Skip to main content Accessibility help
Relativistic Cosmology
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 145
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

Cosmology has been transformed by dramatic progress in high-precision observations and theoretical modelling. This book surveys key developments and open issues for graduate students and researchers. Using a relativistic geometric approach, it focuses on the general concepts and relations that underpin the standard model of the Universe. Part I covers foundations of relativistic cosmology whilst Part II develops the dynamical and observational relations for all models of the Universe based on general relativity. Part III focuses on the standard model of cosmology, including inflation, dark matter, dark energy, perturbation theory, the cosmic microwave background, structure formation and gravitational lensing. It also examines modified gravity and inhomogeneity as possible alternatives to dark energy. Anisotropic and inhomogeneous models are described in Part IV, and Part V reviews deeper issues, such as quantum cosmology, the start of the universe and the multiverse proposal. Colour versions of some figures are available at


‘This book … fills a gap in the existing literature on the subject. Written by three experts of general relativity, it stresses the geometric aspects of cosmology and contains topics which are neglected in most texts on the subject … This text, which always stresses the open questions on each given topic is very valuable and timely for graduate students and researchers in the field. Especially in view of the ‘Dark Energy challenge’ which requires that we explore all avenues which may shed light in the bizarre apparent acceleration of cosmic expansion. The book helps us to take the necessary step back and re-consider the fundamental assumptions which go into the present cosmological standard model.’

Ruth Durrer - University of Geneva

‘… a timely offering to the interested graduate student, as well as the astrophysicist realizing that the new astronomical data need concepts from general relativity for their correct interpretation. The authors have been well known for their untiring efforts to educate us all in the use of the general relativistic framework. They have over the years written on many topics concerning observational and theoretical aspects of cosmology. Fortunately now, all this work is integrated into the book in a standardized description which covers all the topics important for cosmology … The necessary formalism is laid out lucidly, and elegantly. Deeper issues … are addressed. Different cosmological models are presented to illuminate how and to what precision observations single out a specific model. I highly recommend the book.’

Gerhard Börner - Max-Planck-Institut für Astrophysik and Ludwig Maximilians Universität, Munich

‘As more and more accurate observational data of the Universe are accumulating, scientists are now well aware of the necessity of taking full account of general relativistic effects for correct interpretations of the observational data. This is exactly the kind of book that can offer you an occasion to learn such effects in cosmology systematically. The broadness of the topics covered is impressive. Yet, each topic is touched in an admirably concise and clear manner. This book will surely take you to frontiers of cosmology.’

Misao Sasaki - Yukawa Institute for Theoretical Physics, Kyoto University

‘The science of the Universe has taken physics and astronomy by storm over the last few decades. The phenomenal progress in measuring the state of the Universe has made cosmology the premier field of research. While the current theoretical tools have proven to be more than adequate, Relativistic Cosmology now takes cosmology to a new level of sophistication. Ellis, MacCallum and Maartens have brought the geometry space time once again to the fore in a wonderfully comprehensive and coherent survey of the mathematical and physical techniques that need to be deployed to truly understand the origin and evolution of the Universe. This book will become an instant classic.’

Pedro Ferreira - University of Oxford

'… a book that makes the mathematical and theoretical aspects of relativistic cosmology accessible to the interested reader, but also a book that bridges the divide between the fields of theory and observation in modern cosmology … I found this book to be a clear and concise summary of the many different aspects of relativistic cosmology … it will certainly be a valuable tool for graduate students and researchers alike. I will be recommending it as reading material for my own PhD students, and suspect that I will be frequently returning to it myself as reference material. It is a valuable contribution to the subject.'

Timothy Clifton Source: General Relativity and Gravitation

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.


