trombka, J.I., Peterson, L.E., Reedy, R.C., & Arnold, J.R. (1973) Lunar surface radioactivity: Preliminary results of the Apollo 15 and Apollo 16 gamma-ray spectrometer experiments. Science, 179, 800803.CrossRefGoogle ScholarPubMed
Murty, R.C. (1965) Effective atomic numbers of heterogeneous materials. Nature, 207, 398.CrossRefGoogle Scholar
Näränen, J., Carpenter, J., Parviainen, H., et al. (2009) Regolith effects in planetary X-ray fluorescence spectroscopy: Laboratory studies at 1.7–6.4keV. Advances in Space Research, 44, 313322.CrossRefGoogle Scholar
Narendranath, S., Sreekumar, P., Maddison, B.J., et al. (2010) Calibration of the C1XS instrument on Chandrayaan-1. Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, 621, 344353.CrossRefGoogle Scholar
Narendranath, S., Athiray, P.S., Sreekumar, P., et al. (2011) Lunar X-ray fluorescence observations by the Chandrayaan-1 X-ray Spectrometer (C1XS): Results from the nearside southern highlands. Icarus, 214, 5366.CrossRefGoogle Scholar
Nittler, L.R., Starr, R.D., Lev, L., et al. (2001) X-ray fluorescence measurements of the surface elemental composition of asteroid 433 Eros. Meteoritics and Planetary Science, 36, 16731695.Google Scholar
Nittler, L.R., Starr, R.D., Weider, S.Z., et al. (2011) The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 1847–1850.CrossRefGoogle ScholarPubMed
Okada, T. (2004) Particle size effect in X-ray fluorescence at a large phase angle: Importance on elemental analysis of asteroid Eros (433). 35th Lunar Planet. Sci. Conf., Abstract #1927.Google Scholar
Okada, T., Kato, M., Shirai, K., et al. (2002a) Elemental mapping of asteroid 1989ML from MUSES-C orbiter. Advances in Space Research, 29, 12371242.Google Scholar
Okada, T., Kato, M., Yamashita, Y., et al. (2002b) Lunar X-ray spectrometer experiment on the SELENE mission. Advances in Space Research, 30, 1909–1914.CrossRefGoogle Scholar
Okada, T., Shiraishi, H., Shirai, K., et al. (2009a) X-Ray Fluorescence Spectrometer (XRS) on Kaguya: Current status and results. 40th Lunar Planet. Sci. Conf., Abstract #1897.Google Scholar
Okada, T., Shirai, K., Yamamoto, Y., et al. (2009b) X-Ray fluorescence spectrometry of Lunar surface by XRS onboard SELENE (Kaguya). Transactions of the Japan Society for Aeronautical and Space Sciences, Space Technology Japan, 7, Tk_39–Tk_42.Google Scholar
O’Neill, P.M. (2010) Badhwar–O’Neill 2010 galactic cosmic ray flux model—revised. IEEE Transactions on Nuclear Science, 6, 31483153.Google Scholar
Ouyang, Z., Jiang, J., Li, C., et al. (2008) Preliminary scientific results of Chang’E-1 Lunar Orbiter: Based on payloads detection data in the first phase. Chinese Journal of Space Science, 28, 361369.Google Scholar
Ouyang, Z., Li, C., Zou, Y., et al. (2010a) Chang’E-1 lunar mission: An overview and primary science results. Chinese Journal of Space Science, 30, 392.CrossRefGoogle Scholar
Ouyang, Z., Li, C., Zou, Y., et al. (2010b) Primary scientific results of Chang’E-1 Lunar mission. Science China Earth Sciences, 53, 15651581.CrossRefGoogle Scholar
Parviainen, H., Näränen, J., & Muinonen, K. (2011) Soft X-ray fluorescence from particulate media: Numerical simulations. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 19071918.CrossRefGoogle Scholar
Payne, S.A., Cherepy, N.J., Hull, G., Valentine, J.D., Moses, W.W., & Choong, W.-S. (2009) Nonproportionality of scintillator detectors: Theory and experiment. IEEE Transactions on Nuclear Science, 56, 25062512.CrossRefGoogle Scholar
Peng, W.-X., Wang, H., Zhang, C.-M., et al. (2009) Calibration of CE-1 X-ray spectrometer. Nuclear Electronics and Detection Technology, 29, 235239.Google Scholar
