Skip to main content Accessibility help
  • Print publication year: 2012
  • Online publication date: August 2012

18 - Electrically operated entangled light sources based on quantum dots

from Part VI - Single dots for future telecommunications applications



Quantum information technology promises to offer incredible advantages over current digital systems, allowing intractable problems in science and engineering to be tackled almost instantaneously through quantum computing, and unconditionally secure communication over long distances using quantum key distribution. Many schemes have been developed to implement quantum computing, including using linear optics [28]. The linear optical approach has proved popular due to the limited decoherence of photons with the environment, and accessibility of the components required for simple experiments. At the heart of an optical quantum computer, or extended range quantum key distribution using quantum relays or repeaters [14, 8, 24], lie entangled photons. The characteristics of the sources that create entangled photons, and their properties, are therefore central to realizing the full potential of such applications.

Quantum dots are one technology with which entangled light sources can be built [6]. Although first realised only relatively recently [49], they in principle offer key fundamental and practical advantages over other entangled photon sources. In the fundamental sense, quantum dots can be triggered, so that no more than one entangled photon pair is emitted at a time. This is in stark contrast to Poissonian entangled light sources [47, 27, 13], including the most widely used parametric down-conversion, where zero or multiple photon-pairs are usually emitted due to their probabilistic nature. Furthermore quantum dots have the potential to operate with high efficiency, with current experiments reporting up to 72% collection efficiency for the first and second photon [9, 12].