Page 1 of 2

Page 1 of 2

Abbasi, R.U., Abu-Zayyad, T., Amman, J.F., Archbold, G., Belov, al. (2008). First observation of the Greisen-Zatsepin-Kuzmin suppression, Phys. Rev. Lett. 100, 101101. arXiv:astro-ph/0703099.
Abbott, L.F. and Schaefer, R.K. (1986). Ageneral, gauge-invariant analysis of the cosmic microwave anisotropy, Astrophys. J. 308, 546.
Abraham, J., Abreu, P., Aglietta, M., Aguirre, C., Allard, al. (2008). Observation of the suppression of the flux of cosmic rays above 4 × 1019 eV, Phys. Rev. Lett. 101, 061101. arXiv:0806.4302.
Afshordi, N., Slosar, A. and Wang, Y. (2011). Atheory of a spot, J. Cosmol. Astropart. Phys. 01, 019. arXiv:1006.5021.
Agacy, R.L. (1997). Generalized Kronecker, permanent delta and Young tableaux applications to tensors and spinors: Lanczos-Zund spinor classification and general spinor factorizations, University of London PhD thesis.
Aguirre, A. and Gratton, S. (2003). Inflation without a beginning: A null boundary proposal, Phys. Rev. D 67, 083515.
Aguirregabiria, J. M., Feinstein, A., and Ibañez, J. (1993). Exponential-potential scalar field universes II: the inhomogeneous models, Phys. Rev. D 48, 4669. arXiv:gr-qc/9309014.
Aguirregabiria, J.M., Labraga, P., and Lazkoz, R. (2002). Assisted inflation in Bianchi VI0 cosmologies, Gen. Rel. Grav. 34, 341. arXiv:gr-qc/0107009.
Alexander, S., Biswas, T., Notari, A., and Vaid, D. (2009). Local void vs dark energy: Confrontation with WMAP and type Ia supernovae, J. Cosmol. Astropart. Phys. 0909, 025. arXiv:0712.0370.
Aliev, B.N. and Leznov, A.N. (1992). Einstein's vacuum fields with non-Abelian group of motions G2II, Class. Quant. Grav. 9, 1261.
Allnutt, J.A. (1981). A Petrov type-III perfect fluid solution of Einstein's equations, Gen. Rel. Grav. 13, 1017.
Alnes, H., Amarzguioui, M., and Grøn, Ø. (2006). An inhomogeneous alternative to dark energy?, Phys. Rev. D 73, 083519. arXiv:astro-ph/0512006.
Amarzguioui, M. and Grøn, Ø. (2005). Entropy of gravitationally collapsing matter in FRW universe models, Phys. Rev. D 71, 083011.
Amendola, L., Kainulainen, K., Marra, V., and Quartin, M. (2010). Large-scale inhomogeneities may improve the cosmic concordance of supernovae, Phys. Rev. Lett. 105, 121302. arXiv:1002.1232.
Amendola, L. and Tsujikawa, S. (2010). Dark Energy: Theory and Observations (Cambridge University Press, Cambridge).
Anderson, E., Barbour, J., Foster, B.Z., Kelleher, B., and Ó Murchadha, N. (2005). The physical gravitational degrees of freedom, Class. Quant. Grav. 22, 1795.
Andersson, L., van Elst, H., Lim, W.C., and Uggla, C. (2005). Asymptotic silence of generic cosmological singularities, Phys. Rev. Lett. 94, 051101. arXiv:gr-qc/0402051.
Andersson, L., van Elst, H., and Uggla, C. (2004). Gowdy phenomenology in scale-invariant variables, Class. Quant. Grav. 21, S29. Special number ‘A spacetime safari: papers in honour of Vincent Moncrief’.
Anninos, P., Matzner, R.A., Rothman, T., and Ryan, M.P. Jr. (1991). How does inflation isotropize the universe?, Phys. Rev. D 43, 3821.
Antoniou, I. and Perivolaropoulos, L. (2010). Searching for a cosmological preferred axis: Union2 data analysis and comparison with other probes, J. Cosmol. Astropart. Phys. 12, 012. arXiv:1007.4347.
Apostolopoulos, P.S. (2003). Self-similar Bianchi models I: Class A models, Class. Quant. Grav. 20, 3371.
Apostolopoulos, P.S. (2005). Self-similar Bianchi models II: Class B models, Class. Quant. Grav. 22, 323.
Apostolopoulos, P.S. and Carot, J. (2007). Uniqueness of Petrov type D spatially inhomogeneous irrotational silent models, Int. J. Mod. Phys. A 22, 1983. arXiv:gr-qc/0605130.
Araujo, M.E. (1999). Exact spherically symmetric dust solution of the field equations in observational coordinates with cosmological data functions, Phys. Rev. D 60, 104020. Erratum: Phys. Rev. D 64, 049002 (2001).
Araujo, M.E., Stoeger, W.R., Arcuri, R.C., and Bedran, M.L. (2008). Solving Einstein field equations in observational coordinates with cosmological data functions: Spherically symmetric universes with cosmological constant, Phys. Rev. D 78, 063513. arXiv:0807.4193.
Arnau, J.V., Fullana, M., and Sáez, D. (1994). GreatAttractor-like structures and large scale anisotropy, Mon. Not. Roy. Astr. Soc. 268, L17.
Arnowitt, R., Deser, S., and Misner, C.W. (1962). The dynamics of general relativity, in Gravitation: An Introduction to Current Research, ed. Witten, L. (Wiley, New York and London), p. 227. Reprinted in Gen. Rel. Grav. 40, 1997 (2008).
Arp, H. and Carosati, D. (2007). M31 and local group QSO's. arXiv:0706.3154.
Ashtekar, A. (2009a). Loop quantum cosmology: an overview, Gen. Rel. Grav. 41, 707. arXiv:0812.0177.
Ashtekar, A. (2009b). Singularity resolution in loop quantum cosmology: Abrief overview, J. Phys.: Conf. Ser. 189, 012003. arXiv:0812.4703.
Ashtekar, A. and Lewandowski, J. (2004). Background independent quantum gravity: a status report, Class. Quant. Grav. 21, R53.
Aurich, R., Lustig, S., and Steiner, F. (2005). CMB anisotropy of the Poincaré dodecahedron, Class. Quant. Grav. 22, 2061. arXiv:astro-ph/0412569.
Auslander, L. and MacKenzie, R.E. (1963). Introduction to Differentiable Manifolds (McGraw Hill, New York).
Bahcall, N.A., Ostriker, J.P., Perlmutter, S., and Steinhardt, P.J. (1999). The cosmic triangle: revealing the state of the universe, Science 284, 1481. arXiv:astro-ph/9906463.
Bajtlik, S., Juszkiewicz, R., Prozszynski, M., and Amsterdamski, P. (1986). 2.7 K radiation and the isotropy of the universe, Astrophys. J. 300, 463.
Balakin, A.B. and Ni, W.-T. (2010). Non-minimal coupling of photons and axions, Class. Quant. Grav. 27, 055003. arXiv:0911.2946.
Balashov, Y.V. (1991). Resource letter AP-1: The anthropic principle, Amer. J. Phys. 54, 1069.
Balbi, A. (2010). The limits of cosmology. arXiv:1001.4016.
Barbour, J. (1999). The End of Time: The Next Revolution in our Understanding of the Universe (Weidenfeld and Nicholson, London).
Barbour, J. and Pfister, H. (1995). Mach's Principle: from Newton's Bucket to Quantum Gravity (Birkhauser, Basel and Boston).
Bardeen, J.M. (1980). Gauge-invariant cosmological perturbations, Phys. Rev. D 22, 1882.
Barkana, R. and Loeb, A. (2007). The physics and early history of the intergalactic medium, Rep. Prog. Phys. 70, 627. arXiv:astro-ph/0611541.
Barnes, A. (1973). On shearfree normal flows of a perfect fluid, Gen. Rel. Grav. 4, 105.
Barnes, A. and Rowlingson, R.R. (1989). Irrotational perfect fluids with a purely electricWeyl tensor, Class. Quant. Grav. 6, 949.
Barrabes, C. (1989). Singular hypersurfaces in general relativity: a unified description, Class. Quant. Grav. 6, 581.
Barrabes, C. and Israel, W. (1991). Thin shells in general relativity and cosmology: the lightlike limit, Phys. Rev. D 43, 1129.
Barrow, J.D. (1976). Light elements and the isotropy of the universe, Mon. Not. Roy. Astr. Soc. 175, 359.
Barrow, J.D. (1993). New types of inflationary universe, Phys. Rev. D 48, 1585.
Barrow, J.D. (1997). Cosmological limits on slightly skew stresses, Phys. Rev. D 55, 7451. arXiv: gr-qc/9701038.
Barrow, J.D. (2002). The Constants of Nature (Jonathan Cape, London).
Barrow, J.D. and Hervik, S. (2002). TheWeyl tensor in spatially homogeneous cosmological models, Class. Quant. Grav. 19, 5173. arXiv:gr-qc/0206061.
Barrow, J.D., Juszkiewicz, R., and Sonoda, D. (1983). The structure of the cosmic microwave background, Nature 305, 397.
Barrow, J.D., Juszkiewicz, R., and Sonoda, D.H. (1985). Universal rotation - How large can it be?, Mon. Not. Roy. Astr. Soc. 213, 917.
Barrow, J.D. and Lip, S.Z.W. (2009). Classical stability of sudden and big rip singularities, Phys. Rev. D 80, 043518.
Barrow, J.D., Maartens, R., and Tsagas, C.G. (2007). Cosmology with inhomogeneous magnetic fields, Phys. Reports 449, 131. arXiv:astro-ph/0611537.
Barrow, J.D. and Stein-Schabes, J. (1984). Inhomogeneous cosmologies with cosmological constant, Phys. Lett. A 103, 315.
Barrow, J.D.andTipler, F.J. (1979). An analysis of the generic singularity studies by Belinskii, Lifshitz and Khalatnikov, Phys. Reports 56, 371.
Barrow, J.D. and Tipler, F.J. (1984). The Cosmological Anthropic Principle (Oxford University Press, Oxford).
Barrow, J.D. and Tsagas, C.G. (2005). New isotropic and anisotropic sudden singularities, Class. Quantum Grav. 22, 1563.
Barrow, J.D. and Tsagas, C.G. (2007). Averaging anisotropic cosmologies, Class. Quant. Grav. 24, 1023. arXiv:gr-qc/0609078.
Bartolo, N., Komatsu, E., Matarrese, S., and Riotto, A. (2004). Non-Gaussianity from inflation: theory and observations, Phys. Reports 402, 103. arXiv:astro-ph/0406398.
Bassett, B.A.C.C. and Hlozek, R. (2010). Baryon acoustic oscillations, in Ruiz-Lapuente (2010). arXiv:0910.5224.
Bassett, B.A.C.C. and Kunz, M. (2004). Cosmic distance-duality as a probe of exotic physics and acceleration, Phys. Rev. D 69, 101305. arXiv:astro-ph/0312443.
Bassett, B.A.C.C., Liberati, S., Molina-Paris, C., and Visser, M. (2000). Geometrodynamics of variable-speed-of-light cosmologies, Phys. Rev. D 62, 10351. arXiv:astro-ph/0001441.
Bassett, B.A.C.C., Tsujikawa, S., and Wands, D. (2006). Inflation dynamics and reheating, Rev. Mod. Phys. 78, 537. arXiv:astro-ph/0507632.
Batchelor, G.K. (1967). An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge).
Baum, L. and Frampton, P.H. (2007). Turnaround in cyclic cosmology, Phys. Rev. Lett. 98, 071301. arXiv:hep-th/0610213.
Baumann, D. (2009). TASI lectures on inflation. arXiv:0907.5424.
Baumann, D. and McAllister, L. (2009). Advances in inflation in string theory, Ann. Rev. Nucl. Part. Sci. 59, 67. arXiv:0901.0265.
Baumann, D., Nicolis, A., Senatore, L., and Zaldarriaga, M. (2010). Cosmological non-linearities as an effective fluid. arXiv:1004.2488.
Bean, R. (2010). TASI lectures on cosmic acceleration. arXiv:1003.4468.
Bean, R. and Tangmatitham, M. (2010). Current constraints on the cosmic growth history, Phys. Rev. D 81, 083534. arXiv:1002.4197.
Béguin, F. (2010). Aperiodic oscillatory asymptotic behavior for some Bianchi spacetimes, Class. Quant. Grav. 27, 185005. arXiv:1004.2984.
Behrend, J., Brown, I.A., and Robbers, G. (2008). Cosmological backreaction from perturbations, J. Cosmol. Astropart. Phys. 0801, 013. arXiv:0710.4964.
Bekenstein, J.D. (2010). Alternatives to dark matter: Modified gravity as an alternative to dark matter, in Particle Dark Matter: Observations, Models and Searches, ed. G., Bertone (Cambridge University Press, Cambridge), chapter 6, p. 95. arXiv:1001.3876.
