Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-16T20:55:43.231Z Has data issue: false hasContentIssue false

7 - Evolutionary perspectives on the function of REM sleep

from Section II - General biology

Published online by Cambridge University Press:  07 September 2011

Niels C. Rattenborg
Affiliation:
Max Planck Institute for Ornithology - Seewiesen Sleep & Flight Group
John A. Lesku
Affiliation:
Max Planck Institute for Ornithology - Seewiesen Sleep & Flight Group
Dolores Martinez-Gonzalez
Affiliation:
Max Planck Institute for Ornithology - Seewiesen Sleep & Flight Group
Birendra N. Mallick
Affiliation:
Jawaharlal Nehru University
S. R. Pandi-Perumal
Affiliation:
Somnogen Canada Inc, Toronto
Robert W. McCarley
Affiliation:
Harvard University, Massachusetts
Adrian R. Morrison
Affiliation:
University of Pennsylvania
Get access

Summary

Summary

In most mammals, sleep is composed of two distinct states, rapid eye movement (REM) sleep and slow-wave sleep (SWS). The differentiated nature of mammalian sleep suggests that each state performs a different function, or perhaps different, but complementary components of a unified function. Despite extensive research, the function(s) provided by sleep and its respective sub-states remains the subject of debate (Cirelli and Tononi, 2008; Mignot, 2008; Siegel, 2009; Stickgold and Walker, 2007). One approach to unraveling the function of each sleep state is to trace its evolution. Through identifying the type(s) of animals in which each state evolved, we may reveal biological traits that coevolved with a particular sleep state. Cases of convergent evolution may be particularly informative because they provide the opportunity to isolate traits shared by only those animals that evolved a particular sleep state. The independent coevolution of certain sleep states and traits may be functionally linked. Conversely, the subsequent coevolutionary loss of a particular sleep state and certain traits may also reveal traits that benefit from a particular sleep state. Moreover, assuming that sleep serves an important function, determining how such animals compensate for the loss of a particular sleep state may yield clues to its purpose. Finally, another approach is to identify biological traits that account for the variation in time spent in, and presumably need for, each state. Traits that influence the allocation of time to a particular state may suggest a function for that state. The following chapter summarizes insights into the function of REM sleep gleaned from these comparative approaches.

