Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T22:19:19.257Z Has data issue: false hasContentIssue false

Chapter 2 - Composition and structure of prokaryotic cells

Published online by Cambridge University Press:  04 May 2019

Byung Hong Kim
Affiliation:
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Beinert, H. (2000). A tribute to sulfur. European Journal of Biochemistry 267, 56575664.CrossRefGoogle ScholarPubMed
Dosanjh, N. S. & Michel, S. L. J. (2006). Microbial nickel metalloregulation: NikRs for nickel ions. Current Opinion in Chemical Biology 10, 123130.CrossRefGoogle ScholarPubMed
Hille, R. (2002). Molybdenum and tungsten in biology. Trends in Biochemical Sciences 27, 360367.CrossRefGoogle ScholarPubMed
Jakubovics, N. S. & Jenkinson, H. F. (2001). Out of the Iron Age: new insights into the critical role of manganese homeostasis in bacteria. Microbiology 147, 17091718.CrossRefGoogle ScholarPubMed
Kobayashi, M. & Shimizu, S. (1999). Cobalt proteins. European Journal of Biochemistry 261, 19.CrossRefGoogle ScholarPubMed
Lane, T. W., Saito, M. A., George, G. N., Pickering, I. J., Prince, R. C. & Morel, F. M. M. (2005). A cadmium enzyme from a marine diatom. Nature 435, 42.CrossRefGoogle ScholarPubMed
Pol, A., Barends, T. R. M., Dietl, A., Khadem, A. F., Eygensteyn, J., Jetten, M. S. M. & Op den Camp, H. J. M. (2014). Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environmental Microbiology 16, 255264.CrossRefGoogle ScholarPubMed
Stadtman, T. C. (2002). Discoveries of vitamin B12 and selenium enzymes. Annual Review of Biochemistry 71, 116.CrossRefGoogle ScholarPubMed
Wolfe-Simon, F., Blum, J. S., Kulp, T. R., Gordon, G. W., Hoeft, S. E., Pett-Ridge, J., Stolz, J. F., Webb, S. M., Weber, P. K., Davies, P. C. W., Anbar, A. D. & Oremland, R. S. (2011). A bacterium that can grow by using arsenic instead of phosphorus. Science 332, 11631166.CrossRefGoogle ScholarPubMed

Secondary Sources

Albers, S.-V. & Jarrell, K. F. (2015). The archaellum: how archaea swim. Frontiers in Microbiology 6, 23.CrossRefGoogle ScholarPubMed
Beatson, S. A., Minamino, T. & Pallen, M. J. (2006). Variation in bacterial flagellins: from sequence to structure. Trends in Microbiology 14, 151155.CrossRefGoogle ScholarPubMed
Gorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A., Beveridge, T. J., Chang, I. S., Kim, B. H., Kim, K. S., Culley, D. E., Reed, S. B., Romine, M. F., Saffarini, D. A., Hill, E. A., Shi, L., Elias, D. A., Kennedy, D. W., Pinchuk, G., Watanabe, K., Logan, B., Nealson, K. H. & Fredrickson, J. K. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the USA 103, 1135811363.CrossRefGoogle ScholarPubMed
Persat, A., Inclan, Y. F., Engel, J. N., Stone, H. A. & Gitai, Z. (2015). Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the USA 112, 75637568.CrossRefGoogle ScholarPubMed
Pfeffer, C., Larsen, S., Song, J., Dong, M., Besenbacher, F., Meyer, R. L., Kjeldsen, K. U., Schreiber, L., Gorby, Y. A., El-Naggar, M. Y., Leung, K. M., Schramm, A., Risgaard-Petersen, N. and Nielsen, L. P. (2012). Filamentous bacteria transport electrons over centimetre distances. Nature 491, 218221.CrossRefGoogle ScholarPubMed