Belinski, V.A. (2009). Cosmological singularity, in The Sun, the Stars, the Universe and General Relativity: International Conference in Honor of Ya.B. Zel'dovich's 95th Anniversary, ed. Ruffini, R. and Vereshchagin, G., volume 1205 of AIP Conference Proceedings (American Institute of Physics, Melville, NY), p. 17. arXiv:0910.0374.
Belinski, V.A., Khalatnikov, I.M., and Lifshitz, E.M. (1982). A general solution of the Einstein equations with a time singularity, Adv. Phys. 31, 639.
Belinski, V.A., Lifshitz, E.M., and Khalatnikov, I.M. (1971). The oscillatory regime of approach to an initial singularity in relativistic cosmology, Sov. Phys. Uspekhi 13, 475. See also Adv. Phys.19, 525 (1970).
Belinski, V.A., Lifshitz, E.M., and Khalatnikov, I.M. (1972). Construction of a general cosmological solution of the Einstein equations with a time singularity, Sov. Phys. JETP 35, 838.
Belinski, V.A. and Verdaguer, E. (2001). Gravitational Solitons (Cambridge University Press, Cambridge).
Belinski, V.A. and Zakharov, V.E. (1978). Integration of the Einstein equations by the inverse scattering method and calculation of exact soliton solutions, Sov. Phys. JETP 48, 985.
Bennett, C.L., Banday, A.J., Górski, K.M., Hinshaw, G., Jackson, al. (1996). Four-year COBE DMR cosmic microwave background observations: Maps and basic results, Astrophys. J. 464, L1.
Berestetskii, V.B., Lifshitz, E.M., and Pitaevskii, L.P. (1982). Quantum electrodynamics, 2nd English Edition, Course of theoretical physics - Pergamon International Library of Science, Technology, Engineering and Social Studies (Pergamon Press, Oxford).
Berger, B. and Moncrief, V. (1993). Numerical investigation of cosmological singularities, Phys. Rev. D 48, 4676.
Bernstein, J. (1988). Kinetic Theory in the Expanding Universe (Cambridge University Press, Cambridge and New York).
Bertotti, B. (1966). The luminosity of distant galaxies, Proc. Roy. Soc. London A 294, 195.
Bertschinger, E. (1992). Large scale structure and motions: Linear theory and statistics, in Current topics in Astrofundamental Physics, ed. Sanchez, N. and Zichichi, A. (World Scientific, Singapore).
Bertschinger, E. (2006). On the growth of perturbations as a test of dark energy and gravity, Astrophys. J. 648, 797. arXiv:astro-ph/0604485.
Bertschinger, E., Dekel, A., Faber, S.M., Dressler, A., and Burstein, D. (1990). Potential, velocity and density fields from redshift-distance samples. Application: cosmography within 6000 kilometers per second, Astrophys. J. 364, 370.
Betschart, G., Dunsby, P.K.S., and Marklund, M. (2004). Cosmic magnetic fields from velocity perturbations in the early universe, Class. Quant. Grav. 21, 2115. arXiv:gr-qc/0310085.
Birkinshaw, M. (1999). The Sunyaev-Zel'dovich effect, Phys. Reports 310, 97. arXiv:astroph/9808050.
Biswas, T., Mansouri, R., and Notari, A. (2007). Nonlinear structure formation and ‘apparent’ acceleration: an investigation, J. Cosmol. Astropart. Phys. 0712, 017. arXiv:astro-ph/0606703.
Biswas, T. and Notari, A. (2008). “Swiss-cheese” inhomogeneous cosmology and the dark energy problem, J. Cosmol. Astropart. Phys. 0806, 021. arXiv:astro-ph/0702555.
Biswas, T., Notari, A. and Valkenburg, W. (2010). Testing the void against cosmological data: Fitting CMB, BAO, SN and H0, J. Cosmol. Astropart. Phys. 11, 030. arXiv:1007.3065.
Blake, C. and Wall, J. (2002). A velocity dipole in the distribution of radio galaxies, Nature 416, 150. arXiv:astro-ph/0203385.
Bogoyavlenskii, O.I. (1985). Methods of the Qualitative Theory of Dynamical Systems in Astrophysics and Gas Dynamics (Springer-Verlag, Berlin and Heidelberg). Russian original published by Nauka, Moscow, 1980.
Bogoyavlenskii, O.I. and Novikov, S.P. (1973). Singularities of the cosmological model of the Bianchi type IX according to the qualitative theory of differential equations, Sov. Phys. JETP 37, 747.
Bojowald, M. (2005). Loop quantum cosmology, Living Rev. Relativity, arXiv:gr-qc/0601085.
Bojowald, M., Kiefer, C., and Vargas Moniz, P. (2010). Quantum cosmology for the 21st century: A debate. arXiv:1005.2471.
Bolejko, K. (2006a). Radiation in the process of the formation of voids, Mon. Not. Roy. Astr. Soc. 370, 924. arXiv:astro-ph/0503356.
Bolejko, K. (2006b). Structure formation in the quasispherical Szekeres model, Phys. Rev. D 73, 123508. arXiv:astro-ph/0604490.
Bolejko, K. (2007). Evolution of cosmic structures in different environments in the quasispherical Szekeres model, Phys. Rev. D 75, 043508. arXiv:astro-ph/0610292.
Bolejko, K. (2009). The Szekeres Swiss cheese model and the CMB observations, Gen. Rel. Grav. 41, 1737. arXiv:0804.1846.
Bolejko, K. and Célérier, M.-N. (2010). Szekeres Swiss-cheese model and supernova observations, Phys. Rev. D 82, 103510. arXiv:1005.2584.
Bolejko, K. and Hellaby, C. (2008). The Great Attractor and the Shapley Concentration, Gen. Rel. Grav. 40, 1771. arXiv:astro-ph/0604402.
Bolejko, K., Hellaby, C., and Krasiński, A. (2005). Formation of voids in the universe within the Lemaître-Tolman model, Mon. Not. Roy. Astr. Soc. 362, 213. arXiv:gr-qc/ 0411126.
Bolejko, K., Krasiński, A., Hellaby, C., and Célérier, M.-N. (2010). Structures in the Universe by Exact Methods: Formation, Evolution, Interactions (Cambridge University Press, Cambridge).
Bolejko, K. and Stoeger, W.R. (2010). Conditions for spontaneous homogenization of the universe, Gen. Rel. Grav. 42, 2349. Fifth award in the 2010 Gravity Research Foundation essay competition, arXiv:1005.3009.
Bond, J.R. and Efstathiou, G. (1984). Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter, Astrophys. J. Lett. 285, L45.
Bondi, H. (1947). Spherically symmetrical models in general relativity, Mon. Not. Roy. Astr. Soc. 107, 410. Reprinted as Gen. Rel. Grav.31, 1777–1781 (1999).
Bondi, H. (1960). Cosmology (Cambridge University Press, Cambridge).
Bonnor, W.B. (1956). The formation of the nebulae, Z. Astrophys. 39, 143. Reprinted as Gen. Rel. Grav.30 1113–1132 (1998).
Bonnor, W.B. (1972). A non-uniform relativistic cosmological model, Mon. Not. Roy. Astr. Soc. 159, 261.
Bonnor, W.B. (1974). Evolution of inhomogeneous cosmological models, Mon. Not. Roy. Astr. Soc. 167, 55.
Bonnor, W.B. (1976). Non-radiative solutions of Einstein's equations for dust, Commun. Math. Phys. 51, 191.
Bonnor, W.B. (2000). A generalization of the Einstein-Straus vacuole, Class. Quant. Grav. 17, 2739.
Bonnor, W.B. and Chamorro, A. (1990). Models of voids in the expanding universe, Astrophys. J. 361, 21.
Bonnor, W.B. and Chamorro, A. (1991). Models of voids in the expanding universe II, Astrophys. J. 378, 461.
Bonnor, W.B. and Ellis, G.F.R. (1986). Observational homogeneity of the universe, Mon. Not. Roy. Astr. Soc. 218, 605.
Bonnor, W.B. and Vickers, P.A. (1981). Junction conditions in general relativity, Gen. Rel. Grav. 13, 29.
Bonvin, C. and Durrer, R. (2011). What galaxy surveys really measure, Phys. Rev. D 84, 063505. arXiv:1105.5280.
Bothun, G. (1998). Modern Cosmological Observations (Taylor and Francis, London).
Boughn, S. and Crittenden, R. (2004). A correlation between the cosmic microwave background and large-scale structure in the Universe, Nature 427, 45.
Boylan-Kolchin, M., Springel, V., White, S.D.M., Jenkins, A., and Lemson, G. (2009). Resolving cosmic structure formation with the Millennium-II simulation, Mon. Not. Roy. Astr. Soc. 398, 1150. arXiv:0903.3041.
Bozza, V. (2010). Gravitational lensing by black holes. p. 2269 in Jetzer, Mellier and Perlick (2010), arXiv:0911.2187.
Brandenberger, R. (1985). Quantum field theory methods and inflationary universe models, Rev. Mod. Phys. 57, 1.
Brandenberger, R., Laflamme, R., and Mijic, M. (1991). Classical perturbations from decoherence of quantum fluctuations in the inflationary universe, Physica Scripta T36, 265.
Brauer, U. (1991). Existence of finitely-perturbed Friedmann models via the Cauchy problem, Class. Quant. Grav. 8, 1283.
Brax, P. and van de Bruck, C. (2003). Cosmology and brane worlds: a review, Class. Quant. Grav. 20, R201. arXiv:hep-th/0303095.
Brickell, F. and Clark, R.S. (1970). Differentiable Manifolds: An Introduction (Van Nostrand Reinhold, London).
Bridle, S., Balan, S.T., Bethge, M., Gentile, M., Harmeling, S. et al. (2010). Results of the GREAT08 challenge: An image analysis competition for cosmological lensing, Mon. Not. Roy. Astr. Soc. 405, 1044. arXiv:0908.0945.
Brightwell, G., Dowker, H.F., Garcia, R.S., Henson, J., and Sorkin, R.D. (2003). “Observables” in causal set cosmology, Phys. Rev. D 67, 084031. arXiv:gr-qc/0210061.
Brill, D., Reula, O., and Schmidt, B. (1987). Local linearization stability, J. Math. Phys. 28, 1844.
Brill, D.R. and Vishveshwara, C.V. (1986). Joint linearization instabilities in general relativity, J. Math. Phys. 27, 1813.
Brown, I.A., Behrend, J., and Malik, K.A. (2009). Gauges and cosmological backreaction, J. Cosmol. Astropart. Phys. 0911, 027. arXiv:0903.3264.
Brown, I.A., Robbers, G., and Behrend, J. (2009). Averaging Robertson-Walker cosmologies, J. Cosmol. Astropart. Phys. 0904, 016. arXiv:0811.4495.
Bruni, M., Crittenden, R., Koyama, K., Maartens, R., Pitrou, al. (2011). Disentangling non- Gaussianity, bias and GR effects in the galaxy distribution. arXiv:1106.3999.
Bruni, M., Dunsby, P.K.S., and Ellis, G.F.R. (1992). Cosmological perturbations and the physical meaning of gauge-invariant variables, Astrophys. J. 395, 34.
Bruni, M., Matarrese, S., and Pantano, O. (1995). Dynamics of silent universes, Astrophys. J. 445, 958. arXiv:astro-ph/9406068.
Bruni, M. and Sopuerta, C. (2003). Covariant fluid dynamics: a long wave-length approximation, Class. Quant. Grav. 20, 5275. arXiv:gr-qc/0307059.
Bucher, M., Goldhaber, A.S., and Turok, N. (1995). Open universe from inflation, Phys. Rev. D 52, 3314. arXiv:hep-ph/9411206.
Buchert, T. (2000). On average properties of inhomogeneous fluids in general relativity: Dust cosmologies, Gen. Rel. Grav. 32, 105. arXiv:gr-qc/9906015.
Buchert, T. (2001). On average properties of inhomogeneous fluids in general relativity: Perfect fluid cosmologies, Gen. Rel. Grav. 33, 1381. arXiv:gr-qc/0102049.
Buchert, T. (2008). Dark Energy from structure: a status report, Gen. Rel. Grav. 40, 467. arXiv:0707.2153.
Buchert, T. and Carfora, M. (2002). Regional averaging and scaling in relativistic cosmology, Class. Quant. Grav. 19, 6109.
Buchert, T. and Carfora, M. (2003). Cosmological parameters are dressed, Phys. Rev. Lett. 90, 031101.
Buchert, T. and Carfora, M. (2008). On the curvature of the present-day universe, Class. Quant. Grav. 25, 195001. arXiv:0803.1401.
Buchert, T., Kerscher, M., and Sicka, C. (2000). Backreaction of inhomogeneities on the expansion: the evolution of cosmological parameters, Phys. Rev. D 62, 043525.
