Skip to main content Accessibility help
Principles of Soilscape and Landscape Evolution
  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Principles of Soilscape and Landscape Evolution
    • Online ISBN: 9781139029339
    • Book DOI:
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to *
  • Buy the print book

Book description

Computational models are invaluable in understanding the complex effects of physical processes and environmental factors which interact to influence landform evolution of geologic time scales. This book provides a holistic guide to the construction of numerical models to explain the co-evolution of landforms, soil, vegetation and tectonics, and describes how the geomorphology observable today has been formed. It explains the science of the physical processes and the mechanics of how to solve them, providing a useful resource for graduates studying geomorphology and sedimentary and erosion processes. It also emphasises the methods for assessing the relative importance of different factors at field sites, enabling researchers to select the appropriate processes to model. Integrating a discussion of the fundamental processes with mathematical formulations, it guides the reader in understanding which processes are important and why; and creates a framework through which to study the interaction of soils, vegetation and landforms over time.


'This book was worth the wait! What started as a description of a pioneer modelling effort thirty years ago ended up as a comprehensive treatise on soil and landscape evolution enriched by the experience of Dr Willgoose. Hydrologists and geomorphologists interested in a quantitative understanding of what goes on the critical surface zone of the geosphere must read this book.'

Rafael L. Bras - Georgia Institute of Technology

'If it moves, model it! There is no better synthesis of all the various elements in landscapes and soil than this lifetime compilation in which Willgoose examines the many mechanisms operating in the landscape, at scales from continental tectonics down to the soil profile, demonstrating how he and others have built them into functional, mutually consistent and inter-connecting models. Its greatest strengths lie in the incorporation of soil processes - physical breakdown, mixing and weathering; and in how principles and models have been applied to the management of degrading spoil heaps.'

Mike Kirkby - University of Leeds

'An outstanding synthesis that thoroughly addresses both the theoretical basis and practical application of landscape evolution modelling - a benchmark of its kind.'

Stuart Lane - Université de Lausanne

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.


Abrahams, A. D. (1984), Channel networks: A geomorphological perspective, Water Resources Research, 20(2), 161168.
Abrahams, A. D., and Parsons, A. J. (1990), Determining the mean depth of overland flow in field studies of flow hydraulics, Water Resources Research, 26(3), 501503.
Abrahams, A. D., and Parsons, A. J. (1991a), Relation between sediment yield and gradient on debris covered hillslopes, Walnut Gulch, Arizona, Bulletin of the Geological Society of America, 103, 11091113.
Abrahams, A. D., and Parsons, A. J. (1991b), Resistance to overland flow on desert pavements and its implications for sediment transport modeling, Water Resources Research, 27(8), 18271836.
Abrahams, A. D., and Parsons, A. J. (1994), Hydraulics of interrill overland flow on stone-covered desert surfaces, Catena, 23(1–2), 111140.
Adams, W. A. (1973), The effect of organic matter on the bulk and true densities of some uncultivated Podzolic soils, European Journal of Soil Science, 24(1), 1017, doi:10.1111/j.1365-2389.1973.tb00737.x.
Ahad, T., Kanth, T. A., and Nabi, S. (2015), Soil bulk density as related to texture, organic matter content and porosity in Kandi soils of District Kupwara (Kashmir Valley), India, International Journal of Scientific Research, 4(1), 198200.
Ahnert, F. (1976), Brief description of a comprehensive three-dimensional process-response model for landform development, Zeitschrift für Geomorphologie N.F. Supplement, 25, 2949.
Ahnert, F. (1977), Some comments on the quantitative formulation of geomorphological process in a theoretical model, Earth Surface Processes, 2, 191201.
Ahr, S. W., Nordt, L. C., and Forman, S. L. (2013), Soil genesis, optical dating, and geoarchaeological evaluation of two upland Alfisol pedons within the Tertiary Gulf Coastal Plain, Geoderma, 192, 211226, doi:10.1016/j.geoderma.2012.08.016.
Albrecht, R. I., Goodman, S. J., Buechler, D. E., Blakeslee, R. J., and Christian, H. J. (2016), Where are the lightning hotspots on Earth?, Bulletin of the American Meteorological Society, 97(11), 20152068, doi:10.1175/BAMS-D-14-00193.1.
Alley, R. B. (2014), The two-mile time machine: Ice cores, abrupt climate change, and our future, Princeton University Press, Princeton, NJ.
Alpert, P. (1986), Mesoscale indexing of the distribution of orographic precipitation over high mountains, Journal of Climate and Applied Meteorology, 25(4), 532545, doi:10.1175/1520-0450(1986)025<0532:MIOTDO>2.0.CO;2.
Amundson, R. (1994), Towards the quantitative modeling of pedogenesis – A review – Comment – Functional vs mechanistic theories: The paradox of paradigms, Geoderma, 63(3–4), 299302.
Amundson, R. (2001), The carbon budget in soils, Annual Review of Earth and Planetary Sciences, 29, 535562, doi:10.1146/
Ancey, C. (2007), Plasticity and geophysical flows: A review, Journal of Non-Newtonian Fluid Mechanics, 142, 435, doi:10.1016/j.jnnfm.2006.05.005.
Anders, A. M., and Nesbitt, S. W. (2015), Altitudinal precipitation gradients in the tropics from Tropical Rainfall Measuring Mission (TRMM) precipitation radar, Journal of Hydrometeorology, 16(1), 441448, doi:10.1175/JHM-D-14-0178.1.
Anderson, R. S. (2002), Modeling the tor-dotted crests, bedrock edges, and parabolic profiles of high alpine surfaces of the Wind River Range, Wyoming, Geomorphology, 46, 3558.
Anderson, R. S. (2015), Particle trajectories on hillslopes: Implications for particle age and 10Be structure, Journal of Geophysical Research (Earth Surface), 120, 16261644, doi:10.1002/2015JF003479.
Anderson, R. S., and Anderson, S. P. (2010), Geomorphology: The mechanics and chemistry of landscapes, Cambridge University Press, Cambridge.
Anderson, S. P., Dietrich, W. E., and Brimhall, G. H. (2002), Weathering profiles, mass-balance analysis, and rates of solute loss: Linkages between weathering and erosion in a small, steep catchment, Geological Society of America Bulletin, 114(9), 11431158, doi:10.1130/0016-7606(2002)114<1143:WPMBAA>2.0.CO;2.
Andrews, D. J., and Bucknam, R. C. (1987), Fitting degradation of shoreline scarps by a nonlinear diffusion model, Journal of Geophysical Research (Solid Earth), 92(B12), 1285712867, doi:10.1029/JB092iB12p12857.
Angers, D. A., et al. (1997), Impact of tillage practices on organic carbon and nitrogen storage in cool, humid soils of eastern Canada, Soil and Tillage Research, 41(3–4), 191201, doi:10.1016/S0167-1987(96)01100-2.
Argus, D. F., and Peltier, W. R. (2010), Constraining models of postglacial rebound using space geodesy: A detailed assessment of model ICE-5G (VM2) and its relatives, Geophysical Journal International, 181(2), 697723, doi:10.1111/j.1365-246X.2010.04562.x.
Arshad, M. A., Franzluebbers, A. J., and Azooz, R. H. (1999), Components of surface soil structure under conventional and no-tillage in northwestern Canada, Soil Tillage Research, 53(1), 4147, doi:10.1016/S0167-1987(99)00075-6.
Asteriou, P., Saraglou, H., and Tsimbaos, G. (2012), Geotechnical and kinematic parameters affecting the coefficients of restitution for rock fall analysis, International Journal of Rock Mechanics & Mining Sciences, 54, 103113, doi:10.1016/j.ijrmms.2012.05.029.
Astete, C. E., Constant, W. D., Thibodeaux, L. J., Seals, R. K., and Delim, H. M. (2015), Bioturbation-driven particle transport in surface soil: The biodiffusion coefficient mobility parameter, Soil Science, 180(1), 29, doi:10.1097/SS.0000000000000109.
Avirmed, O., Burke, I. C., Mobley, M. L., Lauenroth, W. K., and Schlaepfer, D. R. (2014), Natural recovery of soil organic matter in 30–90-year-old abandoned oil and gas wells in sagebrush steppe, Ecosphere, 5(3), 113, doi:10.1890/ES13-00272.1.
Azooz, R. H., and Arshad, M. A. (1996), Soil infiltration and hydraulic conductivity under long-term no-tillage and conventional tillage systems, Canadian Journal of Soil Science, 76(2), 143152.
Baartman, J. E. M., Temme, A. J. A. M., Schoorl, J. M., Braakhekke, M. H., and Veldkamp, T. (2012), Did tillage erosion play a role in millennial scale landscape development?, Earth Surface Processes and Landforms, 37(15), 16151626, doi:10.1002/esp.3262.
Baartman, J. E. M., Temme, A. J. A. M., Veldkamp, T., Jetten, V. G., and Schoorl, J. M. (2013), Exploring the role of rainfall variability and extreme events in long-term landscape development, Catena, 109, 2538, doi:10.1016/j.catena.2013.05.003.
Bagnold, R. A. (1936), The movement of desert sand, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences , 157(892), 594620.
Bak, P., Tang, C., and Wiesenfeld, K. (1988), Scale invariant spatial and temporal fluctuations in complex systems, in Random fluctuations and pattern growth: Experiments and models, edited by Stanley, H. E. and Ostrowsky, N., pp. 329335, Kluwer, Berlin.
Baker, V. R. (2008), Planetary landscape systems: A limitless frontier, Earth Surface Processes and Landforms, 33, 13411353, doi:10.1002/esp.1713.
Baker, V. R. (2009), The Channeled Scabland: A retrospective, Annual Review of Earth and Planetary Sciences, 37, 393411, doi:10.1146/
Baldwin, J. A., Whipple, K. X., and Tucker, G. E. (2003), Implications of the shear stress river incision model for the timescale of postorogenic decay of topography, Journal of Geophysical Research (Solid Earth), 108(B3), art. no. 2158, doi:10.1029/2001JB000550.
Balmforth, N. J., Craster, R. V., Rust, A. C., and Sassi, R. (2007), Viscoplastic flow over an inclined surface, Journal of Non-Newtonian Fluid Mechanics, 142, 219243, doi:10.1016/j.jnnfm.2006.07.013.
Barman, A. K., Varadachari, C., and Ghosh, K. (1992), Weathering of silicate minerals by organic-acids. 1. Nature of cation solubilization, Geoderma, 53(1–2), 4563.
Barreto, L., Schoorl, J. M., Kok, K., Veldkamp, T., and Hass, A. (2013), Modelling potential landscape sediment delivery due to projected soybean expansion: A scenario study of the Balsas sub-basin, Cerrado, Maranhao state, Brazil, Journal of Environmental Management, 115, 270277, doi:10.1016/j.jenvman.2012.11.017.
Barshad, I. (1959), Factors affecting clay formation, Clays and Clay Minerals, 6, 110132.
Barzegar, A. R., Yousefi, A., and Daryashenas, A. (2002), The effect of addition of different amounts and types of organic materials on soil physical properties and yield of wheat, Plant and Soil, 247(2), 295301, doi:10.1023/A:1021561628045.
Bazin, L., et al. (2013), An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka, Climate of the Past, 9, 17151731, doi:10.5194/cp-9-1715-2013.
Beal, L. K., Huber, D. P., Godsey, S. E., Nawotniak, S. K., and Lohse, K. A. (2016), Controls on ecohydrologic properties in desert ecosystems: Differences in soil age and volcanic morphology, Geoderma, 271, 3241, doi:10.1016/j.geoderma.2016.01.030.