Type
Chapter
Information
Rapid Eye Movement Sleep
Regulation and Function
, pp. 58 - 70
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Affanni, J. M., Cervino, C. O. & Marcos, H. J. (2001) Absence of penile erections during paradoxical sleep. Peculiar penile events during wakefulness and slow wave sleep in the armadillo. J Sleep Res 10: –28.CrossRefGoogle ScholarPubMed
Allison, T., van Twyver, H. & Goff, W. R. (1972) Electrophysiological studies of the echidna, Tachyglossus aculeatus. I. Waking and sleep. Arch Ital Biol, 110: –84.Google ScholarPubMed
Buchet, C., Dewasmes, G. & Le Maho, Y. (1986) An electrophysiological and behavioral study of sleep in emperor penguins under natural ambient conditions. Physiol Behav 38: –5.CrossRefGoogle ScholarPubMed
Cirelli, C. & Bushey, D. (2008) Sleep and wakefulness in Drosophila melanogaster. Ann N Y Acad Sci 1129: –9.CrossRefGoogle ScholarPubMed
Cirelli, C. & Tononi, G. (2008) Is sleep essential?PLoS Biology 6: .CrossRefGoogle ScholarPubMed
Dewasmes, G., Cohen-Adad, F., Koubi, H. & Le Maho, Y. (1985) Polygraphic and behavioral study of sleep in geese: existence of nuchal atonia during paradoxical sleep. Physiol Behav 35: –73.CrossRefGoogle ScholarPubMed
Eiland, M. M., Lyamin, O. I. & Siegel, J. M. (2001) State-related discharge of neurons in the brainstem of freely moving box turtles, Terrapene carolina major. Arch Ital Biol 139: –36.Google ScholarPubMed
Hartse, K. M. (1994) Sleep in insects and nonmammalian vertebrates. In Principles and Practice of Sleep Medicine, 2nd edn. eds. Kryger, M. H., Roth, T. & Dement, W. C.. Philadelphia: W. B. Saunders, pp. 95–104.Google Scholar
Heller, H. C., Graf, R. & Rautenberg, W. (1983) Circadian and arousal state influences on thermoregulation in the pigeon. Am J Physiol 245: –8.Google ScholarPubMed
Horne, J. (2009) REM sleep, energy balance and ‘optimal foraging’. Neurosci Biobehav Rev 33: –74.CrossRefGoogle ScholarPubMed
Jarvis, E. D., Güntürkün, O., Bruce, L. . (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6: –9.CrossRefGoogle Scholar
Jouvet, M. (1962) Recherches sur les structures nerveuses et les mechanismes responsables des differentes phases du sommeil physiologique. Arch Ital Biol 100: –206.Google Scholar
Jouvet-Mounier, D., Astic, L. & Lacote, D. (1970) Ontogenesis of the states of sleep in rat, cat, and guinea pig during the first postnatal month. Dev Psychobiol 2: –39.Google ScholarPubMed
Lesku, J. A., Roth, T. C., 2nd, Amlaner, C. J. & Lima, S. L. (2006) A phylogenetic analysis of sleep architecture in mammals: the integration of anatomy, physiology, and ecology. Amer Nat 168: –53.CrossRefGoogle ScholarPubMed
Lesku, J. A., Bark, R. J., Martinez-Gonzalez, D. . (2008) Predator-induced plasticity in sleep architecture in wild-caught Norway rats (Rattus norvegicus). Behavi Brain Res 189: –305.CrossRefGoogle Scholar
Lesku, J. A., Roth, T. C., Rattenborg, N. C., Amlaner, C. J. & Lima, S. L. (2009) History and future of comparative analyses in sleep research. Neurosci Biobehavi Rev 33: –36.CrossRefGoogle ScholarPubMed
Low, P. S., Shank, S. S., Sejnowski, T. J. & Margoliash, D. (2008) Mammalian-like features of sleep structure in zebra finches. Proc Nat Acad Sci USA 105: –6.CrossRefGoogle ScholarPubMed
Lyamin, O. I., Manger, P. R., Ridgway, S. H., Mukhametov, L. M. & Siegel, J. M. (2008) Cetacean sleep: an unusual form of mammalian sleep. Neurosci Biobeh Rev 32: –84.CrossRefGoogle ScholarPubMed
Lyson, T. & Gilbert, S. F. (2009) Turtles all the way down: loggerheads at the root of the chelonian tree. Evol Dev 11:–5.CrossRefGoogle ScholarPubMed
Manger, P. R. (2006) An examination of cetacean brain structure with a novel hypothesis correlating thermogenesis to the evolution of a big brain. Biol Rev 81: –338.CrossRefGoogle ScholarPubMed
Manger, P. R., Fahringer, H. M., Pettigrew, J. D. & Siegel, J. M. (2002) The distribution and morphological characteristics of cholinergic cells in the brain of monotremes as revealed by ChAT immunohistochemistry. Brain Behav Evol 60: –97.Google ScholarPubMed
Marino, L., Butti, C., Connor, R. C. . (2008) A claim in search of evidence: reply to Manger’s thermogenesis hypothesis of cetacean brain structure. Biol Rev 83: –40.Google ScholarPubMed