Bugalho, M.H. (1987). Orthogonality transitivity and cosmologies with a non-Abelian two-parameter isometry group, Class. Quant. Grav. 4, 1043.
Bull, P., Clifton, T. and Ferreira, P.G. (2011). The kSZ effect as a test of general radial inhomogeneity in LTB cosmology. arXiv:1108.2222.
Bunn, E.F., Ferreira, P.G., and Silk, J. (1996). How anisotropic is our Universe?, Phys. Rev. Lett. 77, 2883. arXiv:astro-ph/9605123.
Burigana, C. and Salvaterra, R. (2003). What can we learn on the thermal history of the Universe from future cosmic microwave background spectrum measurements at long wavelengths?, Mon. Not. Roy. Astr. Soc. 342, 543. arXiv:astro-ph/0301133.
Burstein, D., Faber, S.M., and Dressler, A. (1990). Evidence for the motions of galaxies for a large-scale large amplitude flow toward the Great Attractor, Astrophys. J. 354, 18.
Byland, S. and Scialom, D. (1998). Evolution of the Bianchi type I, Bianchi type III, and the Kantowski-Sachs universe: isotropization and inflation, Phys. Rev. D 57, 6065. arXiv: gr-qc/9802043.
Caillerie, S., Lachièze-Rey, M., Luminet, J.-P., Lehoucq, R., Riazuelo, al. (2007). A new analysis of Poincaré dodecahedral space model, Astron. Astrophys. 476, 691. arXiv:0705.0217.
Caldwell, R. and Stebbins, A. (2008). A test of the Copernican principle, Phys. Rev. Lett. 100, 191302. arXiv:0711.3459.
Calogero, S. and Heinzle, J.M. (2009). Dynamics of Bianchi type I solutions of the Einstein equations with anisotropic matter, Ann. Inst. H. Poincaré 10, 225. arXiv:0809.1008.
Calogero, S. and Heinzle, J.M. (2010). On closed cosmological models that satisfy the strong energy condition but do not recollapse, Phys. Rev. D 81, 023520. arXiv:1002.1913.
Calzetta, E. and Sakellariadou, M. (1992). Inflation in inhomogeneous cosmology, Phys. Rev. D 45, 2802.
Capozziello, S. and Francaviglia, M. (2008). Extended theories of gravity and their cosmological and astrophysical applications, Gen. Rel. Grav. 40, 357. arXiv:0706.1146.
Cardoso, A., Hiramatsu, T., Koyama, K., and Seahra, S.S. (2007). Scalar perturbations in braneworld cosmology, J. Cosmol. Astropart. Phys. 0707, 008. arXiv:0705.1685.
Cardoso, A., Koyama, K., Seahra, S.S., and Silva, F.P. (2008). Cosmological perturbations in the DGP braneworld: Numeric solution, Phys. Rev. D 77, 083512. arXiv:0711.2563.
Carfora, M. and Piotrkowska, K. (1995). Renormalization group approach to relativistic cosmology, Phys. Rev. D 52, 4393.
Carr, B.J. and Coley, A.A. (1999). Self-similarity in general relativity, Class. Quant. Grav. 16, R31.
Carr, B.J. and Coley, A.A. (2005). The similarity hypothesis in general relativity, Gen. Rel. Grav. 37, 2165.
Carr, B.J., Coley, A.A., Goliath, M., Nilsson, U.S., and Uggla, C. (2001). The state space and physical interpretation of self-similar spherically symmetric perfect fluid models, Class. Quant. Grav. 18, 303.
Carr, B.J. and Ellis, G.F.R. (2008). Universe or multiverse?, Astronomy and Geophysics 49, 2.29.
Carr, B.J. and Hawking, S.W. (1974). Black holes in the early universe, Mon. Not. Roy. Astr. Soc. 168, 399.
Carr, B.J., Kohri, K., Sendouda, Y., and Yokoyama, J. (2010). New cosmological constraints on primordial black holes, Phys. Rev. D 81, 104019. arXiv:0912.5297.
Carr, B.J. and Koutras, A. (1993). Self-similar perturbations of a Kantowski-Sachs model, Astrophys. J. 405, 34.
Carr, B.J. and Rees, M.J. (1979). The anthropic principle and the structure of the physical world, Nature 278, 605.
Carr, B.J. and Yahil, A. (1990). Self-similar perturbations of a Friedmann universe, Astrophys. J. 360, 330.
Carroll, S.M. (2004). Spacetime and Geometry: an Introduction to General Relativity (Addison- Wesley, San Francisco).
Carroll, S.M. (2010). From Eternity to Here: The Quest for the Ultimate Theory of Time (Dutton, New York).
Carroll, S.M. and Chen, J. (2005). Does inflation provide natural initial conditions for the universe?, Gen. Rel. Grav. 37, 1671. arXiv:gr-qc/0505037.
Carroll, S.M. and Tam, H. (2010). Unitary evolution and cosmological fine-tuning. arXiv:1007.1417.
Carter, B. and Henriksen, R.N. (1989). A covariant characterisation of kinematic self-similarity, Ann. de Physique 14(colloq. 1), 47.
Cattoën, C. and Visser, M. (2005). Necessary and sufficient conditions for big bangs, bounces, crunches, rips, sudden singularities and extremality events, Class. Quant. Grav. 22, 4913. arXiv:gr-qc/0508045.
Cavaglià, M. (2003). Black hole and brane production in TeV gravity: A review, Int. J. Mod. Phys. A 18, 1843. arXiv:hep-ph/0210296.
Centrella, J. and Matzner, R.A. (1982). Colliding gravitational waves in expanding cosmologies, Phys. Rev. D 25, 930.
Challinor, A. (2000a). Microwave background polarization in cosmological models, Phys. Rev. D 62, 043004. arXiv:astro-ph/9911481.
Challinor, A. (2000b). The covariant perturbative approach to cosmic microwave background anisotropies, Gen. Rel. Grav. 32, 1059. arXiv:astro-ph/9903283.
Challinor, A. and Lasenby, A. (1998). Covariant and gauge-invariant analysis of cosmic microwave background anisotropies from scalar perturbations, Phys. Rev. D 58, 023001. arXiv:astroph/9804150.
Challinor, A. and Lasenby, A. (1999). Cosmic microwave background anisotropies in the cold dark matter model, Astrophys. J. 513, 1. arXiv:astro-ph/9804301.
Challinor, A. and Lewis, A. (2011). Linear power spectrum of observed source number counts, Phys. Rev. D 84, 043516. arXiv:1105.5292.
Chamorro, A. (1991). Models of voids in elliptic universes, Astrophys. J. 383, 51.
Chandrasekhar, S. (1960). Radiative transfer (Dover, New York).
Charmousis, C., Gregory, R., Kaloper, N., and Padilla, A. (2006). DGP spectroscopy, J. High Energy Phys. 10, 66. arXiv:hep-th/0604086.
Chernoff, D.F. and Tye, S.-H.H. (2007). Cosmic string detection via microlensing of stars. arXiv:0709.1139.
Cheung, K. (2003). Collider phenomenology for models of extra dimensions. arXiv:hep-ph/0305003.
Chruściel, P.T. (1990). On space-times with U(1)×U(1) symmetric compact Cauchy surfaces, Ann. Phys. (NY) 202, 100.
Chruściel, P.T., Isenberg, J., and Moncrief, V. (1990). Strong cosmic censorship in polarised Gowdy spacetimes, Class. Quant. Grav. 7, 1671.
Chruściel, P.T., Jezierski, J., and MacCallum, M.A.H. (1998). Uniqueness of the Trautman-Bondi mass, Phys. Rev. D 58, 084001. arXiv:gr-qc/9803010.
Clarke, C.J.S. and Dray, T. (1987). Junction conditions for null hypersurfaces, Class. Quant. Grav. 4, 265.
Clarke, C.J.S., Ellis, G.F.R., and Vickers, J.A. (1990). The large-scale bending of cosmic strings, Class. Quant. Grav. 7, 1.
Clarkson, C.A. (2000). On the observational characteristics of inhomogeneous cosmologies: undermining the cosmological principle, University of Glasgow PhD thesis arXiv:astro-ph/0008089.
Clarkson, C.A. (2007). A covariant approach for perturbations of rotationally symmetric spacetimes, Phys. Rev. D 76, 104034. arXiv:0708.1398.
Clarkson, C.A., Ananda, K., and Larena, J. (2009). The influence of structure formation on the cosmic expansion, Phys. Rev. D 80, 083525. arXiv:0907.3377.
Clarkson, C.A. and Barrett, R.K. (1999). Does the isotropy of the CMB imply a homogeneous universe? Some generalized EGS theorems, Class. Quant. Grav. 16, 3781.
Clarkson, C.A. and Barrett, R.K. (2003). Covariant perturbations of Schwarzschild black holes, Class. Quant. Grav. 20, 3855. arXiv:gr-qc/0209051.
Clarkson, C.A., Bassett, B.A.C.C., and Lu, T.H-C. (2008). A general test of the Copernican principle, Phys. Rev. Lett. 101, 011301. arXiv:0712.3457.
Clarkson, C.A., Clifton, T., and February, S. (2009). Perturbation theory in Lemaître-Tolman-Bondi cosmology, J. Cosmol. Astropart. Phys. 0906, 025. arXiv:0903.5040.
Clarkson, C.A., Coley, A.A., O'Neill, E.S.D., Sussman, R.A., and Barrett, R.K. (2003). Inhomogeneous cosmologies, the Copernican principle and the Cosmic Microwave Background: More on the EGS theorem, Gen. Rel. Grav. 35, 969. arXiv:gr-qc/0302068.
Clarkson, C.A., Ellis, G.F.R., Faltenbacher, A., Maartens, R., Umeh, al. (2011a). (Mis-)Interpreting supernovae observations in a lumpy universe, arXiv:1109.2484.
Clarkson, C.A., Ellis, G.F.R., Larena, J. and Umeh, O. (2011). Does the growth of structure affect our dynamical models of the universe? The averaging, backreaction and fitting problems in cosmology. arXiv:1109.2314.
Clarkson, C.A. and Maartens, R. (2010). Inhomogeneity and the foundations of concordance cosmology, Class. Quant. Grav. 27, 124008. arXiv:1005.2165.
Clarkson, C.A. and Regis, M. (2011). The cosmic microwave background in an inhomogeneous universe. J. Cosmol. Astropart. Phys. 02, 013. arXiv:1007.3443.
Clifton, T. and Ferreira, P.G. (2009a). Archipelagian cosmology: Dynamics and observables in a universe with discretized matter content, Phys. Rev. D 80, 103503. arXiv:0907.4109.
Clifton, T. and Ferreira, P.G. (2009b). Errors in estimating ΩΛ due to the fluid approximation, J. Cosmol. Astropart. Phys. 0910, 026. arXiv:0908.4488.
Clifton, T., Ferreira, P.G., and Land, K. (2008). Living in a void: Testing the Copernican principle with distant supernovae, Phys. Rev. Lett. 101, 131302. arXiv:0807.1443.
Clifton, T., Ferreira, P.G., and Zuntz, J. (2009). What the small angle CMB really tells us about the curvature of the universe, J. Cosmol. Astropart. Phys. 0907, 029. arXiv:0902.1313.
Clifton, T. and Zuntz, J. (2009). Hubble diagram dispersion from large-scale structure, Mon. Not. Roy. Astr. Soc. 400, 2185. arXiv:0902.0726.
Clowe, D., Gonzalez, A., and Markevitch, M. (2004). Weak-lensing mass reconstruction of the interacting cluster 1E 0657-558: Direct evidence for the existence of dark matter, Astrophys. J. 604, 596.
Cole, S., Percival, W.J., Peacock, J.A., Norberg, P., Baugh, al. (2005). The 2dF galaxy redshift survey: power-spectrum analysis of the final data set and cosmological implications, Mon. Not. Roy. Astr. Soc. 362, 505. arXiv:astro-ph/0501174.
Coleman, S. and de Luccia, F. (1980). Gravitational effects on and of vacuum decay, Phys. Rev. D 21, 3305.
Coles, P. and Lucchin, F. (2003). Cosmology: The Origin and Evolution of Cosmic Structure, Second Edition (Wiley, Chichester).
Coley, A.A. (2003). Dynamical Systems and Cosmology, volume 291 of Astrophysics and Space Science Library (Kluwer Academic Publishers, Dordrecht, Boston and London).
Coley, A.A. (2010). Averaging in cosmological models using scalars, Class. Quant. Grav. 27, 245017. arXiv:0908.4281.
Coley, A.A. and Goliath, M. (2000). Closed cosmologies with a perfect fluid and a scalar field, Phys. Rev. D 62, 043526. arXiv:gr-qc/0004060.
