References[1] Akopian, N., Lindner, N. H., Poem, E. et al. 2006. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett., 96(13), 130501.
[2] Aspect, A., Grangier, P. and Roger, G. 1982. Experimental realization of Einstein Podolsky Rosen Bohm Gedankenexperiment: a new violation of Bell's inequalities. Phys. Rev. Lett., 49(2), 91–94.
[3] Bayer, M., Ortner, G., Stern, O. et al. 2002. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev.B, 65(19), 195315.
[4] Bennett, A. J., Patel, R. B., Skiba-Syzmanska, J. et al. 2010a. Giant Stark shift in the emission of single semiconductor quantum dots. Phys. Rev.B., 97, 031104.
[5] Bennett, S. D., Cockins, L., Miyahara, Y., Grütter, P., and Clerk, A. A. 2010b. Strong electromechanical coupling of an atomic force microscope cantilever to a quantum dot. Phys. Rev. Lett., 104(1), 2–5.
[6] Benson, O., Santori, C., Pelton, M. and Yamamoto, Y. 2000. Regulated and entangled photons from a s ingle quantum dot. Phys. Rev. Lett., 84(11), 2513–6.
[7] Braun, P. -F., Marie, X., Lombez, L. et al. 2005. Direct observation of the electron spin relaxation induced by nuclei in quantum dots. Phys. Rev. Lett., 94(11), 116601.
[8] Briegel, H.-J., Dür, W., Cirac, J. I. and Zoller, P. 1998. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett., 81(26), 5932–5935.
[9] Claudon, J., Bleuse, J., Malik, N. S. et al. 2010. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photonics, 4, 174.
[10] de la Giroday, A. B., Bennett, A. J., Pooley, M. A. et al. 2010. All-electrical coherent control of the exciton states in a single quantum dot. Phys. Rev.B., 82, 241301.
[11] Dousse, A., Suffczyski, J., Krebs, O. et al. 2010a. A quantum dot based bright source of entangled photon pairs operating at 53 K. Appl. Phys. Lett., 97(8), 081104.
[12] Dousse, A., Suffczynski, J., Beveratos, A. et al. 2010b. Ultrabright source of entangled photon pairs. Nature, 466, 217–220.
[13] Edamatsu, K., Oohata, G., Shimizu, R., and Itoh, T. 2004. Generation of ultraviolet entangled photons in a semiconductor. Nature, 431, 167–170.
[14] Ekert, A. K. 1991. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett., 67(6), 661–663.
[15] Ellis, D. J. P., Stevenson, R. M., Young, R. J. et al. 2007. Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing. Appl. Phys. Lett., 90(1), 011907.
[16] Fattal, D., Inoue, K., Vučković, , et al. 2004. Entanglement formation and violation of bell's inequality with a semiconductor single photon source. Phys. Rev. Lett., 92(3), 037903.
[17] Finley, J. J., Sabathil, M., Vogl, P. et al. 2004. Quantum-confined Stark shifts of charged exciton complexes in quantum dots. Phys. Rev.B, 70(20), 201308.
[18] Gammon, D., Efros, A. L., Kennedy, T. et al. 2001. Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett., 86(22), 5176–5179.
[19] Gerardot, B. D., Seidl, S., Dalgarno, P. A. et al. 2007a. Contrast in transmission spectroscopy of a single quantum dot. Appl. Phys. Lett., 90(22), 221106.
[20] Gerardot, B. D., Seidl, S., Dalgarno, P. A. et al. 2007b. Manipulating exciton fine structure in quantum dots with a lateral electric field. Appl. Rev. Lett., 90, 041101.
[21] Hafenbrak, R., Ulrich, S. M., Michler, P. et al. 2007. Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K. New J. Phys., 9(9), 315.
[22] Hudson, A. J., Stevenson, R. M., Bennett, A. J. et al. 2007. Coherence of an entangled exciton–photon state. Phys. Rev. Lett., 99, 266802.
[23] Imamoglu, A. 2003. Are quantum dots useful for quantum computation?Physica E: Low-dimensional Systems and Nanostructures, 16(1), 47–50.
[24] Jacobs, B. C., Pittman, T. B. and Franson, J. D. 2002. Quantum relays and noise suppression using linear optics. Phys. Rev.A, 66(5), 052307.
[25] Jundt, G., Robledo, L., Högele, A.Fält, S. and Imamoǧlu, A. 2008. Observation of dressed excitonic states in a single quantum dot. Phys. Rev. Lett., 100(17), 177401.
[26] Khaetskii, A. V., Loss, D. and Glazman, L. 2002. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett., 88(18), 186 802–186 806.
[27] Kiess, T. E.Shih, Y. H., Sergienko, A. V. and Alley, C. O. 1993. Einstein–Podolsky–Rosen–Bohm experiment using pairs of light quanta produced by type-II parametric down-conversion. Phys. Rev. Lett., 71(24), 3893–3897.
[28] Knill, E., Lafiamme, R. and Milburn, G. J. 2001. A scheme for efficient quantum computation with linear optics. Nature, 409, 46–52.
[29] Koppens, F. H. L. 2005. Control and detection of singlet–triplet mixing in a random nuclear field. Science, 309, 1346–1350.
[30] Kowalik, K., Krebs, O., Lemaitre, A. et al. 2005. Infiuence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots. Appl. Phys. Lett., 86(4), 041907.
[31] Kowalik, K., Krebs, O., Senellart, P. et al. 2006. Stark spectroscopy of coulomb interactions in individual InAs.GaAs self-assembled quantum dots. Phys. Stat. Sol. (c)., 3, 3980–3984.