Bell, J. R. W., and Willgoose, G. R. (1998), Monitoring of gully erosion at ERA Ranger Uranium Mine, Northern Territory, Australia, Internal Report 274, Environmental Research Institute of the Supervising Scientist, Jabiru, NT.
Bellugi, D., Milledge, D. G., Dietrich, W. E., McKean, J., Perron, J. T., Sudderth, E. B., and Kazian, B. (2015a), A spectral clustering search algorithm for predicting shallow landslide size and location, Journal of Geophysical Research (Earth Surface), 120, 300324, doi:10.1002/2014JF003137.
Bellugi, D., Milledge, D. G., Dietrich, W. E., Perron, J. T., and McKean, J. (2015b), Predicting shallow landslide size and location across a natural landscape: Application of a spectral clustering search algorithm, Journal of Geophysical Research (Earth Surface), 120, 25522585, doi:10.1002/2015JF003520.
Bercovici, D. (2003), The generation of plate tectonics from mantle convection, Earth and Planetary Science Letters, 205(3–4), 107121, doi:10.1016/S0012-821X(02)01009-9.
Bergeron, T. (1961), Preliminary results of ‘Project Pluvius’, vol. 53, pp. 226–237. International Association of Hydrological Sciences Publication, Gentbrugge.
Bernoux, M., Cerri, C. C., Neill, C., and de Moraes, J. F. L. (1998), The use of stable carbon isotopes for estimating soil organic matter turnover rates, Geoderma, 82(1–3), 4358.
Beven, K. J. (1996), Equifinality and uncertainty in geomorphological modelling, in The scientific nature of geomorphology: Proceedings of the 27th Binghampton Symposium in geomorphology, 27–29 September, 1996, edited by Rhoads, B. L. and Thorn, C. E., pp. 289313, Wiley, Chichester, UK.
Beven, K. J. (2000), Uniqueness of place and process representations in hydrological modelling, Hydrology and Earth System Sciences, 4(2), 203213.
Beven, K. J. (2012), Rainfall-runoff modelling: The primer, 2nd ed., Wiley-Blackwell, Chichester, UK.
Beven, K. J., and Binley, A. M. (1992), The future of distributed models: Model calibration and uncertainty prediction, Hydrological Processes, 6, 279298.
Beven, K. J., and Germann, K. (1982), Macropores and water-flow in soils, Water Resources Research, 18(5), 13111325, doi:10.1029/WR018i005p01311.
Beven, K. J., and Germann, K. (2013), Macropores and water flow in soils revisited, Water Resources Research, 49(6), 30713092, doi:10.1002/wrcr.20156.
Billings, S. A., Buddemeier, R. W., deB Richter, D., Van Oost, K., and Bohling, G. (2010), A simple method for estimating the influence of eroding soil profiles on atmospheric CO2, Global Biogeochemal Cycles, 24, GB2001, doi:10.1029/2009GB003560.
Birkeland, P. W. (1990), Soil-geomorphic research – A selective overview, Geomorphology, 3(3–4), 207224, doi:10.1016/0169-555X(90)90004-A.
Bisdom, E. B. A., Stoops, G., Delvigne, J., Curmi, P., and Altemuller, H.-J. (1982), Micromorphology of weathering Biotite and its secondary products, Pedologie, 32(2), 225252.
Bishop, P. (2007), Long-term landscape evolution: Linking tectonics and surface processes, Earth Surface Processes and Landforms, 32, 329365, doi:10.1002/esp.1493.
Boardman, J., Parsons, A. J., Holland, R., Holmes, P. J., and Washington, R. (2003), Development of badlands and gullies in the Sneeuberg, Great Karoo, South Africa, Catena, 50(2–4), 165184.
Bodí, M. B., Martin, D. A., Balfour, V. N., Santín, C., Doerr, S. H., Pereira, P., Cerdà, A., and Mataix-Sorda, J. (2014), Wildland fire ash: Production, composition and eco-hydro-geomorphic effects, Earth-Science Reviews, 130, 103127, doi:10.1016/j.earscirev.2013.12.007.
Boillat, J. L., and Graf, W. H. (1982), Settling velocity of spherical particles in turbulent media, Journal of Hydraulic Research, 20, 395413.
Bondeau, A., et al. (2007), Modelling the role of agriculture for the 20th century global terrestrial carbon balance, Global Change Biology, 13, 679706, doi:10.1111/j.1365-2486.2006.01305.x.
Borga, M., Fontana, G. D., and Cazorzi, F. (2002), Analysis of topographic and climatic control on rainfall-triggered shallow landsliding using a quasi-dynamic wetness index, Journal of Hydrology, 268, 5671.
Bourrier, F. (2008), Modélisation de l’impact d’un bloc rocheux sur un terrain naturel, application à la trajectographie des chutes de blocs, PhD thesis, Institut National Polytechnique de Grenoble, Grenoble.
Bourrier, F., Dorren, L. K. A., Nicot, F., Berger, F., and Darve, F. (2009), Toward objective rockfall trajectory simulation using a stochastic impact model, Geomorphology, 110, 6879, doi:10.1016/j.geomorph.2009.03.017.
Bovy, B., Braun, J., and Demoulin, A. (2016), A new numerical framework for simulating the control of weather and climate on the evolution of soil-mantled hillslopes, Geomorphology, 263, 99112, doi:10.1016/j.geomorph.2016.03.016.
Bowman, D. M. J. S., Boggs, G. S., and Prior, L. D. (2008), Fire maintains an Acacia aneura shrubland – Triodia grassland mosaic in central Australia, Journal of Arid Environments, 72, 3447, doi:10.1016/j.jaridenv.2007.04.001.
Bradford, S. A., and Torkzaban, S. (2008), Colloid transport and retention in unsaturated porous media: A review of interface-, collector-, and pore-scale processes and models, Vadose Zone Journal, 7(2), 667681, doi:10.2136/vzj2007.0092.
Brantley, S. L., and Lebedeva, M. I. (2011), Learning to read the chemistry of regolith to understand the Critical Zone, Annual Review of Earth and Planetary Sciences, 39, 387416, doi:10.1146/annurev-earth-040809-152321.
Bras, R. L., and Rodriguez-Iturbe, I. (1985), Random functions and hydrology, Addison-Wesley, New York.
Braun, J., Heimsath, A. M., and Chappell, J. (2001), Sediment transport mechanisms on soil-mantled hillslopes, Geology, 29(8), 683686.
Braun, J., Mercier, J., Guillocheau, F., and Robin, C. (2016), A simple model for regolith formation by chemical weathering, Journal of Geophysical Research (Earth Surface), 121, 21402171, doi:10.1002/2016JF003914.
Braun, J., and Robert, X. (2005), Constraints on the rate of post-orogenic erosional decay from low-temperature thermochronological data: Application to the Dabie Shan, China, Earth Surface Processes and Landforms, 30, 12031225, doi:10.1002/esp.1271.
Braun, J., and Sambridge, M. (1997), Modelling landscape evolution on geological time scales: A new method based on irregular spatial discretization, Basin Research, 9(1), 2752.
Braun, J., and van der Beek, P. (2004), Evolution of passive margin escarpments: What can we learn from low-temperature thermochronology?, Journal of Geophysical Research (Earth Surface), 109(F4), F04009.
Brimhall, G. H., Chadwick, O. A., Lewis, C. J., Compston, W., Williams, I. S., Danti, K. J., Dietrich, W. E., Power, M. E., Hendricks, D. M., and Bratt, J. (1992), Deformational mass transport and invasive processes in soil evolution, Science, 255(5045), 695702.
Brimhall, G. H., and Dietrich, W. E. (1987), Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis, Geochimica Cosmochimica Acta, 51, 567587.
Brimhall, G. H., Lewis, C. J., Ford, C., Bratt, J., Taylor, G., and Warin, O. (1991), Quantitative geochemical approach to pedogenesis – Importance of parent material reduction, volumetric expansion, and Eolian influx in Lateritization, Geoderma, 51(1–4), 5191.
Brocard, G. Y., Willenbring, J. K., Miller, T. E., and Scatena, F. N. (2016), Relict landscape resistance to dissection by upstream migrating knickpoints, Journal of Geophysical Research (Earth Surface), 121, 11821203, doi:10.1002/2015JF003678.
Brooks, R. J., Semenov, M. A., and Jamieson, P. D. (2001), Simplifying Sirius: Sensitivity analysis and development of a meta-model for wheat yield prediction, European Journal of Agronomics, 14, 4360.
Brunetti, M. T., Guzzetti, F., and Rossi, M. (2009), Probability distributions of landslide volumes, Nonlinear Processes in Geophysics, 16(2), 179188.
Buck, W. R. (1993), Effect of lithospheric thickness on the formation of high- and low-angle normal faults, Geology, 21(10), 933936, doi:10.1130/0091-7613(1993) 021<0933:EOLTOT> 2.3.CO;2.
Bufe, A., Paola, C., and Burbank, D. W. (2016), Fluvial bevelling of topography controlled by lateral channel mobility and uplift rate, Nature Geoscience, 9(9), 706710, doi:10.1038/ngeo2773.
Bull, L. J., and Kirkby, M. J. (1997), Gully processes and modelling, Progress in Physical Geography, 21(3), 354374, doi:10.1177/030913339702100302.
Bull, L. J., and Kirkby, M. J. (2002), Channel heads and channel extension, in Dryland rivers: Hydrology and geomorphology of semi-arid channels, edited by Bull, L. J. and Kirkby, M. J., pp. 263298, Wiley, Chichester, UK.
Burke, B. C., Heimsath, A. M., and White, A. F. (2007), Coupling chemical weathering with soil production across soil-mantled landscapes, Earth Surface Processes and Landforms, 32, 853873, doi:10.1002/esp.1443.
Burnett, S. A., Hattey, J. A., Johnson, J. E., Swann, A. L., Moore, D. I., and Collins, S. L. (2012), Effects of fire on belowground biomass in Chihuahuan desert grassland, Ecosphere, 3(11), 107, doi:10.1890/ES12-00248.1.
Burr, D. M., et al. (2013), Fluvial features on Titan: Insights from morphology and modeling, Geological Society of America Bulletin, 125(3–4), 299321, doi:10.1130/B30612.1.
Burroughs, E. R., and Thomas, B. R. (1977), Declining root strength in Douglas-Fir after felling as a factor in slope stability, Rep. INT-190, US Department of Agriculture, Ogden, Utah.
Buss, H. L., Sak, P. B., Webb, S. M., and Brantley, S. L. (2008), Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: Coupling oxidation, dissolution, and fracturing, Geochimica Cosmochimica Acta, 72, 44884507, doi:10.1016/j.gca.2008.06.020.
Buzzi, O., Giacomini, A., and Spadari, M. (2012), Laboratory investigation of high values of restitution coefficients, Rock Mechanics and Rock Engineering, 45, 3543, doi:10.1007/s00603-011-0183-0.
Byrne, K. A., and Kiely, G. (2008), Evaluation of models (PaSim, RothC, CENTURY and DNDC) for simulation of grassland carbon cycling at plot, field and regional scale, Environment Protection Agency, Wexford, Ireland.
Cagnoli, B., and Manga, M. (2003), Pumice-pumice collisions and the effect of the impact angle, Geophysical Research Letters, 30(12), 1636, doi:10.1029/2003GL017421.
Campbell, C. S., Cleary, P. W., and Hopkins, M. (1995), Large-scale landslide simulations: Global deformation, velocities and basal friction, Journal of Geophysical Research (Solid Earth), 100(B5), 82678283, doi:10.1029/94JB00937.