Martinez-Gonzalez, D., Lesku, J. A. & Rattenborg, N. C. (2008) Increased EEG spectral power density during sleep following short-term sleep deprivation in pigeons (Columba livia): evidence for avian sleep homeostasis. J Sleep Res 17: –53.CrossRefGoogle ScholarPubMed
Medina, L. & Abellán, A. (2009) Development and evolution of the pallium. Semin Cell Dev Biol 20: –711.CrossRefGoogle ScholarPubMed
Mignot, E. (2008) Why we sleep: the temporal organization of recovery. PLoS Biology 6: .CrossRefGoogle Scholar
Newman, S. M., Paletz, E. M., Rattenborg, N. C., Obermeyer, W. H. & Benca, R. M. (2008) Sleep deprivation in the pigeon (Columba livia) using the disk-over-water method. Physiol Behav 93: –8.CrossRefGoogle ScholarPubMed
Nicol, S. C., Andersen, N. A., Phillips, N. H. & Berger, R. J. (2000) The echidna manifests typical characteristics of rapid eye movement sleep. Neurosci Lett 283: –52.CrossRefGoogle ScholarPubMed
Ordoñez, G. R., Hillier, L. W., Warren, W. C. (2008) Loss of genes implicated in gastric function during platypus evolution. Genome Biol 9: .CrossRefGoogle ScholarPubMed
Parmeggiani, P. L. (2003) Thermoregulation and sleep. Front Biosci 8: –67.CrossRefGoogle ScholarPubMed
Rattenborg, N. C. (2006) Evolution of slow-wave sleep and palliopallial connectivity in mammals and birds: a hypothesis. Brain Res Bull 69: –9.CrossRefGoogle ScholarPubMed
Rattenborg, N. C. (2007) Response to commentary on evolution of slow-wave sleep and palliopallial connectivity in mammals and birds: a hypothesis. Brain Res Bull 72: –93.CrossRefGoogle ScholarPubMed
Rattenborg, N. C., Mandt, B. H., Obermeyer, W. H. . (2004) Migratory sleeplessness in the white-crowned sparrow (Zonotrichia leucophrys gambelii). PLoS Biology 2: –36.CrossRefGoogle Scholar
Rattenborg, N. C., Martinez-Gonzalez, D. & Lesku, J. A. (2009) Avian sleep homeostasis: convergent evolution of complex brains, cognition and sleep functions in mammals and birds. Neurosci Biobehav Rev 33: –70.CrossRefGoogle ScholarPubMed
Rattenborg, N. C., Voirin, B., Vyssotski, A. L. . (2008) Sleeping outside the box: electroencephalographic measures of sleep in sloths inhabiting a rainforest. Biol Lett 4: –5.CrossRefGoogle ScholarPubMed
Rechtschaffen, A. & Bergmann, B. M. (2002) Sleep deprivation in the rat: an update of the 1989 paper. Sleep 25: –24.CrossRefGoogle ScholarPubMed
Sereno, P. C. (1999) The evolution of dinosaurs. Science 284: –47.CrossRefGoogle ScholarPubMed
Shaffery, J. P., Sinton, C. M., Bissette, G., Roffwarg, H. P. & Marks, G. A. (2002) Rapid eye movement sleep deprivation modifies expression of long-term potentiation in visual cortex of immature rats. Neuroscience 110:–43.CrossRefGoogle ScholarPubMed
Siegel, J. M. (2009) Sleep viewed as a state of adaptive inactivity. Nat Rev Neurosci, 10: –53.CrossRefGoogle ScholarPubMed
Siegel, J. M. (2011) REM sleep. In Principles and Practice of Sleep Medicine, 5th edn. eds. Kryger, M. H., Roth, T. & Dement, W. C.. Philadelphia: W. B. Saunders, pp. 92–111.Google Scholar
Siegel, J. M., Manger, P. R., Nienhuis, R., Fahringer, H. M. & Pettigrew, J. D. (1996) The echidna Tachyglossus aculeatus combines REM and non-REM aspects in a single sleep state: implications for the evolution of sleep. J Neurosci 16: –6.CrossRefGoogle Scholar
Siegel, J. M., Manger, P. R., Nienhuis, R. . (1999) Sleep in the platypus. Neuroscience 91:–400.CrossRefGoogle ScholarPubMed
Stickgold, R. & Walker, M. P. (2007) Sleep-dependent memory consolidation and reconsolidation. Sleep Med 8: –43.CrossRefGoogle ScholarPubMed
Sugihara, K. & Gotoh, J. (1973) Depth-electroencephalograms of chickens in wakefulness and sleep. Jpn J Physiol 23:–9.CrossRefGoogle ScholarPubMed
Tobler, I. (2011) Phylogeny of sleep regulation. In Principles and Practice of Sleep Medicine, 5th edn. eds. Kryger, M. H., Roth, T. & Dement, W.C.. Philadelphia: W. B. Saunders, pp. 112–25.Google Scholar
Tobler, I. & Borbély, A. A. (1988) Sleep and EEG spectra in the pigeon (Columba livia) under baseline conditions and after sleep-deprivation. J Comp Physiol, A 163: –38.CrossRefGoogle Scholar
van Twyver, H. & Allison, T. (1972) A polygraphic and behavioral study of sleep in the pigeon (Columba livia). Exp Neurol 35: –53.CrossRefGoogle Scholar
Warren, W. C., Hillier, L. W., Marshall Graves, J. A., Birney, E., Ponting, C. P. . (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature 453: –83.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×