Coley, A.A. and Hervik, S. (2005). A dynamical systems approach to the tilted Bianchi models of solvable type, Class. Quant. Grav. 22, 579. arXiv:gr-qc/0409100.
Coley, A.A. and Hervik, S. (2008). Bianchi models with vorticity: The type III bifurcation, Class. Quant. Grav. 25, 198001. arXiv:0802.3629.
Coley, A.A., Hervik, S., and Lim, W.C. (2006). Fluid observers and tilting cosmology, Class. Quant. Grav. 23, 3573. gr-qc/0605128.
Coley, A.A., Hervik, S., Lim, W.C., and MacCallum, M.A.H. (2009). Properties of kinematic singularities, Class. Quant. Grav. 26, 215008. arXiv:0907.1620.
Coley, A.A., Hervik, S., and Pelavas, N. (2009). Spacetimes characterized by their scalar curvature invariants, Class. Quant. Grav. 26, 025013.
Coley, A.A. and Lim, W.C. (2005). Asymptotic analysis of spatially inhomogeneous stiff and ultra-stiff cosmologies, Class. Quant. Grav. 22, 3073. arXiv:gr-qc/0506097.
Coley, A.A., Pelavas, N., and Zalaletdinov, R.M. (2005). Cosmological solutions in macroscopic gravity, Phys. Rev. Lett. 95, 151102. arXiv:gr-qc/0504115.
Coley, A.A. and Tupper, B.O.J. (1983). A new look at FRWcosmologies, Gen. Rel. Grav. 15, 977.
Collins, C.B. (1971). More qualitative cosmology, Commun. Math. Phys. 23, 137.
Collins, C.B. (1972). Qualitative magnetic cosmology, Commun. Math. Phys. 27, 37.
Collins, C.B. (1977). Global structure of the ‘Kantowki-Sachs’ cosmological models, J. Math. Phys. 18, 2116.
Collins, C.B. and Ellis, G.F.R. (1979). Singularities in Bianchi cosmologies, Phys. Reports 56, 65.
Collins, C.B. and Hawking, S.W. (1973a). The rotation and distortion of the Universe, Mon. Not. Roy. Astr. Soc. 162, 307.
Collins, C.B. and Hawking, S.W. (1973b). Why is the Universe isotropic?, Astrophys. J. 180, 317.
Collins, C.B. and Wainwright, J. (1983). On the role of shear in general relativistic cosmological and stellar models, Phys. Rev. D 27, 1209.
Comer, G.L. (1997). 3+1 approach to the long-wavelength iteration scheme, Class. Quant. Grav. 14, 407.
Copeland, E.J., Lidsey, J.E., and Mizuno, S. (2006). Correspondence between loop-inspired and braneworld cosmology, Phys. Rev. D 73, 043503. arXiv:gr-qc/0510022.
Cornish, N.J., Spergel, D.N., and Starkman, G.D. (1998). Circles in the sky: Finding topology with the microwave background radiation, Class. Quant. Grav. 15, 2657. arXiv:gr-qc/9602039.
Cornish, N.J., Spergel, D.N., Starkman, G.D., and Komatsu, E. (2004). Constraining the topology of the universe, Phys. Rev. Lett. 92, 201302. arXiv:astro-ph/0310233.
Courant, R. and Hilbert, D. (1962). Methods of Mathematical Physics, volume 2 (Interscience Publishers, New York).
Cox, D.G.P. (2007). How far is infinity?, Gen. Rel. Grav. 39, 87.
Croudace, K.M., Parry, J., Salopek, D.S., and Stewart, J.M. (1994). Applying the Zel'dovich approximation to general relativity, Astrophys. J. 423, 22.
Curtis, J. and Garfinkle, D. (2005). Numerical simulations of stiff fluid gravitational singularities, Phys. Rev. D 72, 064003. arXiv:gr-qc/0506107.
Cutler, C. and Holz, D.E. (2009). Ultra-high precision cosmology from gravitational waves, Phys. Rev. D 80, 104009. arXiv:0906.3752.
Cyburt, R.H., Fields, B.D. and Olive, K. (2008). A bitter pill: the primordial lithium problem worsens, J. Cosmol. Astropart. Phys. 0811, 012. arXiv:0808.2818.
Damour, T. and de Buyl, S. (2008). Describing general cosmological singularities in Iwasawa variables, Phys. Rev. D 77, 043520. arXiv:0710.5692.
Damour, T., Henneaux, M., and Nicolai, H. (2003). Cosmological billiards, Class. Quant. Grav. 20, R145.
Daniel, S.F., Linder, E.V., Smith, T.L., Caldwell, R.R., Cooray, al. (2010). Testing general relativity with current cosmological data, Phys. Rev. D 81, 123508. arXiv:1002.1962.
Darmois, G. (1927). Les équations de la gravitation Einsteinienne, volume XXV of Mémorials des sciences mathématiques (Gauthier-Villars, Paris).
Dautcourt, G. (1969). Small-scale variations in the cosmic microwave background, Mon. Not. Roy. Astr. Soc. 144, 255.
Dautcourt, G. (1983a). The cosmological problem as initial value problem on the observer's past light cone: geometry, J. Phys. A 16, 3507.
Dautcourt, G. (1983b). The cosmological problem as initial value problem on the observer's past light cone: observations, Astron. Nachr. 304, 153.
Dautcourt, G. and Rose, K. (1978). Polarized radiation in relativistic cosmology, Astron. Nachr. 299, 13.
Davies, P.C.W. (1974). The Physics of Time Asymmetry (Surrey University Press, London).
Davies, P.C.W. (1982). The Accidental Universe (Cambridge University Press, Cambridge).
Davies, P.C.W. (1987). The Cosmic Blueprint (Heinemann, London).
Davis, T.M. and Lineweaver, C.H. (2004). Expanding confusion: common misconceptions of cosmological horizons and the superluminal expansion of the universe, Pub. Astr. Soc. Australia 21, 97. arXiv:astro-ph/0310808.
de Groot, S.L., van Leeuwen, W.A., and vanWeert, C.G. (1980). Relativistic Kinetic Theory (North- Holland, Amsterdam).
de Lapparent, V., Geller, M.J., and Huchra, J.P. (1986). A slice of the universe, Astrophys. J. 302, L1.
de Swardt, B., Dunsby, P.K.S., and Clarkson, C.A. (2010a). Covariant formulation of the lens equation in cosmology. Preprint, University of Cape Town. In draft.
de Swardt, B., Dunsby, P.K.S., and Clarkson, C.A. (2010b). Gravitational lensing in spherically symmetric spacetimes. arXiv:1002.2041.
Demianski, M., de Ritis, R., Marino, A.A., and Piedipalumbo, E. (2003). Approximate angular diameter distance in a locally inhomogeneous universe with a non-zero cosmological constant, Astron. Astrophys. 411, 33. arXiv:astro-ph/0310830.
Deruelle, N. and Goldwirth, D.S. (1995). Conditions for inflation in an initially inhomogeneous universe, Phys. Rev. D 51, 1563. arXiv:gr-qc/9409056.
Deruelle, N. and Langlois, D. (1995). Long wavelength iteration of Einstein's equations near a spacetime singularity, Phys. Rev. D 52, 2007. arXiv:gr-qc/9411040.
DeWitt, B.S. and Graham, R.N. (Eds.) (1973). The Many-Worlds Interpretation of Quantum Mechanics (Princeton University Press, Princeton). Includes the original papers of Everett from 1957.
Dicke, R.H. (1963). Experimental relativity, inRelativity, Groups and Topology, ed. DeWitt, B. and DeWitt, C. (Blackie and Son, London), p. 165.
Dicke, R.H. and Peebles, P.J.E. (1979). The big bang cosmology – enigmas and nostrums, inGeneral Relativity: An Einstein Centenary Survey, ed. Hawking, S.W. and Israel, W. (Cambridge University Press, Cambridge), p. 504.
Diemand, J. and Moore, B. (2011). The structure and evolution of cold dark matter halos, Adv. Sci. Lett. 4, 297.
Dingle, H. (1933). On isotropic models of the universe, with special reference to the stability of the homogeneous and static states, Mon. Not. Roy. Astr. Soc. 94, 134.
Dirac, P.A.M. (1938). New basis for cosmology, Proc. Roy. Soc. A 165, 199.
Dirac, P.A.M. (1981). The Principles of Quantum Mechanics, volume 27 of International Series of Monographs on Physics (Clarendon Press, Oxford). Fourth edition.
Disney, M.J. (1976). Visibility of galaxies, Nature 263, 573.
Dodelson, S. (2003). Modern Cosmology: Anisotropies and Inhomogeneities in the Universe (Academic Press, Amsterdam).
Dodelson, S., Gates, E., and Stebbins, A. (1996). Cold + hot dark matter and the cosmic microwave background, Astrophys. J. 467, 10. arXiv:astro-ph/9509147.
Dolag, K., Borgani, S., Schindler, S., Diaferio, A., and Bykov, A.M. (2008). Simulation techniques for cosmological simulations, Space Science Reviews 134, 229. arXiv:0801.1023.
Dominik, M. (2010). Studying planet populations by gravitational microlensing. p. 2075 in Jetzer, Mellier and Perlick (2010).
Doroshkevich, A.G. (1965). Model of a universe with a uniform magnetic field (in Russian), Astrophysics 1, 138.
Dulaney, T.R. and Gresham, M.I. (2008). Direction-dependent Jeans instability in an anisotropic Bianchi type I space-time. arXiv:0805.1078.
Dunkley, J., Komatsu, E., Nolta, M.R., Spergel, D.N., Larson, al. (2009). Five-year Wilkinson Microwave Anisotropy Probe observations: Likelihoods and parameters from the WMAP data, Astrophys. J. Supp. 180, 306. arXiv:0803.0586.
Dunsby, P.K.S. (1993). Gauge-invariant perturbations of anisotropic cosmological models, Phys. Rev. D 48, 3562.
Dunsby, P.K.S. (1997). A fully covariant description of cosmic microwave background anisotropies, Class. Quant. Grav. 14, 3391. arXiv:gr-qc/9707022.
Dunsby, P.K.S., Bassett, B.A.C.C., and Ellis, G.F.R. (1997). Covariant analysis of gravitational waves in a cosmological context, Class. Quant. Grav. 14, 1215. arXiv:gr-qc/9811092.
Dunsby, P.K.S., Goheer, N., Osano, B., and Uzan, J.-P. (2010). How close can an inhomogeneous universe mimic the concordance model?, J. Cosmol. Astropart. Phys. 1006, 017. arXiv:1002.2397.
Durrer, R. (2007). Cosmic magnetic fields and the CMB, New Astronomy Review 51, 275. arXiv:astroph/0609216.
Durrer, R. (2008). The Cosmic Microwave Background (Cambridge University Press, Cambridge).
Durrer, R. and Maartens, R. (2008). Dark energy and dark gravity: theory overview, Gen. Rel. Grav. 40, 301. arXiv:0711.0077.
Dyer, C.C. (1976). The gravitational perturbation of the cosmic background radiation by density concentrations, Mon. Not. Roy. Astr. Soc. 175, 429.
Dyer, C.C., Landry, S., and Shaver, E.G. (1993). Matching of Friedmann-Lemaître-Robertson-Walker and Kasner cosmologies, Phys. Rev. D 47, 1404.
Dyer, C.C. and Roeder, R. (1974). Observations in locally inhomogeneous cosmological models, Astrophys. J. 189, 167.
Dyer, C.C. and Roeder, R. (1975). Apparent magnitudes, redshifts, and inhomogeneities in the universe, Astrophys. J. 196, 671.
Eardley, D.M. (1974). Self-similar spacetimes: geometry and dynamics, Commun. Math. Phys. 37, 287.
Eardley, D.M., Liang, E., and Sachs, R.K. (1971). Velocity-dominated singularities in irrotational dust cosmologies, J. Math. Phys. 13, 99.
Eardley, D.M. and Smarr, L. (1979). Time functions in numerical relativity: marginally bound dust collapse, Phys. Rev. D 19, 2239.
Earman, J. (1987). The SAP also rises: A critical examination of the anthropic principle, Am. Phil. Qu. 24, 307.
Eddington, A.S. (1930). On the instability of Einstein's spherical world, Mon. Not. Roy. Astr. Soc. 90, 668.
Edgar, S.B. (1980). The structure of tetrad formalisms in general relativity: the general case, Gen. Rel. Grav. 12, 347.
Ehlers, J. (1961). Beiträge zur relativistischen Mechanik kontinuerlicher Medien, Akad. Wiss. Lit. Mainz, Abh. Math.-Nat. Kl. 11. English translation by Ellis, G.F.R. and Dunsby, P.K.S., in Gen. Rel. Grav.25, 1225–1266 (1993).