Scott, J. R. & Zahner, D. (2006). Pili with strong attachments: Gram-positive bacteria do it differently. Molecular Microbiology 62, 320330.CrossRefGoogle Scholar
Ahn, J. S., Chandramohan, L., Liou, L. E. & Bayles, K. W. (2006). Characterization of CidR-mediated regulation in Bacillus anthracis reveals a previously undetected role of S-layer proteins as murein hydrolases. Molecular Microbiology 62, 11581169.CrossRefGoogle ScholarPubMed
Albers, S.-V. & Meyer, B. H. (2011). The archaeal cell envelope. Nature Reviews Microbiology 9, 414426.CrossRefGoogle ScholarPubMed
Bush, C. A., Yang, J., Yu, B. & Cisar, J. O. (2014). Chemical structures of Streptococcus pneumoniae capsular polysaccharide type 39 (CPS39), CPS47F, and CPS34 characterized by nuclear magnetic resonance spectroscopy and their relation to CPS10A. Journal of Bacteriology 196, 32713278.CrossRefGoogle ScholarPubMed
Johnson, B., Selle, K., O’Flaherty, S., Goh, Y. J. & Klaenhammer, T. (2013). Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM. Microbiology 159, 22692282.CrossRefGoogle ScholarPubMed
Park, S., Kelley, K. A., Vinogradov, E., Solinga, R., Weidenmaier, C., Misawa, Y. & Lee, J. C. (2010). Characterization of the structure and biological functions of a capsular polysaccharide produced by Staphylococcus saprophyticus. Journal of Bacteriology 192, 46184626.CrossRefGoogle ScholarPubMed
Pohlschroder, M. & Albers, S.-V. (2016). Archaeal cell envelope and surface structures. Frontiers in Microbiology 6, 1515.CrossRefGoogle ScholarPubMed
Rothfuss, H., Lara, J. C., Schmid, A. K. & Lidstrom, M. E. (2006). Involvement of the S-layer proteins Hpi and SlpA in the maintenance of cell envelope integrity in Deinococcus radiodurans R1. Microbiology 152, 27792787.CrossRefGoogle ScholarPubMed
Biller, S. J., Schubotz, F., Roggensack, S. E., Thompson, A. W., Summons, R. E. & Chisholm, S. W. (2014). Bacterial vesicles in marine ecosystems. Science 343, 183186.CrossRefGoogle ScholarPubMed
Bishop, R. E. (2014). Emerging roles for anionic non-bilayer phospholipids in fortifying the outer membrane permeability barrier. Journal of Bacteriology 196, 32093213.CrossRefGoogle ScholarPubMed
Burghardt, T., Nather, D. J., Junglas, B., Huber, H. & Rachel, R. (2007). The dominating outer membrane protein of the hyperthermophilic Archaeum Ignicoccus hospitalis: a novel pore-forming complex. Molecular Microbiology 63, 166176.CrossRefGoogle ScholarPubMed
Koebnik, R., Locher, K. P. & Van Gelder, P. (2000). Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Molecular Microbiology 37, 239253.CrossRefGoogle Scholar
Küper, U., Meyer, C., Müller, V., Rachel, R. & Huber, H. (2010). Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic Archaeon Ignicoccus hospitalis. Proceedings of the National Academy of Sciences of the USA 107, 31523156.CrossRefGoogle ScholarPubMed
Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews 67, 593656.CrossRefGoogle ScholarPubMed
Schulz, G. E. (2002). The structure of bacterial outer membrane proteins. Biochimica et Biophysica Acta 1565, 308317.CrossRefGoogle ScholarPubMed
Brown, S., Santa Maria, J. P. & Walker, S. (2013). Wall teichoic acids of Gram-positive bacteria. Annual Review of Microbiology 67, 313336.CrossRefGoogle ScholarPubMed