[1] Akopian, N., Lindner, N. H., Poem, E. et al. 2006. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett., 96(13), 130501.
[2] Aspect, A., Grangier, P. and Roger, G. 1982. Experimental realization of Einstein Podolsky Rosen Bohm Gedankenexperiment: a new violation of Bell's inequalities. Phys. Rev. Lett., 49(2), 91–94.
[3] Bayer, M., Ortner, G., Stern, O. et al. 2002. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev.B, 65(19), 195315.
[4] Bennett, A. J., Patel, R. B., Skiba-Syzmanska, J. et al. 2010a. Giant Stark shift in the emission of single semiconductor quantum dots. Phys. Rev.B., 97, 031104.
[5] Bennett, S. D., Cockins, L., Miyahara, Y., Grütter, P., and Clerk, A. A. 2010b. Strong electromechanical coupling of an atomic force microscope cantilever to a quantum dot. Phys. Rev. Lett., 104(1), 2–5.
[6] Benson, O., Santori, C., Pelton, M. and Yamamoto, Y. 2000. Regulated and entangled photons from a s ingle quantum dot. Phys. Rev. Lett., 84(11), 2513–6.
[7] Braun, P. -F., Marie, X., Lombez, L. et al. 2005. Direct observation of the electron spin relaxation induced by nuclei in quantum dots. Phys. Rev. Lett., 94(11), 116601.
[8] Briegel, H.-J., Dür, W., Cirac, J. I. and Zoller, P. 1998. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett., 81(26), 5932–5935.
[9] Claudon, J., Bleuse, J., Malik, N. S. et al. 2010. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photonics, 4, 174.
[10] de la Giroday, A. B., Bennett, A. J., Pooley, M. A. et al. 2010. All-electrical coherent control of the exciton states in a single quantum dot. Phys. Rev.B., 82, 241301.
[11] Dousse, A., Suffczyski, J., Krebs, O. et al. 2010a. A quantum dot based bright source of entangled photon pairs operating at 53 K. Appl. Phys. Lett., 97(8), 081104.
[12] Dousse, A., Suffczynski, J., Beveratos, A. et al. 2010b. Ultrabright source of entangled photon pairs. Nature, 466, 217–220.
[13] Edamatsu, K., Oohata, G., Shimizu, R., and Itoh, T. 2004. Generation of ultraviolet entangled photons in a semiconductor. Nature, 431, 167–170.
[14] Ekert, A. K. 1991. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett., 67(6), 661–663.
[15] Ellis, D. J. P., Stevenson, R. M., Young, R. J. et al. 2007. Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing. Appl. Phys. Lett., 90(1), 011907.
[16] Fattal, D., Inoue, K., Vučković, , et al. 2004. Entanglement formation and violation of bell's inequality with a semiconductor single photon source. Phys. Rev. Lett., 92(3), 037903.
[17] Finley, J. J., Sabathil, M., Vogl, P. et al. 2004. Quantum-confined Stark shifts of charged exciton complexes in quantum dots. Phys. Rev.B, 70(20), 201308.
[18] Gammon, D., Efros, A. L., Kennedy, T. et al. 2001. Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett., 86(22), 5176–5179.
[19] Gerardot, B. D., Seidl, S., Dalgarno, P. A. et al. 2007a. Contrast in transmission spectroscopy of a single quantum dot. Appl. Phys. Lett., 90(22), 221106.
[20] Gerardot, B. D., Seidl, S., Dalgarno, P. A. et al. 2007b. Manipulating exciton fine structure in quantum dots with a lateral electric field. Appl. Rev. Lett., 90, 041101.
[21] Hafenbrak, R., Ulrich, S. M., Michler, P. et al. 2007. Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K. New J. Phys., 9(9), 315.
[22] Hudson, A. J., Stevenson, R. M., Bennett, A. J. et al. 2007. Coherence of an entangled exciton–photon state. Phys. Rev. Lett., 99, 266802.
[23] Imamoglu, A. 2003. Are quantum dots useful for quantum computation?Physica E: Low-dimensional Systems and Nanostructures, 16(1), 47–50.
[24] Jacobs, B. C., Pittman, T. B. and Franson, J. D. 2002. Quantum relays and noise suppression using linear optics. Phys. Rev.A, 66(5), 052307.
[25] Jundt, G., Robledo, L., Högele, A.Fält, S. and Imamoǧlu, A. 2008. Observation of dressed excitonic states in a single quantum dot. Phys. Rev. Lett., 100(17), 177401.
[26] Khaetskii, A. V., Loss, D. and Glazman, L. 2002. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett., 88(18), 186 802–186 806.
[27] Kiess, T. E.Shih, Y. H., Sergienko, A. V. and Alley, C. O. 1993. Einstein–Podolsky–Rosen–Bohm experiment using pairs of light quanta produced by type-II parametric down-conversion. Phys. Rev. Lett., 71(24), 3893–3897.
[28] Knill, E., Lafiamme, R. and Milburn, G. J. 2001. A scheme for efficient quantum computation with linear optics. Nature, 409, 46–52.
[29] Koppens, F. H. L. 2005. Control and detection of singlet–triplet mixing in a random nuclear field. Science, 309, 1346–1350.
[30] Kowalik, K., Krebs, O., Lemaitre, A. et al. 2005. Infiuence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots. Appl. Phys. Lett., 86(4), 041907.