Camporeale, C., Perucca, E., Ridolfi, L., and Gurnell, A. M. (2013), Modelling the interactions between river morphodynamics and riparian vegetation, Reviews of Geophysics, 51, 379414, doi:10.1002/rog.20014.
Canadell, J. G., Jackson, R. B., Ehleringer, J. R., Mooney, H. A., Sala, O. E., and Schulze, E. D. (1996), Maximum rooting depth of vegetation types at the global scale, Oecologia, 108(4), 583595, doi:10.1007/BF00329030.
Canales, J. B., Ito, G., Detrick, R. S., and Sinton, J. (2002), Crustal thickness along the western Galapagos Spreading Center and the compensation of the Galapagos hotspot swell, Earth and Planetary Science Letters, 203, 311327.
Carson, M. A., and Kirkby, M. J. (1972), Hillslope form and process, Cambridge University Press, London.
Cawson, J. G., Sheridan, G. J., Smith, H. G., and Lane, P. N. J. (2012), Surface runoff and erosion after prescribed burning and the effect of different fire regimes in forests and shrublands: A review, International Journal of Wildland Fire, 21, 857872, doi:10.1071/WF11160.
Celia, M. A., and Gray, W. G. (1991), Numerical methods for differential equations: Fundamental concepts for scientific & engineering applications, Prentice-Hall, New York.
Cerdà, A., and Doerr, S. H. (2005), Influence of vegetation recovery on soil hydrology and erodibility following fire: An 11-year investigation, International Journal of Wildland Fire, 14, 423437, doi:10.1071/WF05044.
Certini, G. (2005), Effects of fire on properties of forest soils: A review, Oecologia, 143, 110, doi:10.1007/S00442-0041788-8.
Certini, G., Scalenghe, R., and Woods, W. I. (2013), The impact of warfare on the soil environment, Earth-Science Reviews, 127, 115, doi:10.1016/j.earscirev.2013.08.009.
Chadwick, O. A., Brimhall, G. H., and Hendricks, D. M. (1990), From a black to a gray box: A mass balance interpretation of pedogenesis, Geomorphology, 3, 369390.
Chase, C. G. (1992), Fluvial landsculpting and the fractal dimension of topography, Geomorphology, 5(1/2), 3957, doi:10.1016/0169-555X(92)90057-U.
Chatanantavet, P., and Parker, G. (2009), Physically based modeling of bedrock incision by abrasion, plucking, and macroabrasion, Journal of Geophysical Research (Earth Surface), 114, F04018, doi:10.1029/2008JF001044.
Chatanantavet, P., and Parker, G. (2011), Quantitative testing of model of bedrock channel incision by plucking and macroabrasion, Journal of Hydraulic Division – ASCE, 137(11), 13111317, doi:10.1061/(ASCE)HY.1943-7900.0000421.
Chau, K. T., Wong, R. H. C., and Wu, J. J. (2002), Coefficient of restitution and rotational motions of rockfall impacts, International Journal of Rock Mechanics & Mining Sciences, 39, 6977, doi:10.1016/S1365-1609(02)00016–3.
Chen, A., Darbon, J., and Morel, J.-M. (2014), Landscape evolution models: A review of their fundamental equations, Geomorphology, 219, 6886, doi:10.1016/j.geomorph.2014.04.037.
Chen, M., Willgoose, G. R., and Saco, P. M. (2015), Evaluation of the hydrology of the IBIS land surface model in a semi-arid catchment, Hydrological Processes, 29, 653670, doi:10.1002/hyp.10156.
Cheng, D.-L., and Niklas, K. J. (2007), Above- and below-ground biomass relationships across 1534 forested communities, Annals of Botany, 99, 95102, doi:10.1093/aob/mcl206.
Chia, E. K., Bassett, M., Nimmo, D. G., Leonard, S. W. J., Ritchie, E. G., Clarke, M. F., and Bennett, A. F. (2015), Fire severity and fire-induced landscape heterogeneity affect arboreal mammals in fire-prone forests, Ecosphere, 6(10), 190.
Chien-Yuan, C., Fan-Chieh, Y., Sheng-Chi, L., and Kei-Wai, C. (2007), Discussion of landslide self-organized criticality and the initiation of debris flow, Earth Surface Processes and Landforms, 32(2), 197209, doi:10.1002/esp.1400.
Chigara, M., and Oyama, T. (1999), Mechanism and effect of chemical weathering of sedimentary rocks, Engineering Geology, 55(1), 314, doi:10.1016/S0013-7952(99)00102-7.
Chowdhury, A. F. M. K. (2017), Development and evaluation of stochastic rainfall models for urban water security assessment, PhD Thesis, University of Newcastle, Callaghan, Australia.
Chowdhury, A. F. M. K., Lockart, N., Willgoose, G. R., Kuczera, G., Kiem, A. S., and Parana Manage, N. (2018), Development and evaluation of a stochastic daily rainfall model with long term variability, Hydrology and Earth System Sciences, doi:10.5194/hess-2017-84.
Claessens, L., Heuvelink, G. B. M., Schoorl, J. M., and Veldkamp, A. (2005), DEM resolution effects on shallow landslide hazard and soil redistribution modelling, Earth Surface Processes and Landforms, 30, 461477, doi:10.1002/esp.1155.
Clarke, L. E. (2015), Experimental alluvial fans: Advances in understanding of fan dynamics and processes, Geomorphology, 244, 135145, doi:10.1016/j.geomorph.2015.04.013.
Clarke, R. H. (1979), Reservoir properties of conglomerates and conglomerate sandstones, American Association of Petroleum Geologists Bulletin, 63, 799809.
Cohen, S. (2010), Spatial description of soil properties through landscape-pedogenesis modelling, PhD thesis, University of Newcastle, Callaghan, Australia.
Cohen, S., Willgoose, G. R., and Hancock, G. R. (2008), A methodology for calculating the spatial distribution of the area-slope equation and the hypsometric integral within a catchment, Journal of Geophysical Research (Earth Surface), 113, F03027, doi:10.1029/2007JF000820.
Cohen, S., Willgoose, G. R., and Hancock, G. R. (2009), The mARM spatially distributed soil evolution model: A computationally efficient modeling framework and analysis of hillslope soil surface organization, Journal of Geophysical Research (Earth Surface), 114, F03001, doi:10.1029/2008JF001214.
Cohen, S., Willgoose, G. R., and Hancock, G. R. (2010), The mARM3D spatially distributed soil evolution model: Three-dimensional model framework and analysis of hillslope and landform responses, Journal of Geophysical Research (Earth Surface), 115, F04013, doi:10.1029/2009JF001536.
Cohen, S., Willgoose, G. R., and Hancock, G. R. (2013), Soil response to late-Quaternary climatic oscillations, new insights based on numerical simulations, Quaternary Research, 79(3), 452457, doi:10.1016/j.yqres.2013.01.001.
Cohen, S., Svoray, T., Sela, S., Hancock, G. R., and Willgoose, G. R. (2015), The effect of sediment-transport, weathering and aeolian mechanisms on soil evolution, Journal of Geophysical Research (Earth Surface), 120(2), 260274, doi:10.1002/2014JF003186.
Cohen, S., Svoray, T., Sela, S., Hancock, G. R., and Willgoose, G. R. (2016), Soilscape evolution of aeolian-dominated hillslopes during the Holocene: Investigation of sediment transport mechanisms and climatic-anthropogenic drivers, Earth Surface Dynamics, 5, 101112, doi:10.5194/esurf-5-101-2017.
Coleman, K., and Jenkinson, D. S. (2014), RothC – A model for the turnover of carbon in soil. Model description and users guide, Rothamsted Research, UK.
Coleman, K., Jenkinson, D. S., Crocker, G. J., Grace, P. R., Klir, J., Korschens, M., Poulton, P. R., and Richter, D. D. (1997), Simulating trends in soil organic carbon in long-term experiments using RothC-26.3, Geoderma, 81(1–2), 2944.
Collins, D. B. G., and Bras, R. L. (2008), Climatic control of sediment yield in dry lands following climate and land cover change, Water Resources Research, 44, W10405, doi:10.1029/2007WR006474.
Collins, D. B. G., and Bras, R. L. (2010), Climatic and ecological controls of equilibrium drainage density, relief, and channel concavity in dry lands, Water Resources Research, 46, W04508, doi:10.1029/2009WR008615.
Collins, D. B. G., Bras, R. L., and Tucker, G. E. (2004), Modeling the effects of vegetation-erosion coupling on landscape evolution, Journal of Geophysical Research (Earth Surface), 109(F3), F03004.
Collins, K. M., Price, O. F., and Penman, T. D. (2015), Spatial patterns of wildfire ignitions in south-eastern Australia, International Journal of Wildland Fire, 24, 10981108, doi:10.1071/WF15054.
Conrad, C. P., and Lithgow-Bertelloni, C. (2002), How mantle slabs drive plate tectonics, Science, 298(5591), 207209.
Corti, G., Agnelli, A., Certini, G., and Ugolini, F. C. (2001), The soil skeleton as a tool for disentangling pedogenetic history: A case study in Tuscany, central Italy, Quaternary International, 78, 3344, doi:10.1016/S1040-6182(00)00113-0.
Coulthard, T. J. (2001), Landscape evolution models: A software review, Hydrological Processes, 15(1), 165173.
Coulthard, T. J., Hicks, D. M., and Van De Wiel, M. J. (2007), Cellular modelling of river catchments and reaches: Advantages, limitations and prospects, Geomorphology, 90, 192207, doi:10.1016/j.geomorph.2006.10.030.
Coulthard, T. J., Macklin, M. G., and Kirkby, M. J. (2002), A cellular model of Holocene upland river basin and alluvial fan evolution, Earth Surface Processes and Landforms, 27(3), 269288.
Coulthard, T. J., and Skinner, C. J. (2016), The sensitivity of landscape evolution models to spatial and temporal rainfall resolution, Earth Surface Dynamics, 4, 757771, doi:10.5194/esurf-4-757-2016.
Coventry, R. J., Moss, A. J., and Verster, E. (1988), Thin surface soil layers attributable to rain-flow transportation on low-angle slopes: An example from semi-arid tropical Queensland, Australia, Earth Surface Processes and Landforms, 13, 421430.
Cox, N. R. (1980), On the relationship between bedrock lowering and regolith thickness, Earth Surface Processes, 5(3), 271274, doi:10.1002/esp.3760050305.
Cramer, W., and Field, C. B. (1999), Comparing global models of terrestrial net primary productivity (NPP): Introduction, Global Change Biology, 5(Suppl. 1), 34.
Crave, A., and Davy, P. (2001), A stochastic ‘‘precipiton’’ model for simulating erosion/sedimentation dynamics, Computers & Geosciences, 27(7), 815827, doi:10.1016/S0098-3004(00)00167-9.
Culling, W. E. H. (1960), Analytical theory of erosion, Journal of Geology, 68(3), 336344.
Culling, W. E. H. (1963), Soil creep and the development of hillside slopes, Journal of Geology, 71(2), 127161.
Cundall, P. A., and Strack, O. D. L. (1979), A discrete numerical model for granular assemblies, Geotechnique, 29(1), 4765, doi:10.1680/geot.1979.29.1.47.
Dagbovie, A. S., and Sheratt, J. A. (2014), Pattern selection and hysteresis in the Rietkerk model for banded vegetation in semi-arid environments, Journal of the Royal Society Interface, 11, 20140465, doi:10.1098/rsif.2014.0465.