Cabeen, M. T. & Jacobs-Wagner, C. (2005). Bacterial cell shape. Nature Reviews Microbiology 3, 601610.CrossRefGoogle ScholarPubMed
Henrichfreise, B., Schiefer, A., Schneider, T., Nzukou, E., Poellinger, C., Hoffmann, T.-J., Johnston, K. L., Moelleken, K., Wiedemann, I., Pfarr, K., Hoerauf, A. & Sahl, H. G. (2009). Functional conservation of the lipid II biosynthesis pathway in the cell wall-less bacteria Chlamydia and Wolbachia: why is lipid II needed? Molecular Microbiology 73, 913923.CrossRefGoogle ScholarPubMed
Patin, D., Bostock, J., Chopra, I., Mengin-Lecreulx, D. & Blanot, D. (2012). Biochemical characterisation of the chlamydial MurF ligase, and possible sequence of the chlamydial peptidoglycan pentapeptide stem. Archives of Microbiology 194, 505512.CrossRefGoogle ScholarPubMed
Schneewind, O. & Missiakas, D. (2014). Lipoteichoic acids, phosphate-containing polymers in the envelope of Gram-positive bacteria. Journal of Bacteriology 196, 11331142.CrossRefGoogle ScholarPubMed
Turner, R. D., Vollmer, W. & Foster, S. J. (2014). Different walls for rods and balls: the diversity of peptidoglycan. Molecular Microbiology 91, 862874.CrossRefGoogle ScholarPubMed
Wanner, S., Schade, J., Keinhörster, D., Weller, N., George, S. E., Kull, L., Bauer, J., Grau, T., Winstel, V., Stoy, H., Kretschmer, D., Kolata, J., Wolz, C., Bröker, B. M. & Weidenmaier, C. (2017). Wall teichoic acids mediate increased virulence in Staphylococcus aureus. Nature Microbiology 2, 16257.CrossRefGoogle ScholarPubMed
Bohin, J. P. (2000). Osmoregulated periplasmic glucans in Proteobacteria. FEMS Microbiology Letters 186, 1119.CrossRefGoogle ScholarPubMed
Flores, E., Herrero, A., Wolk, C. P. & Maldener, I. (2006). Is the periplasm continuous in filamentous multicellular cyanobacteria? Trends in Microbiology 14, 439443.CrossRefGoogle ScholarPubMed
Matias, V. R. F. and Beveridge, T. J. (2008). Lipoteichoic acid is a major component of the Bacillus subtilis periplasm. Journal of Bacteriology 190, 74147418.CrossRefGoogle Scholar
Bernstein, H. D. (2000). The biogenesis and assembly of bacterial membrane proteins. Current Opinion in Microbiology 3, 203209.CrossRefGoogle ScholarPubMed
Boyd, E., Hamilton, T., Wang, J., He, L. & Zhang, C. (2013). The role of tetraether lipid composition in the adaptation of thermophilic archaea to acidity. Frontiers in Microbiology 4:00063.CrossRefGoogle ScholarPubMed
Cavicchioli, R. (2011). Archaea – timeline of the third domain. Nature Reviews Microbiology 9, 5161.CrossRefGoogle ScholarPubMed
Cronan, J. E. (2006). A bacterium that has three pathways to regulate membrane lipid fluidity. Molecular Microbiology 60, 256259.CrossRefGoogle ScholarPubMed
Engelman, D. M. (2005). Membranes are more mosaic than fluid. Nature 438, 578580.CrossRefGoogle ScholarPubMed
Gumbart, J., Wang, Y., Aksimentiev, A., Tajkhorshid, E. & Schulten, K. (2005). Molecular dynamics simulations of proteins in lipid bilayers. Current Opinion in Structural Biology 15, 423431.CrossRefGoogle ScholarPubMed
Kung, C. & Blount, P. (2004). Channels in microbes: so many holes to fill. Molecular Microbiology 53, 373380.CrossRefGoogle ScholarPubMed
Mansilla, M. C., Cybulski, L. E., Albanesi, D. & de Mendoza, D. (2004). Control of membrane lipid fluidity by molecular thermosensors. Journal of Bacteriology 186, 66816688.CrossRefGoogle ScholarPubMed