Peplowski, P.N., Evans, L.G., Hauck, S.A., et al. (2011) Radioactive elements on Mercury’s surface from MESSENGER: Implications for the planet’s formation and evolution. Science, 333, 18501852.CrossRefGoogle ScholarPubMed
Peplowski, P.N., Lawrence, D.J., Rhodes, E.A., et al. (2012) Variations in the abundances of potassium and thorium on the surface of Mercury: Results from the MESSENGER Gamma‐Ray Spectrometer. Journal of Geophysical Research, 117, E00L04, DOI:10.1029/2012JE004141.CrossRefGoogle Scholar
Peplowski, P.N., Lawrence, D.J., Feldman, W.C., et al. (2015) Geochemical terranes of Mercury’s northern hemisphere as revealed by MESSENGER neutron measurements. Icarus, 253, 346363.CrossRefGoogle Scholar
Peplowski, P.N., Beck, A.W., & Lawrence, D.J. (2016) Geochemistry of the lunar highlands as revealed by measurements of thermal neutrons. Journal of Geophysical Research, 121, 388401.CrossRefGoogle ScholarPubMed
Prettyman, T. (1999) Method for mapping charge pulses in semiconductor radiation detectors. Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, 422, 232237.CrossRefGoogle Scholar
Prettyman, T.H. (2014) Remote sensing of chemical elements using nuclear spectroscopy. In: Encyclopedia of the Solar System, 3rd edn (Spohn, T., Johnson, T., & Breuer, D., eds.). Elsevier, Philadelphia, 11611183.CrossRefGoogle Scholar
Prettyman, T.H., Feldman, W., Mellon, M., et al. (2004) Composition and structure of the martian surface at high southern latitudes from neutron spectroscopy. Journal of Geophysical Research, 109, E05001, DOI:10.1029/2003je002139.CrossRefGoogle Scholar
Prettyman, T.H., Hagerty, J.J., Elphic, R.C., et al. (2006) Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector. Journal of Geophysical Research, 111, E12007, DOI:10.1029/2005JE002656.CrossRefGoogle Scholar
Prettyman, T.H., Feldman, W.C., & Titus, T.N. (2009) Characterization of Mars’ seasonal caps using neutron spectroscopy. Journal of Geophysical Research, 114, E08005, DOI:10.1029/2008je003275.CrossRefGoogle Scholar
Prettyman, T.H., Feldman, W.C., McSween, H.Y., Jr., et al. (2011) Dawn’s gamma ray and neutron detector. Space Science Reviews, 163, 371459.CrossRefGoogle Scholar
Prettyman, T.H., Mittlefehldt, D.W., Yamashita, N., et al. (2012) Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science, 338, 242–6.CrossRefGoogle Scholar
Prettyman, T.H., Mittlefehldt, D.W., Yamashita, N., et al. (2013) Neutron absorption constraints on the composition of 4 Vesta. Meteoritics and Planetary Science, 48, 22112236.CrossRefGoogle Scholar
Prettyman, T.H., Yamashita, N., Reedy, R.C., et al. (2015) Concentrations of potassium and thorium within Vesta’s regolith. Icarus, 259, 3952.CrossRefGoogle Scholar
Prettyman, T.H., Yamashita, N., Toplis, M.J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, 5559.CrossRefGoogle ScholarPubMed
Prettyman, T.H., Yamashita, N., Ammannito, E., et al. (2019) Elemental composition and mineralogy of Vesta and Ceres: Distribution and origins of hydrogen-bearing species. Icarus, 318, 4255.CrossRefGoogle Scholar
Reedy, R.C. (1978) Planetary gamma-ray spectroscopy. 9th Lunar Planet. Sci. Conf., Abstract, 2961–2984.Google Scholar
Reedy, R.C., Arnold, J.R., & Lal, D. (1983) Cosmic-ray record in Solar System matter. Science, 219, 127135.CrossRefGoogle ScholarPubMed
Rieder, R., Economou, T., Wänke, H., et al. (1997) The chemical composition of martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: Preliminary results from the X-ray mode. Science, 278, 17711774.CrossRefGoogle ScholarPubMed
