Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T01:22:29.638Z Has data issue: false hasContentIssue false

7 - Spectrum analysis

from Part I - Theoretical aspects

Published online by Cambridge University Press:  07 October 2011

Romain Couillet
Affiliation:
ST-Ericsson, Sophia Antipolis, France
Mérouane Debbah
Affiliation:
École Supérieure d'Électricité, Gif sur Yvette, France
Get access

Summary

In this chapter, we further study the spectra of the important random matrix models for wireless communications that are the sample covariance matrix and the information plus noise models. It has already been shown in Chapter 3 that, as the e.s.d. of the population covariance matrix (or of the information matrix) converges, the e.s.d. of the sample covariance matrix (or the information plus noise matrix) converges almost surely. The limiting d.f. can then be fully characterized as a function of the l.s.d. of the population covariance matrix (or of the information matrix). It is however not convenient to invert the problem and to describe the l.s.d. of the population covariance matrix (or of the information matrix) as a function of the l.s.d. of the observed matrices. The answer to this inverse problem is provided in Chapter 8, which however requires some effort to be fully accessible. The development of the tools necessary for the statistical eigen-inference methods of Chapter 8 is one of the motivations of the current chapter.

The starting motivation, initiated by the work of Silverstein and Choi [Silverstein and Choi, 1995], which resulted in the important Theorem 7.4 (accompanied later by an important corollary, due to Mestre [Mestre, 2008a], Theorem 7.5), was to characterize the l.s.d. of the sample covariance matrix in closed-form. Remember that, up to this point, we can only characterize the l.s.d. F of a sample covariance matrix through the expression of its Stieltjes transform, as the unique solution mF(z) of some fixed-point equation for all z ∈ ℂ\ℝ+.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×