Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T13:34:52.562Z Has data issue: false hasContentIssue false

20 - Quantum gravity and the start of the universe

from Part 5 - Broader perspectives

Published online by Cambridge University Press:  05 April 2012

George F. R. Ellis
Affiliation:
University of Cape Town
Roy Maartens
Affiliation:
University of Portsmouth and The University of the Western Cape
Malcolm A. H. MacCallum
Affiliation:
University of Bristol
Get access

Summary

In approaching the issue of how the universe started, it is common cause that we have to face up to the unsolved problem of quantum gravity: the domain where Einstein's theory of gravity is expected to break down because quantum effects become so dominant that they affect the very nature of space and time. Comparing the gravitational constants of nature with those from quantum theory leads to the Planck length ℓP ≈ 10-33cm, which is taken to be the characteristic scale at which quantum gravity dominates. By contrast, most (but not all) variant classical gravitational theories modify GR at low energies (see Chapter 14).

Quantum gravity processes are presumed to have dominated the very earliest times, preceding inflation: the geometry and quantum state that provide the initial data for any inflationary epoch themselves are usually assumed to come from the as yet unknown quantum gravity theory. There are many theories of the quantum origin of the universe, but none has attained dominance. The problem is that we do not have a good theory of quantum gravity (Rovelli, 2004, Weltmann, Murugan and Ellis, 2010), so all these attempts are essentially different proposals for extrapolating known physics into the unknown. A key issue is whether quantum effects can remove the initial singularity and make possible universes without a beginning.

In addition, the weakness of the gravitational force implies that it will be very difficult, though perhaps not impossible, to observationally test theories of quantum gravity.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×