[31] Kowalik, K., Krebs, O., Senellart, P. et al. 2006. Stark spectroscopy of coulomb interactions in individual InAs.GaAs self-assembled quantum dots. Phys. Stat. Sol. (c)., 3, 3980–3984.
[32] Kowalik, K., Krebs, O., Lemaitre, A. et al. 2007. Monitoring the electrically driven cancellation of exciton fine structure in a semiconductor quantum dot by optical orientation. Appl. Rev. Lett., 91, 183104.
[33] Lai, C. W., Maletinsky, P., Badolato, A. and Imamoǧlu, A. 2006. Knight-field-enabled nuclear spin polarization in single quantum dots. Phys. Rev. Lett., 96(16), 167 403–167 407.
[34] Maletinsky, P. and Imamoǧlu, A. 2009. Single Semiconductor Quantum Dots. Springer. Chap. 5, pages 145–184.
[35] Marcet, S., Ohtani, K. and Ohno, H. 2010. Vertical electric field tuning of the exciton fine structure splitting and photon correlation measurements of GaAs quantum dot. Appl. Phys. Lett., 96, 101117.
[36] Merkulov, I. A. 2002. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev.B, 65(20), 205309.
[37] Michler, P., Kiraz, A., Becher, C. et al. 2000a. A quantum dot single-photon turnstile device. Science, 290(5500), 2282–2285.
[38] Michler, P., Kiraz, A., Becher, C. et al. 2000b. A quantum dot single-photon turnstile device. Science, 290, 2282.
[39] Mohan, A., Felici, M., Gallo, P. et al. 2010. Polarization-entangled photons produced with high-symmetry s ite-controlled quantum dots. Nature Photon., 4, 302–306.
[40] Muller, A., Fang, W., Lawall, J. and Solomon, G. S. 2009. Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect. Phys. Rev. Lett., 103(21), 217402.
[41] Pan, J.-W., Bouwmeester, D., Weinfurter, H. and Zeilinger, A. 1998. Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett., 80(18), 3891–3894.
[42] Petta, J. R., Johnson, A. C., Taylor, J. M. et al. 2005. Coherent manipulation of coupled electron s pins in semiconductor quantum dots. Science, 309(5744), 2180–2184.
[43] Press, D., Greve, K. De, McMahon, P. L. et al. 2010. Ultrafast optical spin echo in a single quantum dot. Nature Photon., 4, 367.
[44] Salter, C. L., Stevenson, R. M., Farrer, I. et al. 2010. An entangled-light-emitting diode. Nature, 465, 594–597.
[45] Santori, C., Fattal, D., Vucković, J., Solomon, G. S. and Yamamoto, Y. 2002. Indistinguishable photons from a single-photon device. Nature, 419(6907), 594–597.
[46] Seidl, S., Kroner, M., Hogele, A. et al. 2006. Effect of uniaxial stress on excitons in a self-assembled quantum dot. Appl. Rev. Lett., 88, 203113.
[47] Shih, Y. H. and Alley, C. O. 1988. New type of Einstein–Podolsky–Rosen–Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett., 61(26), 2921–2924.
[48] Singh, R. and Bester, G. 2010. Lower bound for the excitonic fine structure splitting in self assembled quantum dots. Phys. Rev. Lett., 104, 196803.
[49] Stevenson, R., Young, R., See, P. et al. 2006a. Magnetic-field-induced reduction of the exciton polarization splitting in InAs quantum dots. Phys. Rev.B, 73(3), 1–4.
[50] Stevenson, R., Young, R. P., Gevaux, D. et al. 2006b. Magnetic-field-induced reduction of the exciton polarization splitting in InAs quantum dots. Phys. Rev.B, 73(3), 1–4.
[51] Stevenson, R., Hudson, A., Bennett, A. et al. 2008. Evolution of entanglement between distinguishable light states. Phys. Rev. Lett., 101(17), 1–4.
[52] Stevenson, R. M., Salter, C. L., de la Giroday, A. et al. 2011. Coherent entangled light generated by quantum dots in the presence of nuclear magnetic fields. arXiv:1103.2969v1 [quant-ph].
[53] Stevenson, R. M., Thompson, R. M., Shields, A. J. et al. 2002. Quantum dots as a photon source for passive quantum key encoding. Phys. Rev.B, 66(8), 081302.
[54] Stevenson, R. M., Young, R. J., See, P. et al. 2004. Time-resolved studies of single quantum dots in magnetic fields. Physica E, 21, 381–384.
[55] Ulrich, S. M., Strauf, S., Michler, P., Bacher, G. and Forchel, A. 2003. Triggered polarization-correlated photon pairs from a single CdSe quantum dot. Appl. Phys. Lett., 83(9), 1848.
[56] Vogel, M. M., Ulrich, S. M., Hafenbrak, R. et al. 2007. Infiuence of lateral electric fields on multiexcitonic transitions and fine structure of single quantum dots. Appl. Rev. Lett., 91, 051904.
[57] Young, R. J., Stevenson, R. M., Shields, A. J. et al. 2005. Inversion of exciton level splitting in quantum dots. Phys. Rev.B, 72, 113305.
[58] Young, R. J., Stevenson, R. M., Hudson, A. J. et al. 2009. Bell-inequality violation with a triggered photon-pairs ource. Phys. Rev. Lett., 102, 030406.
[59] Yuan, Z., Kardynal, B. E., Stevenson, R. M. et al. 2002. Electrically driven single-photon source. Science, 295, 102.
[60] Żukowski, M., Zeilinger, A.Horne, M. A. and Ekert, A. K. 1993. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett., 71(26), 4287–4290.