Ehlers, J. (1971). General relativity and kinetic theory, in General Relativity and Cosmology, ed. Sachs, R.K., volume XLVII of Proceedings of the International School of Physics “Enrico Fermi” (Academic Press, New York and London), p. 1.
Ehlers, J. (1973). Survey of general relativity theory, in Relativity, Astrophysics and Cosmology, ed. Israel, W. (Kluwer Academic Publishers, Dordrecht).
Ehlers, J., Geren, P., and Sachs, R. K. (1968). Isotropic solutions of the Einstein-Liouville equations, J. Math. Phys. 9, 1344.
Ehlers, J. and Rindler, W. (1989). A phase-space representation of Friedmann-Lemaître universes containing both dust and radiation and the inevitability of a big bang, Mon. Not. Roy. Astr. Soc. 238, 503.
Einstein, A. (1917). Kosmologische Betrachtungen zur allgemeinen relativitätstheorie, Sitzb. Preuss. Akad. Wiss. p. 142. English translation in The Principle of Relativity by Lorentz, H.A., Einstein, A., Minkowski, H. and Weyl, H. (Dover, New York), 1923.
Einstein, A. (1956). The Meaning of Relativity (6th ed.) (Methuen, London).
Einstein, A. and Straus, E.G. (1945). The influence of the expansion of space on the gravitation fields surrounding the individual stars, Rev. Mod. Phys. 17, 120.
Einstein, A. and Straus, E.G. (1946). Corrections and additional remarks to our paper: The influence of the expansion of space on the gravitation fields surrounding the individual stars, Rev. Mod. Phys. 18, 148.
Eisenhart, L.P. (1924). Space-time continua of perfect fluids in general relativity, Trans. Am. Math. Soc. 26, 205.
Eisenstein, D.J., Seo, H.-J., and White, M. (2007). On the robustness of the acoustic scale in the low-redshift clustering of matter, Astrophys. J. 664, 660. arXiv:astro-ph/0604361.
Eisenstein, D.J., Zehavi, I., Hogg, D.W., Scoccimarro, R., Blanton, al. (2005). Detection of the Baryon Acoustic Peak in the large-scale correlation function of SDSS luminous red galaxies, Astrophys. J. 633, 560. arXiv:astro-ph/0501171.
Ellis, G.F.R. (1967). Dynamics of pressure-free matter in general relativity, J. Math. Phys. 8, 1171.
Ellis, G.F.R. (1971a). Relativistic cosmology, in General Relativity and Cosmology, ed. Sachs, R.K., volume XLVII of Proceedings of the International School of Physics ‘Enrico Fermi’ (Academic Press, New York and London), p. 104. Reprinted as Gen. Rel. Grav.41, 581–660 (2009).
Ellis, G.F.R. (1971b). Topology and cosmology, Gen. Rel. Grav. 2, 7.
Ellis, G.F.R. (1973). Relativistic cosmology, in Cargese Lectures in Physics, vol. 6, ed. Schatzman, E. (Gordon and Breach, New York), p. 1.
Ellis, G.F.R. (1975). Cosmology and verifiability, Q. J. Roy. Astr. Soc. 16, 245.
Ellis, G.F.R. (1980). Limits to verification in cosmology, Ann. N.Y. Acad. Sci. 336, 130.
Ellis, G.F.R. (1984). Alternatives to the big bang, Ann. Rev. Astron. Astrophys. 22, 157.
Ellis, G.F.R. (1988). Does inflation necessarily imply Ω = 1?, Class. Quant. Grav. 5, 891.
Ellis, G.F.R. (1989). A history of cosmology 1917-1955, in Einstein and the History of General Relativity, ed. Howard, D. and Stachel, J., volume 1 of Einstein Study Series (Birkhauser Verlag, Boston), p. 367.
Ellis, G.F.R. (1990). The evolution of inhomogeneities in expanding Newtonian cosmologies, Mon. Not. Roy. Astr. Soc. 243, 509.
Ellis, G.F.R. (1993). The physics and geometry of the early universe: changing viewpoints, Q. J. Roy. Astr. Soc. 34, 315. Appeared in first version in Italian in La cosmologia nella cultura del '900, Giornale di Astronomia, 17, 6–14 (1991).
Ellis, G.F.R. (1995). Comment on “Entropy and the second law: A pedagogical alternative” by Baierlein, Ralph, Am. J. Phys. 63, 472.
Ellis, G.F.R. (1996). Contributions of K. Gödel to relativity and cosmology, in Gödel 96: logical foundations of mathematics, computer science and physics - Kurt Gödel's legacy, ed. Hajicek, P., volume 6 of Lecture Notes in Logic (Springer Verlag, Berlin and Heidelberg).
Ellis, G.F.R. (1997). Cosmological models from a covariant viewpoint, in Gravitation and Cosmology, ed. Dhurandhar, S. and Padmanabhan, T., volume 211 of Astrophysics and Space Science Library (Springer, Berlin and Heidelberg), p. 53.
Ellis, G.F.R. (2002). Cosmology and local physics, New Astron. Rev. 46, 645. arXiv:gr-qc/0102017.
Ellis, G.F.R. (2005). Dynamical properties of cosmological solutions, J. Hyper. Diff. Equations 2, 381.
Ellis, G.F.R. (2006). Issues in the philosophy of cosmology, in Handbook in the Philosophy of Science: Philosophy of Physics, Part B, ed. Butterfield, J. and Earman, J. (Elsevier, Amsterdam), p. 1183. arXiv:astro-ph/0602280.
Ellis, G.F.R. (2007). Editorial note concerning ‘On the definition of distance in general relativity’ by I.M.H., Etherington, Gen. Rel. Grav. 39, 1047.
Ellis, G.F.R. (2009). Dark matter and dark energy proposals: maintaining cosmology as a true science?, in CRAL-IPNL Dark Energy and Dark Matter: Observations, Experiments, and Theories, ed. Pécontal, E., Buchert, T., Stefano, P., and Copin, Y. (EAS/EDP Sciences, Les Ulis), p. 325. arXiv:0811.3529.
Ellis, G.F.R. and Baldwin, J.E. (1984). On the expected anisotropy of radio source counts, Mon. Not. Roy. Astr. Soc. 206, 377.
Ellis, G.F.R., Bassett, B.A.C.C., and Dunsby, P.K.S. (1998). Lensing and caustic effects on cosmological distances, Class. Quant. Grav. 15, 2345. arXiv:gr-qc/9801092.
Ellis, G.F.R. and Brundrit, G.B. (1979). Life in the infinite universe, Q. J. Roy. Astr. Soc. 20, 37.
Ellis, G.F.R. and Bruni, M. (1989). Covariant and gauge-invariant approach to cosmological density fluctuations, Phys. Rev. D 40, 1804.
Ellis, G.F.R. and Jaklitsch, M.J. (1989). Integral constraints on perturbations of Robertson-Walker cosmologies, Astrophys. J. 346, 601.
Ellis, G.F.R. and King, A.R. (1974). Was the big-bang a whimper?, Commun. Math. Phys. 38, 119.
Ellis, G.F.R., Kirchner, U., and Stoeger, W.R. (2004). Multiverses and physical cosmology, Mon. Not. Roy. Astr. Soc. 347, 921. arXiv:astro-ph/0305292.
Ellis, G.F.R. and Maartens, R. (2004). The emergent universe: inflationary cosmology with no singularity and no quantum gravity era, Class. Quant. Grav. 21, 223.
Ellis, G.F.R., Maartens, R., and Nel, S.D. (1978). The expansion of the universe, Mon. Not. Roy. Astr. Soc. 184, 439.
Ellis, G.F.R. and MacCallum, M.A.H. (1969). A class of homogeneous cosmological models, Commun. Math. Phys. 12, 108.
Ellis, G.F.R. and Matravers, D.R. (1985). Spatial homogeneity and the size of the universe, in A Random Walk in Relativity and Cosmology, ed. Dadhich, N., Rao, J.R., Narlikar, J.V., and Vishveshwara, C.V. (Wiley Eastern, Delhi).
Ellis, G.F.R. and Matravers, D.R. (1995). General covariance in general relativity, Gen. Rel. Grav. 27, 777.
Ellis, G.F.R., Matravers, D.R., and Treciokas, R. (1983a). Anisotropic solutions of the Einstein-Boltzmann equations: I. General formalism, Ann. Phys. (N.Y.) 150, 455.
Ellis, G.F.R., Matravers, D.R., and Treciokas, R. (1983b). Anexact anisotropic solution of the Einstein-Liouville equations, Gen. Rel. Grav. 15, 931.
Ellis, G.F.R., McEwan, P., Stoeger, W.R., and Dunsby, P. (2002a). Causality in inflationary universes with positive spatial curvature, Gen. Rel. Grav. 34, 1461. arXiv:gr-qc/0109024.
Ellis, G.F.R., Nel, S.D., Maartens, R., Stoeger, W.R., and Whitman, A.P. (1985). Ideal observational cosmology, Phys. Reports 124, 315.
Ellis, G.F.R., Nicolai, H., Durrer, R., and Maartens, R. (Eds.) (2008). Special issue on dark energy, Gen. Rel. Grav. 40.
Ellis, G.F.R., Perry, J.J., and Sievers, A. (1984). Cosmological observations of galaxies: the observational map, Astron. J. 89, 1124.
Ellis, G.F.R. and Rothman, T. (1993). Lost horizons, Am. J. Phys. 61, 883.
Ellis, G.F.R. and Schreiber, G. (1986). Observational and dynamic properties of small universes, Phys. Lett. A 115, 97.
Ellis, G.F.R. and Sciama, D.W. (1972). Global and non-global problems in cosmology, in General Relativity (Synge Festschrift), ed. O'Raifeartaigh, L. (Oxford University Press, Oxford), p. 35.
Ellis, G.F.R. and Stoeger, W.R. (1987). The ‘fitting problem’ in cosmology, Class. Quant. Grav. 4, 1697.
Ellis, G.F.R. and Stoeger, W.R. (1988). Horizons in inflationary universes, Class. Quant. Grav. 5, 207.
Ellis, G.F.R. and Stoeger, W.R. (2009a). A note on infinities in eternal inflation, Gen. Rel. Grav. 41, 1475. arXiv:1001.4590.
Ellis, G.F.R. and Stoeger, W.R. (2009b). The evolution of our local cosmic domain: Effective causal limits, Mon. Not. Roy. Astr. Soc. 398, 1527.
Ellis, G.F.R., Stoeger, W.R., McEwan, P., and Dunsby, P. (2002b). Dynamics of inflationary universes with positive spatial curvature, Gen. Rel. Grav. 34, 1445. arXiv:gr-qc/0109023.
Ellis, G.F.R., Treciokas, R., and Matravers, D.R. (1983). Anisotropic solutions of the Einstein-Boltzmann equations: II, Ann. Phys. (N.Y.) 150, 487.
Ellis, G.F.R. and Tsagas, C.G. (2002). Relativistic approach to nonlinear peculiar velocities and the Zel'dovich approximation, Phys. Rev. D 66, 124015. arXiv:astro-ph/0209143.
Ellis, G.F.R. and Uzan, J.-P. (2005). ‘c’ is the speed of light, isn't it?, Amer. J. Phys. 73, 240. arXiv:grqc/0305099.
Ellis, G.F.R. and van Elst, H. (1999a). Cosmological models, in Theoretical and Observational Cosmology (Cargese Lectures 1998), ed. Lachièze-Ray, M., volume 541 of Nato Series C: Mathematical and Physical Sciences (Kluwer, Dordrecht), p. 1. arXiv:gr-qc/9812046.
Ellis, G.F.R. and van Elst, H. (1999b). <Deviation of geodesics in FLRW spacetime geometries, in On Einstein's Path: essays in honor of Engelbert Schucking, ed. Harvey, A.L. (Springer-Verlag, New York), p. 203.
Ellis, G.F.R., van Elst, H., and Maartens, R. (2001). General relativistic analysis of peculiar velocities, Class. Quant. Grav. 18, 5115. arXiv:gr-qc/0105083.
Ellis, G.F.R., van Elst, H., Murugan, J. and Uzan, J.-P. (2010). On the trace-free Einstein equations as a viable alternative to general relativity. arXiv:1008.1196.
Etherington, I.M.H. (1933). On the definition of distance in general relativity, Phil. Mag. 15, 761. Reprinted as Gen. Rel. Grav.39 (2007).
Fabian, A.C. (Ed.) (1989). Origins (Cambridge University Press, Cambridge).
Fagundes, H.V. (1985). Relativistic cosmologies with closed, locally homogeneous spatial sections, Phys. Rev. Lett. 54, 1200. See also Gen. Rel. Grav.30, 1437 (1998).
Faraoni, V. (2009). An analysis of the Sultana-Dyer cosmological black hole solution of the Einstein equations, Phys. Rev. D 80, 044013. arXiv:0907.4473.
Farnsworth, D.L. (1967). Some new general relativistic dust metrics possessing isometries, J. Math. Phys. 8, 2315.
Fay, S. (2004). Isotropisation of Bianchi class A models with a minimally coupled scalar field and a perfect fluid, Class. Quant. Grav. 21, 1609. arXiv:gr-qc/0402104.