Dahlen, F. A. (1990), Critical taper model of fold-and-thrust belts and accretionary wedges, Annual Review of Earth and Planetary Sciences, 18, 5599, doi:10.1146/
Daily, J. W., and Harleman, D. R. F. (1966), Fluid dynamics, Addison-Wesley, Reading, MA.
Davidson, E. A., Belk, E., and Boone, R. D. (1998), Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest, Global Change Biology, 4(2), 217227, doi:10.1046/j.1365-2486.1998.00128.x.
Davidson, E. A., and Janssens, I. A. (2006), Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, 440(7081), 165173, doi:10.1038/nature04514.
Davis, W. M. (1899), The geographical cycle, Geographical Journal, 14, 481504.
Davy, P., and Lague, D. (2009), Fluvial erosion/transport equation of landscape evolution models revisited, Journal of Geophysical Research (Earth Surface), 114, F03007, doi:10.1029/2008JF001146.
DeBano, L. F. (2000), The role of fire and soil heating on water repellency in wildland environments: A review, Journal of Hydrology, 231–232, 195206.
De Marco, A., Gentile, A. E., Arena, C., and De Santo, A. V. (2005), Organic matter, nutrient content, and biological activity in burned and unburned soils of a Mediterranean maquis area of southern Italy, International Journal of Wildland Fire, 14, 365377, doi:10.1071/WF05030.
Dennison, P. E., Brewer, S. C., Arnold, J. D., and Moritz, M. A. (2014), Large wildfire trends in the western United States, 1984–2011, Geophysical Research Letters, 41, 29282933, doi:10.1002/2014GL059576.
DeNovio, N. M., Saiers, J. E., and Ryan, J. N. (2004), Colloid movement in unsaturated porous media: Recent advances and future directions, Vadose Zone Journal, 3(2), 338251, doi:10.2113/3.2.338.
Dessert, C., Dupre, B., Gaillardet, J., François, L. M., and Allegre, C. J. (2003), Basalt weathering laws and the impact of basalt weathering on the global carbon cycle, Chemical Geology, 202, 257273, doi:10.1016/j.chemgeo.2002.10.001.
de Vries, H., Becker, T., and Eckhardt, B. (1994), Power law distribution of discharge in ideal networks, Water Resources Research, 30(12), 35413543.
de Vries, W., van Grinsven, J. J. M., van Breemen, N., Leeters, E. E. J. M., and Jansen, P. C. (1995), Impacts of acid deposition on concentrations and fluxes of solutes in acid sandy forest soils in the Netherlands, Geoderma, 67(1–2), 1743, doi:10.1016/0016-7061(94)00056-G.
Dewitte, O., Daoudi, M., Bosco, C., and Van Der Eeckhaut, M. (2015), Predicting the susceptibility to gully initiation in data-poor regions, Geomorphology, 228, 101115, doi:10.1016/j.geomorph.2014.08.010.
Dialynas, Y. G., Bastola, S., Bras, R. L., Billings, S. A., Markewitz, D., and Richter, D. D. (2016), Topographic variability and the influence of soil erosion on the carbon cycle, Global Biogeochemical Cycle, 30, doi:10.1002/2015GB005302.
Dietrich, W. E. (1982), Settling velocity of natural particles, Water Resources Research, 18(6), 16151626, doi:10.1029/WR018i006p01615.
Dietrich, W. E., and Montgomery, D. R. (1998), SHALSTAB: A digital terrain model for mapping shallow landslide potential, National Council for Air and Stream Improvement.
Dietrich, W. E., and Perron, J. T. (2006), The search for a topographic signature of life, Nature, 439(7075), 411418.
Dietrich, W. E., Reiss, R., Hsu, M. L., and Montgomery, D. R. (1995), A process based model for colluvial soil depth and shallow landsliding using digital elevation data, Hydrological Processes, 9(3/4), 383400, doi:10.1002/hyp.3360090311.
Dietrich, W. E., and Whiting, P. (1989), Boundary shear stress and sediment transport in river meanders of sand and gravel, in River Meandering, edited by Ikeda, S. and Parker, G., pp. 140, American Geophysical Union, Washington, DC.
Dietrich, W. E., Wilson, C. J., Montgomery, D. R., McKean, J., and Bauer, R. A. (1992), Erosion thresholds and land surface morphology, Geology, 20, 675679.
Dietrich, W. E., Wilson, C. J., Montgomery, D. R., and McKean, J. (1993), Analysis of erosion thresholds, channel networks, and landscape morphology using a digital terrain model, Journal of Geology, 101(2), 259278.
Dijkstra, J. J., Meeussen, J. C. L., and Comans, R. N. J. (2004), Leaching of heavy metals from contaminated soils: An experimental and modeling study, Environmental Science & Technology, 38(16), 43904395, doi:10.1021/es049885v.
Doetterl, S., Berhe, A. A., Nadeu, E., Wang, Z., Sommer, M., and Fiener, P. (2016), Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes, Earth-Science Reviews, 154, 102122, doi:10.1016/j.earscirev.2015.12.005.
Dorren, L. K. A. (2003), A review of rockfall mechanics and modelling approaches, Progress in Physical Geography, 27(1), 6987.
Dorren, L. K. A., Berger, F., le Hir, C., Mermin, E., and Tardif, P. (2005), Mechanisms, effects and management implications of rockfall in forests, Forest Ecology and Management, 215, 183195, doi:10.1016/j.foreco.2005.05.012.
Dorren, L. K. A., Berger, F., and Putters, U. S. (2006), Real-size experiments and 3-D simulation of rockfall on forested and non-forested slopes, Natural Hazards and Earth System Sciences, 6, 145153.
Driscoll, N. W., and Karner, G. D. (1994), Flexural deformation due to Amazon fan loading: A feedback mechanism affecting sediment delivery to margins, Geology, 22, 10151018, doi:10.1130/0091-7613(1994) 022<1015:FDDTAF> 2.3.CO;2.
Dunai, T. J. (2010), Cosmogenic nuclides: Principles, concepts and applications in the earth surface sciences, Cambridge University Press, Cambridge.
Dunkerley, D. L. (1997), Banded vegetation: Development under uniform rainfall from a simple cellular automaton model, Plant Ecology, 129, 103111.
Dunkerley, D. L. (2000), Hydrologic effects of dryland shrubs: Defining the spatial extent of modified soil water uptake rates at an Australian desert site, Journal of Arid Environments, 45, 159172, doi:10.1006/jare.2000.0636.
Dunkerley, D. L. (2002), Infiltration rates and soil moisture in a groved mulga community near Alice Springs, arid central Australia: Evidence for complex internal rainwater redistribution in a runoff–runon landscape, Journal of Arid Environments, 51(2), 199219, doi:10.1006/jare.2001.0941.
Dunkerley, D. L., and Brown, K. J. (1995), Runoff and runon areas in a patterned chenopod shrubland, arid western New South Wales, Australia: Characteristics and origin, Journal of Arid Environments, 30(1), 4155.
Dunkerley, D. L., and Brown, K. J. (1999), Banded vegetation near Broken Hill, Australia: Significance of surface roughness and soil physical properties, Catena, 37(1–2), 7588.
Dunne, T., Malmon, D. V., and Dunne, K. B. J. (2016), Limits on the morphogenetic role of rain splash transport in hillslope evolution, Journal of Geophysical Research (Earth Surface), 121, doi:10.1002/2015JF003737.
Dunne, T., Malmon, D. V., and Mudd, S. M. (2010), A rain splash transport equation assimilating field and laboratory measurements, Journal of Geophysical Research (Earth Surface), 115, F01001, doi:10.1029/2009JF001302.
Durda, D. D., Bottke, W. F., Enke, B. L., Merline, W. J., Asphaug, E., Richardson, D. C., and Leinhardt, Z. M. (2004), The formation of asteroid satellites in large impacts: Results from numerical simulations, Icarus, 170(1), 243257.
Durda, D. D., Bottke, W. F., Nesvorny, D., Enke, B. L., Merline, W. J., Asphaug, E., and Richardson, D. C. (2007), Size–frequency distributions of fragments from SPH/N-body simulations of asteroid impacts: Comparison with observed asteroid families, Icarus, 186(2), 498516.
Durda, D. D., Movshovitz, N., Richardson, D. C., Asphaug, E., Morgan, A., Rawlings, A. R., and Vest, C. (2011), Experimental determination of the coefficient of restitution for meter-scale granite spheres, Icarus, 211(1), 849855.
Eagleson, P. S. (2002), Ecohydrology: Darwinian expression of vegetation form and function, Cambridge University Press, Cambridge.
Einstein, H. A. (1950), The bed-load function for sediment transportation in open channel flows, Technical Bulletin 1026, US Department of Agriculture, Washington, DC.
Elias, E. A., Cichota, R., Torriani, H. H., and de Jong van Lier, Q. (2004), Analytical soil-temperature model: Correction for temporal variation of daily amplitude, Soil Science Society of America Journal, 68, 784788, doi:10.2136/sssaj2004.7840.
Enquist, B. J., and Niklas, K. J. (2002), Global allocation rules for patterns of biomass partitioning in seed plants, Science, 295(5559), 15171520.
Eppes, M. C., and Griffing, D. (2010), Granular disintegration of marble in nature: A thermal-mechanical origin for a grus and corestone landscape, Geomorphology, 117, 170180, doi:10.1016/j.geomorph.2009.11.028.
Espinoza, J. C., Chavez, S., Ronchail, J., Junquas, C., Takahashi, K., and Lavado, W. (2015), Rainfall hotspots over the southern tropical Andes: Spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation, Water Resources Research, 51, 34593475, doi:10.1002/2014WR016273.
Espirito-Santo, F. D. B., et al. (2014), Size and frequency of natural forest disturbances and the Amazon forest carbon balance, Nature Communications, 5, 16, doi:10.1038/ncomms4434.
Evans, K. G., and Loch, R. J. (1996), Using the RUSLE to identify factors controlling erosion rates of mine spoils, Land Degradation and Development, 7, 267277.
Evans, K. G., Saynor, M. J., and Willgoose, G. R. (1996), The effect of vegetation on waste rock erosion, Ranger Uranium Mine, Northern Territory, Bulletin of the Australian Institute of Mining and Metallurgy, 6, 2123.
Evans, K. G., Saynor, M. J., Willgoose, G. R., and Riley, S. J. (2000), Post-mining landform evolution modelling. I. Derivation of sediment transport model and rainfall-runoff model parameters, Earth Surface Processes and Landforms, 25(7), 743763.
Evans, K. G., and Willgoose, G. R. (2000), Post-mining landform evolution modelling. II. Effects of vegetation and surface ripping, Earth Surface Processes and Landforms, 25(8), 803823.
Fagherazzi, S., Howard, A. D., and Wiberg, P. L. (2002), An implicit finite difference method for drainage basin evolution, Water Resources Research, 38(7), art. no.-1116.
FAO (2009), Harmonized World Soil Database (version 1.1), FAO, Rome, Italy, and IIASA, Laxenburg, Austria.
Fatichi, S., Pappas, C., and Ivanov, V. Y. (2016), Modeling plant–water interactions: an ecohydrological overview from the cell to the global scale, Wiley Interdisciplinary Reviews – Water, 3(3), 327368, doi:10.1002/wat2.1125.
Field, J. B., and Anderson, G. R. (2003), Biological agents in regolith processes: Case study on the Southern Highlands, NSW, paper presented at Advances in Regolith: Proceedings of the CRC LEME Regional Regolith Symposia, 2003, Cooperative Research Centre for Landscape Environments and Mineral Exploration (CRC LEME), Canberra,
Finke, P. A. (2012), Modeling the genesis of luvisols as a function of topographic position in loess parent material, Quaternary International, 265, 317, doi:10.1016/j.quaint.2011.10.016.