Schmerk, C. L., Bernards, M. A. & Valvano, M. A. (2011). Hopanoid production is required for low-pH tolerance, antimicrobial resistance, and motility in Burkholderia cenocepacia. Journal of Bacteriology 193, 67126723.CrossRefGoogle ScholarPubMed
Borrero-de Acuña, J. M., Rohde, M., Wissing, J., Jänsch, L., Schobert, M., Molinari, G., Timmis, K. N., Jahn, M. & Jahn, D. (2016). Protein network of the Pseudomonas aeruginosa denitrification apparatus. Journal of Bacteriology 198, 14011413.CrossRefGoogle ScholarPubMed
Bowman, G. R., Lyuksyutova, A. I. & Shapiro, L. (2011). Bacterial polarity. Current Opinion in Cell Biology 23, 7177.CrossRefGoogle ScholarPubMed
Cabeen, M. T. & Jacobs-Wagner, C. (2010). The bacterial cytoskeleton. Annual Review of Genetics 44, 365392.CrossRefGoogle ScholarPubMed
Mathews, C. K. (1993). The cell – bag of enzymes or network of channels? Journal of Bacteriology 175, 63776381.CrossRefGoogle ScholarPubMed
Matturro, B., Cruz Viggi, C., Aulenta, F. & Rossetti, S. (2017). Cable bacteria and the bioelectrochemical snorkel: the natural and engineered facets playing a role in hydrocarbons degradation in marine sediments. Frontiers in Microbiology 8, 952.CrossRefGoogle ScholarPubMed
Noirot, P. & Noirot-Gros, M. F. (2004). Protein interaction networks in bacteria. Current Opinion in Microbiology 7, 505512.CrossRefGoogle ScholarPubMed
Sleator, R. D. & Hill, C. (2002). Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiology Reviews 26, 4971.CrossRefGoogle ScholarPubMed
Spitzer, J. J. & Poolman, B. (2005). Electrochemical structure of the crowded cytoplasm. Trends in Biochemical Sciences 30, 536541.CrossRefGoogle ScholarPubMed
Chowdhury, C., Sinha, S., Chun, S., Yeates, T. O. & Bobik, T. A. (2014). Diverse bacterial microcompartment organelles. Microbiology and Molecular Biology Reviews 78, 438468.CrossRefGoogle ScholarPubMed
Cornejo, E., Abreu, N. & Komeili, A. (2014). Compartmentalization and organelle formation in bacteria. Current Opinion in Cell Biology 26, 132138.CrossRefGoogle ScholarPubMed
Kerfeld, C. A. and Erbilgin, O. (2015). Bacterial microcompartments and the modular construction of microbial metabolism. Trends in Microbiology 23, 2234.CrossRefGoogle ScholarPubMed
Kerfeld, C. A., Sawaya, M. R., Tanaka, S., Nguyen, C. V., Phillips, M., Beeby, M. & Yeates, T. O. (2005). Protein structures forming the shell of primitive bacterial organelles. Science 309, 936938.CrossRefGoogle ScholarPubMed
Lewis, P. J. (2004). Bacterial subcellular architecture: recent advances and future prospects. Molecular Microbiology 54, 11351150.CrossRefGoogle ScholarPubMed
Martin, T. (2011). Good things come in small packages: subcellular organization and development in bacteria. Current Opinion in Microbiology 14, 687690.Google Scholar
Niftrik, L. (2013). Cell biology of unique anammox bacteria that contain an energy conserving prokaryotic organelle. Antonie van Leeuwenhoek 104, 489497.CrossRefGoogle ScholarPubMed
SaierJr, M. H. & Bogdanov, M. V. (2013). Membranous organelles in bacteria. Journal of Molecular Microbiology and Biotechnology 23, 512.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×