Fayos, F., Jaen, X., Llanta, E., and Senovilla, J.M.M. (1991). Matching of the Vaidya and Robertson-Walker metric, Class. Quant. Grav. 8, 2057.
Fayos, F., Senovilla, J.M.M., and Torres, R. (1996). General matching of 2 spherically symmetric spacetimes, Phys. Rev. D 54, 4862.
February, S., Larena, J., Smith, M., and Clarkson, C.A. (2010). Rendering dark energy void, Mon. Not. Roy. Astr. Soc. 405, 2231. arXiv:0909.1479.
Feng, J.L. (2010). Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys. 48, 495. arXiv:1003.0904.
Ferrando, J.J., Morales, J.A., and Portilla, M. (1992). Inhomogeneous space-times admitting isotropic radiation: Vorticity-free case, Phys. Rev. D 46, 578.
Ferreira, P.G. (2007). The State of the Universe: A Primer in Modern Cosmology (Phoenix, Los Angeles).
Ferreira, P.G., Juszkiewicz, R., Feldman, H.A., Davis, M., and Jaffe, A.H. (1999). Streaming velocities as a dynamical estimator of Omega, Astrophys. J. Lett. 515, L1. arXiv:astro-ph/9812456.
Ferreira, P.G. and Starkman, G.D. (2009). Einstein's theory of gravity and the problem of missing mass, Science 326, 812. arXiv:0911.1212.
Ferreras, I., Mavromatos, N.E., Sakellariadou, M., and Yusaf, M.F. (2009). Incompatibility of rotation curves with gravitational lensing for TeVeS, Phys. Rev. D 80, 103506. arXiv:0907.1463.
Fixsen, D.J., Cheng, E.S., Gales, J.M., Mather, J.C., Shafer, al. (1996). The Cosmic Microwave Background spectrum from the full COBE FIRAS data set, Astrophys. J. 473, 576. arXiv:astroph/9605054.
Flesch, E. and Arp, H. (1999). Further evidence that some quasars originate in nearby galaxies: NGC3628. arXiv:astro-ph/9907219.
Florides, P.S. and McCrea, W.H. (1959). Observable relations in relativistic cosmology III, Zs. f. Astrophys. 48, 52.
Freedman, W.L. and Madore, B.F. (2010). The Hubble constant, Ann. Rev. Astron. Astrophys. 48, 673.
Freivogel, B., Kleban, M., Rodríguez Martínez, M., and Susskind, L. (2006). Observational consequences of a landscape, J. High Energy Phys. 3, 39. arXiv:hep-th/0505232.
Friedlander, F.G. (1975). The Wave Equation on a Curved Space-time (Cambridge University Press, Cambridge).
Frieman, J.A., Turner, M.S., and Huterer, D. (2008). Dark energy and the accelerating universe, Ann. Rev. Astron. Astrophys. 46, 385. arXiv:0803.0982.
Frittelli, S. and Newman, E.T. (1999). Exact universal gravitational lensing equation, Phys. Rev. D 59, 124001. arXiv:gr-qc/9810017.
Fu, L., Semboloni, E., Hoekstra, H., Kilbinger, M., vanWaerbeke, al. (2008). Very weak lensing in the CFHTLS Wide: cosmology from cosmic shear in the linear regime, Astron. Astrophys. 479, 9. arXiv:0712.0884.
Furlanetto, S.R., Oh, S.P., and Briggs, F.H. (2006). Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe, Phys. Reports 433, 181. arXiv:astro-ph/0608032.
Futamase, T. (1991). A new description for a realistic inhomogeneous universe in general relativity, Prog. Theor. Phys. 86, 389.
Futamase, T. (1996). Averaging of a locally inhomogeneous realistic universe, Phys. Rev. D 53, 681.
Gale, G. (2007). Cosmology: Methodological debates in the 1930s and 1940s. Stanford Encyclopaedia of Philosophy.
García-Bellido, J. and Haugbølle, T. (2008). Looking the void in the eyes – the kinematic Sunyaev Zel'dovich effect in Lemaître Tolman Bondi models, J. Cosmol. Astropart. Phys. 0809, 016. arXiv:0807.1326.
Garcia-Parrado, A. and Valiente Kroon, J.A. (2008). Kerr initial data, Class. Quant. Grav. 25, 205018.
Gardner, M. (2003). Are Universes Thicker than Blackberries? Discourses on Godel, Magic Hexagons, Little Red Riding Hood and Other Mathematical and Pseudoscientific Topics (W.W. Norton, New York and London).
Garrett, A.J.M. and Coles, P. (1993). Bayesian inductive inference and the anthropic cosmological principle, Comments Astrophys. 17, 23.
Garriga, J., Schwartz-Perlov, D.,Vilenkin, A., and Winitzki, S. (2006). Probabilities in the inflationary multiverse, J. Cosmol. Astropart. Phys. 0601, 017. arXiv:hep-th/0509184.
Gasperini, M., Marozzi, G., and Veneziano, G. (2010). A covariant and gauge invariant formulation of the cosmological backreaction, J. Cosmol. Astropart. Phys. 1002, 009. arXiv:0912.3244.
Gasperini, M. and Veneziano, G. (1993). Pre-big-bang in string cosmology, Astropart. Phys. 1, 317.
Gaztañaga, E., Cabré, A., and Hui, L. (2009). Clustering of luminous red galaxies - IV. Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z), Mon. Not. Roy. Astr. Soc. 399, 1663. arXiv:0807.3551.
Gebbie, T., Dunsby, P.K.S., and Ellis, G.F.R. (2000). 1+3 covariant cosmic microwave background anisotropies II: The almost-Friedmann-Lemaître Model, Ann. Phys. (N.Y.) 282, 321. arXiv:astroph/9904408.
Gebbie, T. and Ellis, G.F.R. (2000). 1+3 covariant cosmic microwave background anisotropies I: Algebraic relations for mode and multipole expansions, Ann. Phys. (N.Y.) 282, 285. arXiv:astroph/9804316.
Geroch, R. and Lindblom, L. (1990). Dissipative relativistic fluid theories of divergence type, Phys. Rev. D 41, 1855.
Geshnizjani, G. and Brandenberger, R.H. (2002). Backreaction and local cosmological expansion rate, Phys. Rev. D 66, 123507.
Geshnizjani, G. and Brandenberger, R.H. (2005). Backreaction of perturbations in two scalar field inflationary models, J. Cosmol. Astropart. Phys. 0504, 006.
Ghosh, T., Hajian, A., and Souradeep, T. (2007). Unveiling hidden patterns in CMB anisotropy maps, Phys. Rev. D 75, 083007. arXiv:astro-ph/0604279.
Giannantonio, T., Scranton, R., Crittenden, R.G., Nichol, R.C., Boughn, al. (2008). Combined analysis of the integrated Sachs-Wolfe effect and cosmological implications, Phys. Rev. D 77, 123520. arXiv:0801.4380.
Gibbons, G.W., Hawking, S.W., and Stewart, J.M. (1987). A natural measure on the set of all universes, Nucl. Phys. B 281, 736.
Gibbons, G.W., Shellard, E.P.S., and Rankin, S.J. (Eds.) (2003). The Future of Theoretical Physics and Cosmology: Celebrating Stephen Hawking's 60th Birthday (Cambridge University Press, Cambridge).
Gibbons, G.W. and Turok, N. (2008). The measure problem in cosmology, Phys. Rev. D 77, 063518. arXiv:hep-th/0609095.
Giovannini, M. and Kunze, K.E. (2008). Magnetized CMB observables: A dedicated numerical approach, Phys. Rev. D 77, 063003. arXiv:0712.3483.
Gödel, K. (1949). An example of a new type of cosmological solutions of Einstein's field equations of gravitation, Rev. Mod. Phys. 21, 447.
Gödel, K. (1952). Rotating universes in general relativity theory, in Proc. Int. Cong. Math., Cambridge, Mass., 1950, ed. Graves, L.M., Hille, E., Smith, P.A., and Zariski, O., volume 1 (American Mathematical Society, Providence, R.I.), p. 175.
Godłowski, W., Stelmach, J., and Szydłowski, M. (2004). Can the Stephani model be an alternative to FRW accelerating models?, Class. Quant. Grav. 21, 3953. arXiv:astro-ph/0403534.
Goenner, H.F. (2010). What kind of science is cosmology?, Ann. d. Phys. 522, 389. arXiv:0910.4333.
Goetz, G. (1990). Gravitational field of plane symmetric thick domain walls, J. Math. Phys. 31, 2683.
Goheer, N., Leach, J.A., and Dunsby, P.K.S. (2008). Compactifying the state space for alternative theories of gravity, Class. Quant. Grav. 25, 035013. arXiv:0710.0819.
Goldwirth, D.S. and Piran, T. (1990). Inhomogeneity and the onset of inflation, Phys. Rev. Lett. 64, 2852.
Gomero, G.I., Teixeira, A.F.F., Rebouças, M.J., and Bernui, A. (2002). Spikes in cosmic crystallography, Int. J. Mod. Phys. D 11, 869. arXiv:gr-qc/9811038.
Goode, S.W. (1989). Analysis of spatially inhomogeneous perturbations of the FRW cosmologies, Phys. Rev. D 39, 2882.
Goode, S.W. and Wainwright, J. (1982). Singularities and evolution of the Szekeres cosmological models, Phys. Rev. D 26, 3315.
Goodman, J. (1995). Geocentrism reexamined, Phys. Rev. D 52, 1821. arXiv:astro-ph/9506068.
Gordon, C., Wands, D., Bassett, B.A.C.C., and Maartens, R. (2001). Adiabatic and entropy perturbations from inflation, Phys. Rev. D 63, 023506. arXiv:astro-ph/0009131.
Goroff, M.H. and Sagnotti, A. (1985). Quantum gravity at two loops, Phys. Lett. B 160, 81.
Gott, J.R. (1985). Gravitational lensing effects of vacuum strings: exact solutions, Astrophys. J. 288, 422.
Gott, J.R. and Li, L.-X. (1998). Can the universe create itself?, Phys. Rev. D 58, 023501. arXiv:astro-ph/9712344.
Gott, III, J.R., Gunn, J.E., Schramm, D.N., and Tinsley, B.M. (1976). Will the universe expand forever?, Sci. Am. 234, 62.
Gowdy, R.H. (1971). Gravitational waves in closed universes, Phys. Rev. Lett. 27, 826.
Gowdy, R.H. (1974). Vacuum spacetimes with two-parameter spacelike isometry groups and compact invariant hypersurfaces: topologies and boundary conditions, Ann. Phys. (N.Y.) 83, 203.
Gowdy, R.H. (1975). Closed gravitational-wave universes: analytic solutions with two-parameter symmetry, J. Math. Phys. 16, 224.
Greene, B., Hinterbichler, K., Judes, S. and Parikh, M.K. (2011). Smooth initial conditions from weak gravity, Phys. Lett. B 697, 178. arXiv:0911.0693.
Greisen, K. (1966). End to the cosmic-ray spectrum?, Phys. Rev. Lett. 16, 748.
Gribbin, J. and Rees, M. (1989). Cosmic Coincidences (Bantam Books, New York).
Griffiths, J.B. (1991). Colliding Plane Waves in General Relativity (Oxford University Press, Oxford).
Grishchuk, L.P. (1968). Cosmological models and spatial-homogeneity criteria, Soviet Astronomy -A.J. 11, 881.
Grunbaum, A. (1989). The pseudo problem of creation, Philosophy of Science 56, 373.
Gümrükçüoğlu, A.E., Contaldi, C.R., and Peloso, M. (2007). Inflationary perturbations in anisotropic backgrounds and their imprint on the CMB, J. Cosmol. Astropart. Phys. 0711, 005. arXiv:0707.4179.
Gümrükçüoğlu, A.E., Himmetoglu, B., and Peloso, M. (2010). Scalar-scalar, scalar-tensor, and tensor-tensor correlators from anisotropic inflation, Phys. Rev. D 81, 063528. arXiv:1001.4088.
Guth, A. (2001). Eternal inflation, in Proceedings of ‘Cosmic Questions’ Meeting (The New York Academy of Sciences Press, New York). arXiv:astro-ph/0101507.
Guth, A. (2007). Eternal inflation and its implications, J. Phys. A 40, 6811. arXiv:hep-th/0702178.
Guzzo, L., Pierleoni, M., Meneux, B., Branchini, E., Le Fèvre, al. (2008). A test of the nature of cosmic acceleration using galaxy redshift distortions, Nature 451, 541. arXiv:0802.1944.
Hamilton, A.J.S. (1998). Linear redshift distortions: a review, in The evolving universe, ed. Hamilton, D., volume 231 of Astrophysics and Space Science Library (Springer, Berlin and Heidelberg), p. 185. arXiv:astro-ph/9708102.
Hanquin, J.-L. and Demaret, J. (1984). Exact solutions for inhomogeneous generalizations of some vacuum Bianchi models, Class. Quant. Grav. 1, 291.