Finke, P. A., Samouelian, A., Sourez-Bonnet, M., Laroche, B., and Cornu, S. S. (2015), Assessing the usage potential of SoilGen2 to predict clay translocation under forest and agricultural land uses, European Journal of Soil Science, 66, 194205, doi:10.1111/ejss.12190.
Finke, P. A., Vanwalleghem, T., Opolot, E., Poesen, J., and Deckers, J. (2013), Estimating the effect of tree uprooting on variation of soil horizon depth by confronting pedogenetic simulations to measurements in a Belgian loess area, Journal of Geophysical Research (Earth Surface), 118, 21242139, doi:10.1002/jgrf.20153.
Finney, M. A. (1999), Mechanistic modeling of landscape fire patterns, in Spatial modeling of forest landscape change: Approaches and applications, edited by Mladenoff, D. J. and Baker, W. L., pp. 186209, Cambridge University Press, Cambridge.
Finney, M. A. (2004), FARSITE: Fire Area Simulator – Model Development and Evaluation, Rep. RMRS-RP-4, USDA Forest Service Rocky Mountain Research Station.
Fleming, R. W., and Johnson, A. M. (1975), Rates of seasonal creep of silty clay soil, Quarterly Journal of Engineering Geology and Hydrogeology, 8(1), 129, doi:10.1144/GSL.QJEG.1975.008.01.01.
Fleskens, L., Kirkby, M. J., and Irvine, B. J. (2016), The PESERA-DESMICE modeling framework for spatial assessment of the physical impact and economic viability of land degradation mitigation technologies, Frontiers in Environmental Science, 4, 31, doi:10.3389/fenvs.2016.00031.
Fletcher, R. C., and Brantley, S. L. (2010), Reduction of bedrock blocks as corestones in the weathering profile: Observations and models, American Journal of Science, 310, 131164, doi:10.2475/03.2010.01].
Fletcher, R. C., Buss, H. L., and Brantley, S. L. (2006), A spheroidal weathering model coupling porewater chemistry to soil thicknesses during steady-state denudation, Earth and Planetary Science Letters, 244, 444457, doi:10.1016/j.epsl.2006.01.055.
Fontúrbel, M. T., Barreiro, A., Vega, J. A., Martín, A., Jiménez, E., Carballas, T., Fernández, C., and Díaz-Raviña, M. (2012), Effects of an experimental fire and post-fire stabilization treatments on soil microbial communities, Geoderma, 191, 5160, doi:10.1016/j.geoderma.2012.01.037.
Fordham, A. W. (1990), Weathering of biotite into dioctahedral clay minerals, Clay Minerals, 25, 5163.
Foster, G. R. (1982), Modelling the erosion process, in Hydrologic Modelling of Small Watersheds, edited by Haan, C. T., pp. 295380, American Society of Agricultural Engineers, St Joseph, Missouri.
Foster, G. R., Flanagan, D. C., Nearing, M. A., Lane, L. J., Risse, L. M., and Finkner, S. C. (1995), Chapter 11: Hillslope erosion component, in USDA-Water Erosion Prediction Project Hillslope Profile and Watershed Model Documentation, NSERL Report #10, edited by Flanagan, D. C. and Nearing, M. A., US Department of Agriculture ARS, West Lafayette, Indiana.
Fox, M., Goren, L., May, D. A., and Willett, S. D. (2014), Inversion of fluvial channels for paleorock uplift rates in Taiwan, Journal of Geophysical Research (Earth Surface), 119, 18531875, doi:10.1002/2014JF003196.
Fox, R. W., and McDonald, A. T. (1998), Introduction to Fluid Mechanics, 5th ed., Wiley, Chichester, UK.
Fraser, H. J. (1935), Experimental study of the porosity and permeability of clastic sediments, Journal of Geology, 83(8), 9101010.
Freer, J., McDonnell, J. J., Beven, K. J., Peters, N. E., Burns, D. A., Hooper, R. P., Aulenbach, B., and Kendall, C. (2002), The role of bedrock topography on subsurface storm flow, Water Resources Research, 38(12), art. no.-1269.
Freeze, R. A., and Cherry, J. A. (1979), Groundwater, Prentice Hall, Englewood Cliffs, NJ.
Friedlingstein, P., et al. (2006), Climate-carbon cycling feedback analysis results from the C4MIP model intercomparison, Journal of Climate, 19(14), 33373353.
Fujiwara, T., Kodaira, S., No, T., Kaiho, Y., Takahashi, N., and Kaneda, Y. (2011), The 2011 Tohoku-Oki earthquake: Displacement reaching the trench axis, Science, 334(6060), 1240, doi:10. 1126/science. 1211554.
Furbish, D. J., Ball, A. E., and Schmeeckle, M. (2012a), A probabilistic description of the bed load sediment flux: 4. Fickian diffusion at low transport rates, Journal of Geophysical Research (Earth Surface), 117, F03034, doi:10.1029/2012JF002356.
Furbish, D. J., Childs, E. M., Haff, P. K., and Schmeeckle, M. W. (2009), Rain splash of soil grains as a stochastic advection-dispersion process, with implications for desert plant-soil interactions and land-surface evolution, Journal of Geophysical Research (Earth Surface), 114, F00A03, doi:10.1029/2009JF001265.
Furbish, D. J., and Fagherazzi, S. (2001), Stability of creeping soil and implications for hillslope evolution, Water Resources Research, 37(10), 26072618.
Furbish, D. J., Haff, P. K., Roseberry, J. C., and Schmeeckle, M. (2012b), A probabilistic description of the bed load sediment flux: 1. Theory, Journal of Geophysical Research (Earth Surface), 117, F03031, doi:10.1029/2012JF002352.
Furbish, D. J., Hamner, K. K., Schmeeckle, M., Borosund, M. N., and Mudd, S. M. (2007), Rain splash of dry sand revealed by high-speed imaging and sticky paper splash targets, Journal of Geophysical Research (Earth Surface), 112, F01001, doi:10.1029/2006JF000498.
Furbish, D. J., Roseberry, J. C., and Schmeeckle, M. (2012c), A probabilistic description of the bed load sediment flux: 3. The particle velocity distribution and the diffusive flux, Journal of Geophysical Research (Earth Surface), 117, F03033, doi:10.1029/2012JF002355.
Gabet, E. J. (2000), Gopher bioturbation: Field evidence for nonlinear hillslope diffusion, Earth Surface Processes and Landforms, 25(13), 14191428.
Gabet, E. J., and Dunne, T. (2003), Sediment detachment by rain power, Water Resources Research, 39(1), ESG1, doi:10.1029/2001WR000656.
Gabet, E. J., and Mudd, S. M. (2010), Bedrock erosion by root fracture and tree throw: A coupled biogeomorphic model to explore the humped soil production function and the persistence of hillslope soils, Journal of Geophysical Research (Earth Surface), 115, F04005, doi:10.1029/2009JF001526.
Gabet, E. J., Reichman, O. J., and Seabloom, E. W. (2003), The effects of bioturbation on soil processes and sediment transport, Annual Review of Earth and Planetary Sciences, 31, 249273.
Garcia-Corona, R., Benito, E., de Blas, E., and Varela, M. E. (2004), Effects of heating on some soil physical properties related to its hydrological behaviour in two north-western Spanish soils, International Journal of Wildland Fire, 13, 195199, doi:10.1071/WF03068.
Garreaud, R. D., Vuille, M., Compagnucci, R., and Marengo, J. (2009), Present-day South American climate, Paleogeography Paleoclimatology Paleoecology, 281, 180195, doi:10.1016/j.palaeo.2007.10.032.
Gasparini, N. M., Tucker, G. E., and Bras, R. L. (1999), Downstream fining through selective particle sorting in an equilibrium drainage network, Geology, 27(12), 10791082.
Gasparini, N. M., Tucker, G. E., and Bras, R. L. (2004), Network-scale dynamics of grain-size sorting: Implications for downstream fining, stream-profile concavity, and drainage basin morphology, Earth Surface Processes and Landforms, 29(4), 401421.
Gasparini, N. M., Whipple, K. X., and Bras, R. L. (2007), Predictions of steady state and transient landscape morphology using sediment-flux-dependent river incision models, Journal of Geophysical Research (Earth Surface), 112, F03S09, doi:10.1029/2006JF000567.
Géminard, J.-C., and Losert, W. (2002), Frictional properties of biodisperse granular matter: Effect of mixing ratio, Physical Review E, 65(4), D041301, doi:10.1103/PhysRevE.65.041301.
Géminard, J.-C., Losert, W., and Gollub, J. P. (1999), Frictional mechanics of wet granular material, Physical Review E, 59(5), D5881, doi:10.1103/PhysRevE.59.5881.
Gercek, H. (2007), Poisson’s ratio values for rocks, International Journal of Rock Mechanics & Mining Sciences, 44(1), 113, doi:10.1016/j.ijrmms.2006.04.011.
Gerten, D. (2013), A vital link: Water and vegetation in the Anthropocene, Hydrology and Earth System Sciences, 17, 38413852, doi:10.5194/hess-17-3841-2013.
Gerya, T. (2010), Introduction to numerical geodynamic modelling, Cambridge University Press, Cambridge.
Ghannoum, O. (2009), C4 photosynthesis and water stress, Annals of Botany, 103, 6350644, doi:10.1093/aob/mcn093.
Ghezzehei, T. A., and Or, D. (2001), Rheological properties of wet soils and clays under steady and oscillatory stresses, Soil Science Society of America, 65, 624637.
Giacomini, A., Buzzi, O., Renard, B., and Giani, G. P. (2009), Experimental studies on fragmentation of rockfalls on impact with rock surfaces, International Journal of Rock Mechanics & Mining Sciences, 46, 708715, doi:10.1016/j.ijrmms.2008.09.007.
Gignoux, J., House, J. I., Hall, D., Masse, D., Nacro, H. B., and Abbadie, L. (2001), Design and test of a generic cohort model of soil organic matter decomposition: The SOMKO model, Global Ecology and Biogeography, 10(6), 639660.
Gilbert, G. (1909), The convexity of hillslopes, Journal of Geology, 17, 344350.
Gilchrist, A. R., Kooi, H., and Beaumont, C. (1994), Post-Gondwana geomorphic evolution of south-western Africa: Implications for the controls on landscape development from observations and numerical experiments, Journal of Geophysical Research (Solid Earth), 99(B6), 1221112228.
Gläser, G., Wernli, H., Kerkweg, A., and Teubler, F. (2015), The transatlantic dust transport from North Africa to the Americas – Its characteristics and source regions, Journal of Geophysical Research (Atmospheres), 120(121), 1123111252, doi:10.1002/2015JD023792.
Gómez-Villar, A., and García-Ruiz, J. M. (2000), Surface sediment characteristics and present dynamics in alluvial fans of the central Spanish Pyrenees, Geomorphology, 34(3–4), 127144, doi:10.1016/S0169-555X(99)00116-6.
Goodfellow, B. W., Hilley, G. E., Webb, S. M., Sklar, L. S., Moon, S., and Olson, C. A. (2016), The chemical, mechanical, and hydrological evolution of weathering granitoid, Journal of Geophysical Research (Earth Surface), 121, doi:10.1002/2016JF003822.
Goodwin, I. D., van Ommen, T. D., Curran, M. A. J., and Mayewski, P. A. (2004), Mid latitude winter climate variability in the South Indian and southwest Pacific regions since 1300 AD, Climate Dynamics, 22, 783794, doi:10.1007/s00382-004-0403-3.
