Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T17:45:55.592Z Has data issue: false hasContentIssue false

1 - Prologue: how to produce forecasts

Published online by Cambridge University Press:  05 May 2015

Sebastian Reich
Affiliation:
Universität Potsdam, Germany
Colin Cotter
Affiliation:
Imperial College London
Get access

Summary

This chapter sets out a simplified mathematical framework that allows us to discuss the concept of forecasting and, more generally, prediction. Two key ingredients of prediction are: (i) we have a computational model which we use to simulate the future evolution of the physical process of interest given its current state; and (ii) we have some measurement procedure providing partially observed data on the current and past states of the system. These two ingredients include three different types of error which we need to take into account when making predictions: (i) precision errors in our knowledge of the current state of the physical system; (ii) differences between the evolution of the computational model and the physical system, known as model errors; and (iii) measurement errors in the data that must occur since all measurement procedures are imperfect. Precision and model errors will both lead to a growing divergence between the predicted state and the system state over time, which we attempt to correct with data which have been polluted with measurement errors. This leads to the key question of data assimilation: how can we best combine the data with the model to minimise the impact of these errors, and obtain predictions (and quantify errors in our predictions) of the past, present and future state of the system?

Physical processes and observations

In this book we shall introduce data assimilation algorithms, and we shall want to discuss and evaluate their accuracy and performance. We shall illustrate this by choosing examples where the physical dynamical system can be represented mathematically. This places us in a somewhat artificial situation where we must generate data from some mathematical model and then pretend that we have only observed part of it. However, this will allow us to assess the performance of data assimilation algorithms by comparing our forecasts with the “true evolution” of the system.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×