Hanson, D., Challinor, A., and Lewis, A. (2010). Weak lensing of the CMB. p. 2197 in Jetzer, Mellier and Perlick (2010), arXiv:0911.0612.
Harness, R.S. (1982). Spacetimes homogeneous on a timelike hypersurface, J. Phys. A 15, 135.
Harré, R. (1962). Philosophical aspects of cosmology, Brit. J. Phil. Sci. 13, 104.
Harrison, E.R. (2000). Cosmology: The Science of the Universe (2nd edition) (Cambridge University Press, Cambridge).
Hartle, J. (2003). The state of the universe, in Gibbons, Shellard and Rankin (2003).
Hartle, J.B. (2004). Anthropic reasoning and quantum cosmology, in The New Cosmology, ed. Allen, R.E., Nanopoulos, D.V., and Pope, C.N., volume 743 of AIP Conference Proceedings (American Institute of Physics, Melville, NY). arXiv:gr-qc/0406104.
Hartle, J.B. (2011). The quasiclassical realms of this quantum universe, Found. Phys. 41, 982. arXiv:0806.3776.
Hartle, J.B. and Hawking, S.W. (1983). Wave function of the universe, Phys. Rev. D 28, 2960.
Hartle, J.B., Hawking, S.W., and Hertog, T. (2008). The no-boundary measure of the universe, Phys. Rev. Lett. 100, 201301. arXiv:0711.4630.
Harvey, A.L. (1979). Automorphisms of the Bianchi model Lie groups, J. Math. Phys. 20, 251.
Harwit, M. (1992). Cosmic curvature and condensation, Astrophys. J. 392, 394.
Harwit, M. (1998). Astrophysical Concepts, 3rd edition (Springer, New York).
Hasse, W. and Perlick, V. (1999). On spacetime models with an isotropic Hubble law, Class. Quant. Grav. 16, 2559.
Hauser, M.G. and Dwek, E. (2001). The cosmic infrared background: Measurements and implications, Ann. Rev. Astron. Astrophys. 39, 249. arXiv:astro-ph/0105539.
Hausman, M.A., Olson, D.W., and Roth, B.D. (1983). The evolution of voids in the expanding universe, Astrophys. J. 270, 351.
Hawking, S.W. (1966). Perturbations of an expanding universe, Astrophys. J. 145, 544.
Hawking, S.W. (1975). Particle creation by black holes, in Quantum Gravity: an Oxford Symposium, ed. Isham, C.J., Penrose, R., and Sciama, D.W. (Clarendon Press, Oxford). Also in Commun. Math. Phys. 43, 199 (1975).
Hawking, S.W. (1987). Quantum cosmology, in 300 Years of Gravitation, ed. Hawking, S.W. and Israel, W. (Cambridge University Press, Cambridge), p. 631.
Hawking, S.W. (1993). On the Big Bang and Black Holes (World Scientific, Singapore).
Hawking, S.W. and Ellis, G.F.R. (1973). The Large Scale Structure of Space-time (Cambridge University Press, Cambridge).
Hawking, S.W. and Page, D.N. (1988). How probable is inflation?, Nucl. Phys. B 298, 789.
Hawking, S.W. and Penrose, R. (1970). Singularities of gravitational collapse and cosmology, Proc. R. Soc. London A 314, 529.
Heavens, A. (2009). Weak lensing: Dark matter, dark energy and dark gravity, Nucl. Phys. B (Proc. Suppl.) 194, 76. arXiv:0911.0350.
Heckmann, O. and Schucking, E. (1955). Bemerkungen zur Newtonschen Kosmologie. I, Zs. f. Astrophys. 38, 95.
Heckmann, O. and Schucking, E. (1956). Bemerkungen zur Newtonschen Kosmologie II, Zs. f. Astrophys. 40, 81.
Heckmann, O. and Schucking, E. (1962). Relativistic cosmology, in Gravitation, ed. Witten, L. (Wiley, New York), p. 438.
Heinzle, J.M. and Ringström, H. (2009). Future asymptotics of vacuum Bianchi type VI0 solutions, Class. Quant. Grav. 26, 145001.
Heinzle, J.M. and Uggla, C. (2006). Dynamics of the spatially homogeneous Bianchi type I Einstein-Vlasov equations, Class. Quant. Grav. 23, 3463. arXiv:gr-qc/0512031.
Heinzle, J.M. and Uggla, C. (2009a). Mixmaster: Fact and belief, Class. Quant. Grav. 26, 075016. arXiv:0901.0776.
Heinzle, J.M. and Uggla, C. (2009b). A new proof of the Bianchi type IX attractor theorem, Class. Quant. Grav. 26, 075015. arXiv:0901.0806.
Heinzle, J.M., Uggla, C., and Röhr, N. (2009). The cosmological billiard attractor, Adv. Theor. Math. Phys. 13, 293. arXiv:gr-qc/0702141.
Hellaby, C.W. (1996). The null and KS limits of the Szekeres model, Class. Quant. Grav. 13, 2537.
Hellaby, C.W. and Alfedeel, A.H.A. (2009). Solving the observer metric, Phys. Rev. D 79, 043501. arXiv:0811.1676.
Hellaby, C.W. and Krasiński, A. (2006). Alternative methods of describing structure formation in the Lemaître-Tolman model, Phys. Rev. D 73, 023518. arXiv:gr-qc/0510093.
Hellaby, C.W. and Krasiński, A. (2008). Physical and geometrical interpretation of the ε ≤ 0 Szekeres models, Phys. Rev. D 77, 023529. arXiv:0710.2171.
Hellaby, C.W. and Lake, K. (1981). Local inhomogeneities in a Robertson–Walker background: III. Elementary growth rates in a flat background with a relativistic equation of state, Astrophys. J. 251, 429.
Hellaby, C.W. and Lake, K. (1983). Mass scales in a universe of dust and blackbody radiation, Astrophys. Lett. 23, 81.
Hellaby, C.W. and Lake, K. (1984). The redshift structure of the big bang in inhomogeneous cosmological models. I. Spherical dust solutions, Astrophys. J. 282, 1.
Hellaby, C.W. and Lake, K. (1985). Shell crossings and the Tolman model, Astrophys. J. 290, 381. Erratum: Astrophys. J.300, 461 (1986).
Heller, M. (1974). On the interpretative paradox in cosmology, Acta Cosmologica 2, 37.
Hervik, S. (2000). The Bianchi type I minisuperspace model, Class. Quant. Grav. 17, 2765. arXiv:gr-qc/0003084.
Hervik, S. (2004). The asymptotic behaviour of tilted Bianchi type VI0 universes, Class. Quant. Grav. 21, 2301. arXiv:gr-qc/0403040.
Hervik, S. and Coley, A.A. (2005). Inhomogeneous perturbations of plane-wave spacetimes, Class. Quant. Grav. 22, 3391. arXiv:gr-qc/0505108.
Hervik, S. and Lim, W.C. (2006). The late-time behaviour of vortic Bianchi type VIII universes, Class. Quant. Grav. 23, 3017. arXiv:gr-qc/0512070.
Hervik, S., Lim, W.C., Sandin, P., and Uggla, C. (2010). Future asymptotics of tilted Bianchi type II cosmologies, Class. Quant. Grav. 27, 185006. arXiv:1004.3661.
Hervik, S., van den Hoogen, R., and Coley, A.A. (2005). Future asymptotic behaviour of tilted Bianchi models of type IV and VIIh, Class. Quant. Grav. 22, 607. arXiv:gr-qc/0409106.
Hervik, S., van den Hoogen, R.J., Lim, W.C., and Coley, A.A. (2006). The futures of Bianchi type VII0 cosmologies with vorticity, Class. Quant. Grav. 23, 845. arXiv:gr-qc/0509032.
Hervik, S., van den Hoogen, R.J., Lim, W.C., and Coley, A.A. (2007). Late-time behaviour of the tilted Bianchi type VIh models, Class. Quant. Grav. 24, 3859. arXiv:gr-qc/0703038.
Hervik, S., van den Hoogen, R.J., Lim, W.C., and Coley, A.A. (2008). Late-time behaviour of the tilted Bianchi type VI–1/9 models, Class. Quant. Grav. 25, 015002. arXiv:0706.3184.
Hewitt, C.G. (1991). Algebraic invariant curves in cosmological dynamical systems and exact solutions, Gen. Rel. Grav. 23, 1363.
Hewitt, C.G., Bridson, R., and Wainwright, J. (2001). The asymptotic regimes of tilted Bianchi II cosmologies, Gen. Rel. Grav. 33, 65. arXiv:gr-qc/0008037.
Hewitt, C.G. and Wainwright, J. (1990). Orthogonally transitive G2 cosmologies, Class. Quant. Grav. 7, 2295.
Hewitt, C.G. and Wainwright, J. (1992). Dynamical systems approach to tilted Bianchi cosmologies: irrotational models of type V, Phys. Rev. D 46, 4242.
Hewitt, C.G. and Wainwright, J. (1993). A dynamical systems approach to Bianchi cosmologies: orthogonal models of class B, Class. Quant. Grav. 10, 99.
Hewitt, C.G., Wainwright, J., and Glaum, M. (1991). Qualitative analysis of a class of inhomogeneous self-similar cosmological models: II, Class. Quant. Grav. 8, 1505.
Hewitt, C.G., Wainwright, J., and Goode, S.W. (1988). Qualitative analysis of a class of inhomogeneous self-similar cosmological models, Class. Quant. Grav. 5, 1313.
Hibler, D.L. (1976). Construction and some properties of the most general homogeneous Newtonian cosmological models, University of Texas at Austin PhD thesis. University Microfilms TSZ 77-3913.
Hicks, N.J. (1965). Notes on Differential Geometry, volume 3 of van Nostrand Mathematical Studies (van Nostrand, Princeton).
Hilbert, D. (1964). On the infinite, in Philosophy of Mathematics, ed. Benacerraf, P. and Putnam, H. (Prentice Hall, Englewood Cliffs N. J.), p. 134.
Hinshaw, G., Nolta, M.R., Bennett, C.L., Bean, R., Doré, al. (2007). Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Temperature analysis, Astrophys. J. Supp. 170, 288. arXiv:astro-ph/0603451.
Hinshaw, G., Weiland, J.L., Hill, R.S., Odegard, N., Larson, al. (2009). Five-year Wilkinson Microwave Anisotropy Probe observations: Data processing, sky maps, and basic results, Astrophys. J. Supp. 180, 225. arXiv:0803.0732.
Hiscock, W.A. (1985). Exact gravitational field of a string, Phys. Rev. D 31, 3288.
Hiscock, W.A. and Lindblom, L. (1987). Linear plane waves in dissipative relativistic fluids, Phys. Rev. D 35, 3723.
Hobill, D.W., Burd, A., and Coley, A.A. (Eds.) (1994). Deterministic Chaos in General Relativity, volume 332 of Nato ASI Series B (Plenum Press, New York).
Hobson, M.P., Efstathiou, G.P., and Lasenby, A.N. (2006). General Relativity: An Introduction for Physicists (Cambridge University Press, Cambridge).
Hoekstra, H. (2007). A comparison of weak-lensing masses and X-ray properties of galaxy clusters, Mon. Not. Roy. Astr. Soc. 379, 317. arXiv:0705.0358.
Hogan, C.J. (2000). Why the universe is just so, Rev. Mod. Phys. 72, 1149. arXiv:astro-ph/9909295.
Hogan, C.J. (2005). Quarks, electrons, and atoms in closely related universes, in Universe or Multiverse?, ed. Carr, B.J. (Cambridge University Press, Cambridge). arXiv:astro-ph/0407086.
Hogan, P. and Ellis, G.F.R. (1989). The asymptotic field of an accelerating point charge, Ann. Phys. (N.Y.) 196, 293.
Hogg, D.W. (2009). Is cosmology just a plausibility argument? arXiv:0910.3374.
Hollands, S. and Wald, R.M. (2005). Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes, Rev. Mod. Phys. 17, 227.
Hollenstein, L., Caprini, C., Crittenden, R., and Maartens, R. (2008). Challenges for creating magnetic fields by cosmic defects, Phys. Rev. D 77, 063517. arXiv:0712.1667.
Holz, D.E. and Linder, E.V. (2005). Safety in numbers: gravitational degradation of the luminosity distance-redshift relation, Astrophys. J. 631, 678. arXiv:astro-ph/0412173.
Holz, D.E. and Wald, R.M. (1998). New method for determining cumulative gravitational lensing effects in inhomogeneous universes, Phys. Rev. D 58, 063501. arXiv:astro-ph/9708036.
Horwood, J.T. and Wainwright, J. (2004). Asymptotic regimes of magnetic Bianchi cosmologies, Gen. Rel. Grav. 36, 799. arXiv:gr-qc/0309083.
Hosoya, A., Buchert, T., and Morita, M. (2004). Information entropy in cosmology, Phys. Rev. Lett. 92, 141302.
Hoyle, F. (1948). A new model for the expanding universe, Mon. Not. Roy. Astr. Soc. 108, 372.