Goren, L., Willett, S. D., Herman, F., and Braun, J. (2014), Coupled numerical–analytical approach to landscape evolution modeling, Earth Surface Processes and Landforms, 39(4), 522545, doi:10.1002/esp.3514.
Gorsevski, P. V., Gessler, P. E., Boll, J., Elliot, W. J., and Foltz, R. B. (2006), Spatially and temporally distributed modeling of landslide susceptibility, Geomorphology, 80, 178198, doi:10.1016/j.geomorph.2006.02.011.
Graf, W. H. (1984), Hydraulics of sediment transport, Water Resources Publications, Highlands Ranch, CO.
Graham, R. C., Rossi, A. M., and Hubbert, K. R. (2010), Rock to regolith conversion: Producing hospitable substrates for terrestrial ecosystems, GSA Today, 20 (2), 49, doi:10.1130/GSAT57A.1.
Greene, R. S. B., Chartres, C. J., and Hodgkinson, K. A. (1990), The effects of fire on the soil in a degraded semi-arid woodland. I. Cryptogam cover and physical and micromorphological properties, Australian Journal of Soil Research, 28, 755777.
Gregorich, E. G., Greer, K. J., Anderson, D. W., and Liang, B. C. (1998), Carbon distribution and losses: Erosion and deposition effects, Soil Tillage Research, 47(3–4), 291302, doi:10.1016/S0167-1987(98)00117-2.
Griffiths, D. V., Huang, J., and deWolfe, G. F. (2011), Numerical and analytical observations on long and infinite slopes, International Journal for Numerical and Analytical Methods in Geomechanics, 35, 569585, doi:10.1002/nag.909.
Grimm, V., et al. (2006), A standard protocol for describing individual-based and agent-based models, Ecological Modelling, 198, 115126, doi:10.1016/j.ecolmodel.2006.04.023.
Guerit, L., Metiver, F., Devauchelle, O., Lajeunesse, E., and Barrier, L. (2014), Laboratory alluvial fans in one dimension, Physical Review E, 90, 022203, doi:10.1103/PhysRevE.90.022203.
Güneralp, I., and Marston, R. A. (2012), Process–form linkages in meander morphodynamics: Bridging theoretical modeling and real world complexity, Progress in Physical Geography, 36(6), 718746, doi:10.1177/0309133312451989.
Gupta, S., Collier, J. S., Palmer-Fengate, A., and Potter, G. (2007), Catastrophic flooding origin of shelf valley systems in the English Channel, Nature, 448(19 July), 342346, doi:doi:10.1038/nature06018.
Gyasi-Agyei, Y., Willgoose, G. R., and de Troch, F. P. (1995), Effects of vertical resolution and map scale of digital elevation maps on geomorphologic parameters used in hydrology, Hydrological Processes, 9(3/4), 121140.
Hack, J. T. (1957), Studies of longitudinal stream profiles in Virginia and Maryland, USGS Professional Papers 294-B, USGS.
Hairsine, P. B., and Rose, C. W. (1992a), Modelling water erosion due to overland flow using physical principles: 1 Sheet flow, Water Resources Research, 28(1), 237243.
Hairsine, P. B., and Rose, C. W. (1992b), Modelling water erosion due to overland flow using physical principles: 2 Rill flow, Water Resources Research, 28(1), 245250.
Hairsine, P. B., and Sander, G. C. (2009), Comment on ‘A transport-distance based approach to scaling erosion rates’: Parts 1, 2 and 3 by Wainwright et al., Earth Surface Processes and Landforms, 34, 882885, doi:10.1002/esp.1782.
Hallet, P. D., Caul, S., Daniell, T. J., Barre, P., and Paterson, E. (2010), The rheology of rhizosphere formation by root exudates and soil microbes, paper presented at 19th World Congress of Soil Science, 1–6 August 2010, Brisbane, Australia.
Hammer, P. T. C., Clowes, R. M., Cook, F. A., Vasudevan, K., and van der Velden, A. J. (2013), The big picture: A lithospheric cross section of the North American continent, GSA Today, 21(6), 410, doi:10.1130/GSATG95A.1.
Han, S. C., Sauber, J., Luthcke, S. B., Ji, C., and Pollitz, F. F. (2008), Implications of postseismic gravity change following the great 2004 Sumatra-Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data, Journal of Geophysical Research (Solid Earth), 113(B11), B11413, doi:10.1029/2008JB005705.
Hancock, G. R. (2003), Effect of catchment aspect ratio on geomorphological descriptors, in Prediction in Geomorphology, edited by Wilcock, P. R. and Iverson, R. M., pp. 217230, American Geophysical Union, Washington, DC.
Hancock, G. R. ( 2005), The use of digital elevation models in the identification and characterisation of catchments, Hydrological Processes, 19, 17271749.
Hancock, G. R., Coulthard, T. J., and Lowry, J. B. C. (2016), Long-term landscape trajectory – Can we make predictions about landscape form and function for post-mining landforms?, Geomorphology, 266, 121132, doi:10.1016/j.geomorph.2016.05.014.
Hancock, G. R., Coulthard, T. J., Martinez, C., and Kalma, J. D. (2011), An evaluation of landscape evolution models to simulate decadal and centennial scale soil erosion in grassland catchments, Journal of Hydrology, 398(3–4), 171183, doi:10.1016/j.jhydrol.2010.12.002.
Hancock, G. R., Evans, K. G., McDonnell, J. J., and Hopp, L. (2012), Ecohydrological controls on soil erosion and landscape evolution, Ecohydrology, 5(4), 478490, doi:10.1002/eco.241.
Hancock, G. R., Evans, K. G., Willgoose, G. R., Moliere, D. R., Saynor, M. J., and Loch, R. J. (2000), Medium term erosion simulation of an abandoned mine site using the SIBERIA landscape evolution model, Australian Journal of Soil Research, 38, 249263.
Hancock, G. R., Hugo, J., Webb, A., and Turner, L. (2017a), Sediment transport in steep forested catchments – An assessment of scale and disturbance, Journal of Hydrology, 547, 613622, doi:10.1016/j.jhydrol.2017.02.022.
Hancock, G. R., Lowry, J. B. C., and Coulthard, T. J. (2015a), Catchment reconstruction – Erosional stability at millennial time scales using landscape evolution models, Geomorphology, 231, 1527, doi:10.1016/j.geomorph.2014.10.034.
Hancock, G. R., Lowry, J. B. C., Coulthard, T. J., Evans, K. G., and Moliere, D. R. (2010), A catchment scale evaluation of the SIBERIA and CAESAR landscape evolution models, Earth Surface Processes and Landforms, 35(8), 863875, doi:10.1002/esp.1863.
Hancock, G. R., Lowry, J. B. C., and Dever, C. (2017b), Surface disturbance and erosion by pigs: A medium term assessment for the Monsoonal tropics, Land Degradation and Development, 28(1), 255264, doi:10.1002/ldr.2636.
Hancock, G. R., Lowry, J. B. C., Dever, C., and Braggins, M. (2015b), Does introduced fauna influence soil erosion? A field and modelling assessment, Science of the Total Environment, 518–519, 189–200, doi:10.1016/j.scitotenv.2015.02.086.
Hancock, G. R., Lowry, J. B. C., Moliere, D. R., and Evans, K. G. (2008), An evaluation of an enhanced soil erosion and landscape evolution model: A case study assessment of the former Nabarlek uranium mine, Northern Territory, Australia, Earth Surface Processes and Landforms, 33(13), 20452063, doi:10.1002/esp.1653.
Hancock, G. R., Lowry, J. B. C., and Saynor, M. J. (2017c), Surface armour and erosion – Impacts on long-term landscape evolution, Land Degradation and Development, doi:10.1002/ldr.2738.
Hancock, G. R., Martinez, C., Evans, K. G., and Moliere, D. R.. (2006). A comparison of SRTM and high-resolution digital elevation models and their use in catchment geomorphology and hydrology – Australian examples, Earth Surface Processes and Landforms, 31, 809824.
Hancock, G. R., and Willgoose, G. R. (2001), The use of a landscape simulator in the validation of the SIBERIA catchment evolution model: Declining equilibrium landforms, Water Resources Research, 37(7), 19811992.
Hancock, G. R., and Willgoose, G. R. (2002), The use of a landscape simulator in the validation of the SIBERIA landscape evolution model: Transient landforms, Earth Surface Processes and Landforms, 27(12), 13211334.
Hancock, G. R., and Willgoose, G. R. (2004), An experimental and computer simulation study of erosion on a mine tailings dam wall, Earth Surface Processes and Landforms, 29(4), 457475.
Hancock, G. R., Willgoose, G. R., and Evans, K. G. (2002), Testing of the SIBERIA landscape evolution model using the Tin Camp Creek, Northern Territory, Australia, field catchment, Earth Surface Processes and Landforms, 27(2), 125143.
Hantson, S., Pueyo, S., and Chuvieco, E. (2016), Global fire size distribution: From power law to log-normal, International Journal of Wildland Fire, 25, 403412, doi:10.1071/WF15108.
Hart, S. A., and Luckai, N. J. (2014), Charcoal carbon pool in North American boreal forests, Ecosphere, 5(8), 99, doi:10.1890/ES13-00086.1.
Hasbargen, L. E., and Paola, C. (2000), Landscape instability in an experimental drainage basin, Geology, 28(12), 10671070.
Hasegawa, K. (1977), Computer simulation of the gradual migration of meandering channels, in Proceedings of the Hokkaido Branch, Japan Society of Civil Engineering, pp. 197–202 (in Japanese).
Heimsath, A. M., Chappell, J., Spooner, N. A., and Questiaux, D. G. (2003), Creeping soil, Geology, 30(2), 111114.
Heimsath, A. M., Dietrich, W. E., Nishiizummi, K., and Finkel, R. C. (1997), The soil production function and landscape equilibrium, Nature, 388(6640), 358361.
Heimsath, A. M., Dietrich, W. E., Nishiizummi, K., and Finkel, R. C. (1999), Cosmogenic nuclides, topography, and the spatial variation of soil depth, Geomorphology, 27(1–2), 151172.
Heimsath, A. M., Furbish, D. J., and Dietrich, W. E. (2005), The illusion of diffusion: Field evidence for depth-dependent sediment transport, Geology, 33(12), 949952, doi:10.1130/G21868.1.
Heimsath, A. M., Hancock, G. R., and Fink, D. (2009), The ‘humped’ soil production function: Eroding Arnhem Land, Australia, Earth Surface Processes and Landforms, 34(12), 16741684.
Heister, K. (2016), How accessible is the specific surface area of minerals? A comparative study with Al-containing minerals as model substances, Geoderma, 263, 815, doi:10.1016/j.geoderma.2015.09.001.
Henderson, F. M. (1966), Open channel flow, Macmillan, New York.
Hénin, S., and Dupuis, M. (1945), Essai de bilan de la matière organique des sols, Annales agronomiques, 15, 161172.
Hergarten, S. (2003), Landslides, sandpiles, and self-organized criticality, Natural Hazards and Earth System Sciences, 3, 505514.
Hilinski, T. E. (2001), Implementation of exponential depth distribution of organic carbon in the CENTURY model, Colorado State University, Fort Collins.
HilleRisLambers, R., Rietkerk, M., van Den Bosch, F., Prins, H. H. T., and de Kroon, H. (2001), Vegetation pattern formation in semi-arid grazing systems, Ecology, 82(1), 5061, doi:10.1890/0012-9658(2001)082[0050: VPFISA]2.0.CO;2.