Shirai, K., Okada, T., Yamamoto, Y., et al. (2008) Instrumentation and performance evaluation of the XRS on SELENE orbiter. Earth, Planets and Space, 60, 277281.CrossRefGoogle Scholar
Shiraiwa, T. & Fujino, N. (1966) Theoretical calculation of fluorescent X-ray intensities in fluorescent X-ray spectrochemical analysis. Japanese Journal of Applied Physics, 5, 886–899.Google Scholar
Starr, R., Clark, P.E., Murphy, M.E., et al. (2000) Instrument calibrations and data analysis procedures for the NEAR X-ray spectrometer. Icarus, 147, 498519.CrossRefGoogle Scholar
Starr, R.D., Schlemm, Ii C.E., Ho, G.C., Nittler, L.R., Gold, R.E., & Solomon, S.C. (2016) Calibration of the MESSENGER X-ray spectrometer. Planetary and Space Science, 122, 1325.CrossRefGoogle Scholar
Surkov, Yu A., Barsukov, V.L., Moskalyeva, L.P., Kharyukova, V.P., & Kemurdzhian, A.L. (1984) New data on the composition, structure, and properties of Venus rock obtained by Venera 13 and Venera 14. Journal of Geophysical Research, 89, B393B402.CrossRefGoogle Scholar
Surkov, Y.A., Kirnozov, F.F., Glazov, V.N., Dunchenko, A.G., Tatsy, L.P., & Sobornov, O.P. (1987) Uranium, thorium, and potassium in the Venusian rocks at the landing sites of Vega 1 and 2. Journal of Geophysical Research, 92, E537E540.CrossRefGoogle Scholar
Trombka, J.I., Floyd, S.R., Boynton, W.V., et al. (1997) Compositional mapping with the NEAR X ray/gamma ray spectrometer. Journal of Geophysical Research, 102, 2372923750.CrossRefGoogle Scholar
Trombka, J.I., Squyres, S.W., Brückner, J., et al. (2000) The elemental composition of Asteroid 433 Eros: Results of the NEAR-Shoemaker X-ray spectrometer. Science, 289, 21012105.CrossRefGoogle ScholarPubMed
Weider, S.Z., Swinyard, B.M., Kellett, B.J., et al. (2011) Planetary X-ray fluorescence analogue laboratory experiments and an elemental abundance algorithm for C1XS. Planetary and Space Science, 59, 13931407.CrossRefGoogle Scholar
Weider, S.Z., Nittler, L.R., Starr, R.D., et al. (2012a) Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X-Ray Spectrometer. Journal of Geophysical Research, 117, E00L05, DOI:10.1029/2012je004153.CrossRefGoogle Scholar
Weider, S.Z., Kellett, B.J., Swinyard, B., et al. (2012b) The Chandrayaan-1 X-ray spectrometer: First results. Planetary and Space Science, 60, 217228.CrossRefGoogle Scholar
Weider, S.Z., Nittler, L.R., Starr, R.D., et al. (2015) Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-ray spectrometer. Earth and Planetary Science Letters, 416, 109120.Google Scholar
Wilson, J.T., Lawrence, D.J., Peplowski, P.N., et al. (2018) Image reconstruction techniques in neutron and gamma‐ray spectroscopy: Improving Lunar Prospector data. Journal of Geophysical Research, 123, 18041822.CrossRefGoogle Scholar
Yamashita, N., Hasebe, N., Reedy, R.C., et al. (2010) Uranium on the Moon: Global distribution and U/Th ratio. Geophysical Research Letters, 37, L10201, DOI:10.1029/2010gl043061.CrossRefGoogle Scholar
Yamashita, N., Prettyman, T.H., Mittlefehldt, D.W., et al. (2013) Distribution of iron on Vesta. Meteoritics and Planetary Science, 48, 22372251.CrossRefGoogle Scholar
Yin, L.I., Trombka, J.I., Adler, I., & Bielefeld, M. (1993) X-ray remote sensing techniques for geochemical analysis of planetary surfaces. In: Remote geochemical analysis: Elemental and mineralogical composition (Pieters, C.M. & Englert, P.A.J., eds.). Cambridge University Press, Cambridge, 99–212.Google Scholar
Zhu, M.H., Chang, J., Ma, T., et al. (2013) Potassium map from Chang’E-2 constraints the impact of Crisium and Orientale basin on the Moon. Science Reports, 3, 1611, DOI:10.1038/srep01611.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×