[32] Kowalik, K., Krebs, O., Lemaitre, A. et al. 2007. Monitoring the electrically driven cancellation of exciton fine structure in a semiconductor quantum dot by optical orientation. Appl. Rev. Lett., 91, 183104.
[33] Lai, C. W., Maletinsky, P., Badolato, A. and Imamoǧlu, A. 2006. Knight-field-enabled nuclear spin polarization in single quantum dots. Phys. Rev. Lett., 96(16), 167 403–167 407.
[34] Maletinsky, P. and Imamoǧlu, A. 2009. Single Semiconductor Quantum Dots. Springer. Chap. 5, pages 145–184.
[35] Marcet, S., Ohtani, K. and Ohno, H. 2010. Vertical electric field tuning of the exciton fine structure splitting and photon correlation measurements of GaAs quantum dot. Appl. Phys. Lett., 96, 101117.
[36] Merkulov, I. A. 2002. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev.B, 65(20), 205309.
[37] Michler, P., Kiraz, A., Becher, C. et al. 2000a. A quantum dot single-photon turnstile device. Science, 290(5500), 2282–2285.
[38] Michler, P., Kiraz, A., Becher, C. et al. 2000b. A quantum dot single-photon turnstile device. Science, 290, 2282.
[39] Mohan, A., Felici, M., Gallo, P. et al. 2010. Polarization-entangled photons produced with high-symmetry s ite-controlled quantum dots. Nature Photon., 4, 302–306.
[40] Muller, A., Fang, W., Lawall, J. and Solomon, G. S. 2009. Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect. Phys. Rev. Lett., 103(21), 217402.
[41] Pan, J.-W., Bouwmeester, D., Weinfurter, H. and Zeilinger, A. 1998. Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett., 80(18), 3891–3894.
[42] Petta, J. R., Johnson, A. C., Taylor, J. M. et al. 2005. Coherent manipulation of coupled electron s pins in semiconductor quantum dots. Science, 309(5744), 2180–2184.
[43] Press, D., Greve, K. De, McMahon, P. L. et al. 2010. Ultrafast optical spin echo in a single quantum dot. Nature Photon., 4, 367.
[44] Salter, C. L., Stevenson, R. M., Farrer, I. et al. 2010. An entangled-light-emitting diode. Nature, 465, 594–597.
[45] Santori, C., Fattal, D., Vucković, J., Solomon, G. S. and Yamamoto, Y. 2002. Indistinguishable photons from a single-photon device. Nature, 419(6907), 594–597.
[46] Seidl, S., Kroner, M., Hogele, A. et al. 2006. Effect of uniaxial stress on excitons in a self-assembled quantum dot. Appl. Rev. Lett., 88, 203113.
[47] Shih, Y. H. and Alley, C. O. 1988. New type of Einstein–Podolsky–Rosen–Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett., 61(26), 2921–2924.
[48] Singh, R. and Bester, G. 2010. Lower bound for the excitonic fine structure splitting in self assembled quantum dots. Phys. Rev. Lett., 104, 196803.
[49] Stevenson, R., Young, R., See, P. et al. 2006a. Magnetic-field-induced reduction of the exciton polarization splitting in InAs quantum dots. Phys. Rev.B, 73(3), 1–4.
[50] Stevenson, R., Young, R. P., Gevaux, D. et al. 2006b. Magnetic-field-induced reduction of the exciton polarization splitting in InAs quantum dots. Phys. Rev.B, 73(3), 1–4.
[51] Stevenson, R., Hudson, A., Bennett, A. et al. 2008. Evolution of entanglement between distinguishable light states. Phys. Rev. Lett., 101(17), 1–4.
[52] Stevenson, R. M., Salter, C. L., de la Giroday, A. et al. 2011. Coherent entangled light generated by quantum dots in the presence of nuclear magnetic fields. arXiv:1103.2969v1 [quant-ph].
[53] Stevenson, R. M., Thompson, R. M., Shields, A. J. et al. 2002. Quantum dots as a photon source for passive quantum key encoding. Phys. Rev.B, 66(8), 081302.
[54] Stevenson, R. M., Young, R. J., See, P. et al. 2004. Time-resolved studies of single quantum dots in magnetic fields. Physica E, 21, 381–384.
[55] Ulrich, S. M., Strauf, S., Michler, P., Bacher, G. and Forchel, A. 2003. Triggered polarization-correlated photon pairs from a single CdSe quantum dot. Appl. Phys. Lett., 83(9), 1848.
[56] Vogel, M. M., Ulrich, S. M., Hafenbrak, R. et al. 2007. Infiuence of lateral electric fields on multiexcitonic transitions and fine structure of single quantum dots. Appl. Rev. Lett., 91, 051904.
[57] Young, R. J., Stevenson, R. M., Shields, A. J. et al. 2005. Inversion of exciton level splitting in quantum dots. Phys. Rev.B, 72, 113305.
[58] Young, R. J., Stevenson, R. M., Hudson, A. J. et al. 2009. Bell-inequality violation with a triggered photon-pairs ource. Phys. Rev. Lett., 102, 030406.
[59] Yuan, Z., Kardynal, B. E., Stevenson, R. M. et al. 2002. Electrically driven single-photon source. Science, 295, 102.
[60] Żukowski, M., Zeilinger, A.Horne, M. A. and Ekert, A. K. 1993. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett., 71(26), 4287–4290.