Hilton, J. E., Miller, C., Sullivan, A. L., and Rucinski, C. (2015), Effects of spatial and temporal variation in environmental conditions on simulation of wildfire spread, Environmental Modelling Software, 67, 118127, doi:10.1016/j.envsoft.2015.01.015.
Ho, J.-Y., Lee, K. T., Chang, T.-C., Wang, Z.-Y., and Liao, Y.-H. (2012), Influences of spatial distribution of soil thickness on shallow landslide prediction, Engineering Geology, 124, 3846, doi:10.1016/j.enggeo.2011.09.013.
Ho, M., Verdon-Kidd, D. C., Kiem, A. S., and Drysdale, R. N. (2014), Broadening the spatial applicability of paleoclimate information – A case study for the Murray-Darling Basin, Australia, Journal of Climate, 27(7), 24772495, doi:10.1175/JCLI-D-13-00071.1.
Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., and Tucker, G. E. (2017), Creative computing with Landlab: An open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics, Earth Surface Dynamics, 5, 2146, doi:10.5194/esurf-5-21-2017.
Hobley, E. U., Willgoose, G. R., Frisia, S., and Jacobsen, G. E. (2013), Environmental and site factors controlling the vertical distribution and radiocarbon ages of organic carbon in a sandy soil, Biology and Fertility of Soils, 49(8), 10151026, doi:10.1007/s00374-013–0800-z.
Hobley, E. U., Willgoose, G. R., Frisia, S., and Jacobsen, G. E. (2014), Vertical distribution of charcoal in a sandy soil: Evidence from DRIFT spectra, SEM and radiocarbon dating, European Journal of Soil Science, 65(7), 751762, doi:10.1111/ejss.12171.
Hobley, E. U., and Wilson, B. (2016), The depth distribution of organic carbon in the soils of eastern Australia, Ecosphere, 7(1), 121, doi:e01214. 10.1002/ecs2.1214.
Hobley, E., Wilson, B., Wilkie, A., Gray, J., and Koen, T. (2015), Drivers of soil organic carbon storage and vertical distribution in Eastern Australia, Plant and Soil, 390(1–2), 111127, doi:10.1007/s11104-015-2380-1.
Hodson, M. E. (2006), Does reactive surface area depend on grain size? Results from pH 3, 25 °C far-from-equilibrium flow-through dissolution experiments on anorthite and biotite, Geochimica et Cosmochimica Acta, 70(7), 16551667, doi:10.1016/j.gca.2006.01.001.
Hole, F. D. (1981), Effects of animals on soils, Geoderma, 25(1–2), 75112, doi:10.1016/0016-7061(81)90008-2.
Holmes, K. W., Sweeney, R. D. A, S., Numata, I., Matricardi, E., Biggs, T. W., Batista, G., and Chadwick, O. A. (2004), Soil databases and the problem of establishing regional biogeochemical trends, Global Change Biology, 10(5), 796814, doi:10.1111/j.1529-8817.2003.00753.x.
Holzworth, D. P., Snow, V., Janssen, S., Athanasiadis, I. N., Donatelli, M., Hoogenboom, G., White, J. W., and Thorburn, P. (2015), Agricultural production systems modelling and software: Current status and future prospects, Environmental Modelling Software, 72, 276286, doi:10.1016/j.envsoft.2014.12.013.
Hoosbeek, M. R. (1994), Towards the quantitative modeling of pedogenesis: A review – Reply – Pedology beyond the soil landscape paradigm: Pedodynamics and the connection to other sciences, Geoderma, 63(3–4), 303307.
Hoosbeek, M. R., and Bryant, R. B. (1992), Towards the quantitative modeling of pedogenesis – A review, Geoderma, 55(3–4), 183210.
Horwath, W. (2007), Carbon cycling and formation of soil organic matter, in Soil Microbiology, Ecology, and Biochemistry, edited by Paul, E. A., pp. 303340, Academic Press, Amsterdam.
Hosseini, M., Keizer, J. J., Pelayo, O. G., Prats, S. A., Ritsema, C. J., and Geissen, V. (2016), Effect of fire frequency on runoff, soil erosion, and loss of organic matter at the micro-plot scale in north-central Portugal, Geoderma, 269, 126137, doi:10.1016/j.geoderma.2016.02.004.
Houghton, R. A. (2007), Balancing the global carbon budget, Annual Review of Earth and Planetary Sciences, 35, 313347, doi:10.1146/
Hovius, N., Stark, C. P., and Allen, P. A. (1997), Sediment flux from a mountain belt derived by landslide mapping, Geology, 25(3), 231234, doi:10.1130/0091-7613(1997)025<0231:SFFAMB>2.3.CO;2.
Howard, A. D. (1971), Simulation of stream networks by headward growth and branching, Geographical Analysis, 3, 2950.
Howard, A. D. (1980), Thresholds in river regimes, in Thresholds in Geomorphology, 9th Binghampton Geomorphology Symposium, 1978, edited by Coates, D. R. and Vitek, J. D., pp. 227258, Allen and Unwin, Boston.
Howard, A. D. (1992), Modelling channel migration and floodplain sedimentation in meandering streams, in Lowland floodplain rivers, edited by Carling, P. and Petts, G. E., pp. 142, Wiley, Chichester, UK.
Howard, A. D. (1994), A detachment-limited model of drainage-basin evolution, Water Resources Research, 30(7), 22612285.
Howard, A. D. (1996), Modelling channel evolution and floodplain morphology, in Floodplain processes, edited by Anderson, M. G., Walling, D. E., and Bates, P. D., pp. 1562, Wiley, Chichester, UK.
Howard, A. D. (1998), Long profile development of bedrock channels: Interaction of weathering, mass wasting, bed erosion, and sediment transport, in Rivers over rocks: Fluvial processes in bedrock channels, edited by Tinkler, K. J. and Wohl, E. E., pp. 297319, America Geophysical Union, Washington, DC.
Howard, A. D. (2009), How to make a meandering river, Proceedings of the National Academy of Sciences USA, 106(41), 1724617246.
Howard, A. D., Dietrich, W. E., and Seidl, M. A. (1994), Modeling fluvial erosion on regional to continental scales, Journal of Geophysical Research (Solid Earth), 99(B7), 1397113986.
Howard, A. D., and Kerby, G. (1983), Channel changes in badlands, Geological Society of America Bulletin, 94(6), 739752.
Howard, A. D., and Knutson, T. R. (1984), Sufficient conditions for river meandering – A simulation approach, Water Resources Research, 20(11), 16591667.
Huang, H. Q., and Willgoose, G. R. (1993), Some scale dependent properties of distributed rainfall-runoff models, paper presented at Towards the 21st Century, Hydrology and Water Resources Symposium, Institution of Engineers (Aust.), Newcastle.
Huang, X., and Niemann, J. D. (2006), An evaluation of the geomorphically effective event for fluvial processes over long periods, Journal of Geophysical Research (Earth Surface), 111, doi:10.1029/2006JF000477.
Huang, X., and Niemann, J. D. (2008), How do streamflow generation mechanisms affect watershed hypsometry?, Earth Surface Processes and Landforms, 33, 751772, doi:10.1002/esp.1573.
Hudson, B. D. (1994), Soil organic matter and available water capacity, Journal of Soil and Water Conservation, 49(2), 189194.
Huggett, R. J. (1975), Soil landscape systems: A model for soil genesis, Geoderma, 13, 122.
Huntly, N., and Inouye, R. (1988), Pocket gophers in ecosystems: Patterns and mechanisms, Bioscience, 38(1), 786793.
Hupy, J. P., and Schaetzl, R. J. (2006), Introducing ‘Bombturbation’, a singular type of soil disturbance and mixing, Soil Science, 171(11), 823836, doi:10.1097/
Hupy, J. P., and Schaetzl, R. J. (2008), Soil development on the WWI battlefield of Verdun, France, Geoderma, 145, 3749, doi:10.1016/j.geoderma.2008.01.024.
Hutchinson, M. F. (1995), Interpolating mean rainfall using thin plate smoothing splines, International Journal of Geographical Information Systems, 9(4), 385403, doi:10.1080/02693799508902045.
Hutchinson, M. F. (1998), Interpolation of rainfall data with thin plate smoothing splines – Part II: Analysis of Topographic Dependence, Journal of Geographic Information and Decision Analysis, 2(2), 152167.
Ibbitt, R. P., Willgoose, G. R., and Duncan, M. J. (1999), Channel network simulation models compared with data from the Ashley River, New Zealand, Water Resources Research, 35(12), 38753890.
Ikeda, H., Parker, G., and Sawai, K. (1981), Bend theory of river meanders: Part I, Linear development, Journal of Fluid Mechanics, 112, 363377.
IPCC (2007), Climate change 2007: The physical science basis. Contribution of Working Group 1 to the Fourth Assessment report of the Intergovernmental Panel on Climate Change, edited by Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., p. 996, Cambridge University Press, Cambridge.
Istanbulluoglu, E., and Bras, R. L. (2005), Vegetation-modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography, Journal of Geophysical Research (Earth Surface), 110, F02012, doi:10.1029/2004JF000249.
Istanbulluoglu, E., Tarboton, D. G., Pack, R. T., and Luce, C. H. (2004), Modeling of the interactions between forest vegetation, disturbances, and sediment yields, Journal of Geophysical Research (Earth Surface), 109, F01009, doi:10.1029/2003JF000041.
Iverson, R. M. (1990), Groundwater flow fields in infinite slopes, Geotechnique, 40(1), 139143.
Iverson, R. M. (1997), The physics of debris flows, Reviews of Geophysics, 35(3), 245296.
Iverson, R. M., and Denlinger, R. P. (2001), Flow of variably fluidized granular masses across three-dimensional terrain 1. Coulomb mixture theory, Journal of Geophysical Research (Solid Earth), 106(B1), 537552.
Iverson, R. M., and George, D. L. (2015), A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 470, 20130819, doi:10.1098/rspa.2013.0819.
Iverson, R. M., Logan, M., and Denlinger, R. P. (2004), Granular avalanches across irregular three-dimensional terrain: 2. Experimental tests, Journal of Geophysical Research (Earth Surface), 109(F1), F01015, doi:10.1029/2003JF000084.
Iverson, R. M., and Vallance, J. W. (2001), New views of granular mass flows, Geology, 29(2), 115118, doi:10.1130/0091-7613(2001)029<0115:NVOGMF>2.0.CO;2.
Ivins, E. R., and Wolf, D. (2008), Glacial isostatic adjustment: New developments from advanced observing systems and modeling, Journal of Geodynamics, 46, 6977, doi:10.1016/j.jog.2008.06.002.
Ijjasz-Vasquez, E. J., Bras, R. L., Rodriguez-Iturbe, I., Rigon, R., and Rinaldo, A. (1993), Are river basins Optimal Channel Networks, Advances in Water Resources, 16(1), 6979.
Jackson, R. B., Canadell, J. G., Ehleringer, J. R., Mooney, H. A., Sala, O. E., and Schulze, E. D. (1996), A global analysis of root distributions for terrestrial biomes, Oecologia, 108(3), 389411, doi:10.1007/BF00333714.
Jagercikova, M., Evrard, O., Balesdent, J., Lefevre, I., and Cornu, S. S. (2014), Modeling the migration of fallout radionuclides to quantify the contemporary transfer of fine particles in Luvisol profiles under different land uses and farming practices, Soil Tillage Research, 140, 8297, doi:10.1016/j.still.2014.02.013.
James, A. L., McDonnell, J. J., Tromp-van Meerveld, I., and Peters, N. E. (2010), Gypsies in the palace: Experimentalist’s view on the use of 3-D physics-based simulation of hillslope hydrological response, Hydrological Processes, 24(26), 38783893, doi:10.1002/hyp.7819.
James, T. S., and Morgan, W. J. (1990), Horizontal motions due to post-glacial rebound, Geophysical Research Letters, 17(7), 957960.
Jarvis, N. J., Villholth, K. G., and Ulen, B. (1999), Modelling particle mobilization and leaching in macroporous soil, European Journal of Soil Science, 50(4), 621632.
Jenkinson, D. S., and Coleman, K. (2008), The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover, European Journal of Soil Science, 59, 400413, doi:10.1111/j.1365-2389.2008.01026.x.
Jenkinson, D. S., and Rayner, J. H. (1977), The turnover of soil organic matter in some of the Rothamsted classical experiments, Soil Science, 123(5), 298305, doi:10.1097/00010694-197705000-00005.
Jenny, H. (1941), Factors of soil formation – A system of quantitative pedology, McGraw-Hill, New York.
Jenny, H. (1961), Derivation of state factor equations of soils and ecosystems, Proceedings of the Soil Science Society of America, 25, 385388.
Jobbágy, E. G., and Jackson, R. B. (2000), The vertical distribution of soil organic carbon and its relation to climate and vegetation, Ecological Applications, 10(2), 423436, doi:10.2307/2641104.
Johansen, M. P., Hakonson, T. E., and Breshears, D. D. (2001), Post-fire runoff and erosion from rainfall simulation: Contrasting forests with shrublands and grasslands, Hydrological Processes, 15(15), 29532965.
Johnson, B. C., Campbell, C. S., and Melosh, H. J. (2016), The reduction of friction in long runout landslides as an emergent phenomenon, Journal of Geophysical Research (Earth Surface), 121, 881889, doi:10.1002/ 2015JF003751.
Johnson, C. G., Kokelaar, B. P., Iverson, R. M., Logan, M., LaHusen, R. G., and Gray, J. M. N. T. (2012), Grain-size segregation and levee formation in geophysical mass flows, Journal of Geophysical Research (Earth Surface), 117, F01032, doi:10.1029/2011JF002185.
Johnson, I. R. (2008), Biophysical pasture model documentation: Model documentation for DairyMod. EcoMod and the SGS Pasture Model,
Johnson, J. P., and Whipple, K. X. (2007), Feedbacks between erosion and sediment transport in experimental bedrock channels, Earth Surface Processes and Landforms, 32, 10481062, doi:10.1002/esp.1471.
Johnston, C. A., et al. (2004), Carbon cycling in soil, Frontiers in Ecology and the Environment, 2(10), 522528, doi:10.1890/1540-9295(2004)002[0522:CCIS]2.0.CO;2.
Johnstone, S. A., and Hilley, G. E. (2015), Lithologic control on the form of soil-mantled hillslopes, Geology, 43(1), 8386, doi:10.1130/G36052.1.
Julien, P. Y. (2014), Downstream hydraulic geometry of alluvial rivers, in Sediment dynamics from the summit to the sea, IAHS Publ. 367, IAHS, New Orleans, doi:10.5194/piahs-367-3-2015.
Julien, P. Y., and Wargadalam, J. (1995), Alluvial channel geometry – Theory and applications, Journal of Hydraulic Division – ASCE, 121(4), 312325, doi:10.1061/(ASCE)0733–9429(1995)121:4(312).
Kaiser, M., Zederer, D. P., Ellerbrook, R. H., Sommer, M., and Ludwig, B. (2016), Effects of mineral characteristics on content, composition, and stability of organic matter fractions separated from seven forest topsoils of different pedogenesis, Geoderma, 263, 17, doi:10.1016/j.geoderma.2015.08.029.
Kalma, J. D., McVicar, T. R., and McCabe, M. F. (2008), Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data, Surveys in Geophysics, 29, 421469, doi:10.1007/s10712-008-9037-z.
Katagis, T., Gitas, I. Z., Toukiloglou, P., Veraverbeke, S., and Goosens, R. (2014), Trend analysis of medium- and coarse-resolution time series image data for burned area mapping in a Mediterranean ecosystem, International Journal of Wildland Fire, 23, 668677, doi:10.1071/WF12055.
Kavetski, D., Kuczera, G., and Franks, S. W. (2006), Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory, Water Resources Research, 42(3), W03407.
Keating, B. A., et al. (2003), An overview of APSIM, a model designed for farming systems simulation, European Journal of Agronomy, 18, 267288.
Keeley, J. E. (2009), Fire intensity, fire severity and burn severity: A brief review and suggested usage, International Journal of Wildland Fire, 18, 116126, doi:10.1071/WF07049.
Kelemen, P. B., and Behn, M. D. (2016), Formation of lower continental crust by relamination of buoyant arc lavas and plutons, Nature Geoscience, 9(3), 197205, doi:10.1038/ngeo2662.
Kinnell, P. I. A. (2010), Event soil loss, runoff and the Universal Soil Loss Equation family of models: A review, Journal of Hydrology, 385, 384397, doi:10.1016/j.jhydrol.2010.01.024.
Kirchner, J. W. (1993), Statistical inevitability of Horton’s laws and the apparent randomness of stream channel networks, Geology, 21, 591594.
Kirkby, M. J. (1967), Measurement and theory of soil creep, Journal of Geology, 75(4), 359378.
Kirkby, M. J. (1971), Hillslope process-response models based on the continuity equation, in Slopes: Form and process, pp. 1530, Institute of British Geographers, London.
Kirkby, M. J. (1976), Tests of the random network model and its application to basin hydrology, Earth Surface Processes, 1, 197212, doi:10.1002/esp.3290010302.
Kirkby, M. J. (1977), Soil development models as a component of slope models, Earth Surface Processes, 2, 203230, doi:10.1002/esp.3290020212.
Kirkby, M. J. (1985), A basis for soil profile modelling in a geomorphic context, European Journal of Soil Science, 36(1), 97121, doi:10.1111/j.1365-2389.1985.tb00316.x.
Kirkby, M. J. (1989), A model to estimate the impact of climatic-change on hillslope and regolith form, Catena, 16(4–5), 321341, doi:10.1016/0341-8162(89)90018-0.
Kirkby, M. J. (2000), Limits to modelling in the Earth and environmental sciences, in Geocomputation, edited by Abrahart, R. J., Openshaw, S., and See, L. M., pp. 374386, Taylor and Francis, London.
Kirkby, M. J., Bull, L. J., Poesen, J., Nachtergaele, J., and Vandekerckhove, L. (2003), Observed and modelled distributions of channel and gully heads – with examples from SE Spain and Belgium, Catena, 50(2–4), 415434.
Kirkby, M. J., and Statham, I. (1975), Surface stone movement and scree formation, Journal of Geology, 83(3), 349362.
Kirkby, M. J., and Willgoose, G. R. (2005), Weathering limited or transport limited removal in bedrock channel systems, paper presented at IAG, 7–11 September, Zaragoza, Spain.
Klein, F. W. (2016), Lithospheric flexure under the Hawaiian volcanic load: Internal stresses and a broken plate revealed by earthquakes, Journal of Geophysical Research (Solid Earth), 121, 24002428, doi:10.1002/ 2015JB012746.
Klemann, V., Martinec, Z., and Ivins, E. R. (2008), Glacial isostasy and plate motion, Journal of Geodynamics, 46, 95103, doi:10.1016/j.jog.2008.04.005.
Klepeis, K. A., Clarke, G. L., and Rushmer, T. (2003), Magma transport and coupling between deformation and magmatism in the continental lithosphere, GSA Today.
Knisel, W. (1980), CREAMS: A field-scale model for chemicals, runoff, and erosion from Agricultural Management Systems, Conservation Research Report No. 26, US Department of Agriculture, Washington, DC.
Knorr, W., and Lakshmi, V. (2001), Assimilation of fAPAR and surface temperature into a land surface and vegetation model, in Land surface hydrology, meteorology and climate: Observations and modeling, edited by Lakshmi, V., Albertson, J., and Schaake, J., pp. 177200, American Geophysical Union, Washington, DC.
Koltermann, C. E., and Gorelick, S. M. (1992), Paleoclimatic signature in terrestrial flood deposits, Science, 256, 17751782.
Koltermann, C. E., and Gorelick, S. M. (1995), Fractional packing model for hydraulic conductivity derived from sediment mixtures, Water Resources Research, 31(12), 32833297.
Konno, K. (2016), A general parameterized mathematical food web model that predicts a stable green world in the terrestrial ecosystem, Ecological Monographs, 86(2), 190214, doi:10.1890/15-1420.
Kooi, H., and Beaumont, C. (1994), Escarpment evolution on high-elevation rifted margins: Insights derived from a surface process model that combines diffusion, advection and reaction, Journal of Geophysical Research (Solid Earth), 99(B6), 1219112209.
Kotroni, V., and Lagouvardos, K. (2008), Lightning occurrence in relation with elevation, terrain slope, and vegetation cover in the Mediterranean, Journal of Geophysical Research (Atmospheres), D21118, doi:10.1029/2008JD010605.
Kuczera, G. (1987), Prediction of water yield reductions following a bushfire in ash-mixed species eucalypt forest, Journal of Hydrology, 94(3–4), 215236.
Kuczera, G. (1989), An application of Bayesian nonlinear-regression to hydrologic models, Advances in Engineering Software and Workstations, 11(3), 149155.
Kuehl, S. A., et al. (2016), A source-to-sink perspective of the Waipaoa River margin, Earth-Science Reviews, 153(301–334), doi:10.1016/j.earscirev.2015.10.001.
Kump, L. R., Brantley, S. L., and Arthur, M. A. (2000), Chemical weathering, atmospheric CO2, and climate, Annual Review of Earth and Planetary Sciences , 28, 611667, doi:10.1146/
Kyriakidis, P. C., Kim, J., and Miller, N. L. (2001), Geostatistical mapping of precipitation from rain gauge data using atmospheric and terrain characteristics, Journal of Applied Meteorology, 40, 18551877.
Lacoste, M., Viaud, V., Michot, D., and Walter, C. (2015), Landscape-scale modelling of erosion processes and soil carbon dynamics under land-use and climate change in agroecosystems, European Journal of Soil Science, 66(4), 780791, doi:10.1111/ejss.12267.
Laflen, J. M., Lane, L. J., and Foster, G. R. (1991), WEPP: A new generation of erosion prediction technology, Journal of Soil and Water Conservation, 46(1), 3438.
Lague, D. (2014), The stream power river incision model: Evidence, theory and beyond, Earth Surface Processes and Landforms, 39, 3861, doi:10.1002/esp.3462.
Lague, D., Crave, A., and Davy, P. (2003), Laboratory experiments simulating the geomorphic response to tectonic uplift, Journal of Geophysical Research (Solid Earth), 108(B1), 2008, doi:10.1029/2002JB001785.
Lague, D., Hovius, N., and Davy, P. (2005), Discharge, discharge variability, and the bedrock channel profile, Journal of Geophysical Research (Earth Surface), 110, F04006, doi:10.1029/2004JF000259.
Lal, R. (2003), Soil erosion and the global carbon budget, Environment International, 29, 437450, doi:10.1016/S0160-4120(02)00192-7.
Lamb, M. P., Dietrich, W. E., and Sklar, L. S. (2008), A model for fluvial bedrock incision by impacting suspended and bed load sediment, Journal of Geophysical Research (Earth Surface), 113, F03025, doi:10.1029/2007JF000915.
Lamb, M. P., Finnegan, N. J., Scheingross, J. S., and Sklar, L. S. (2016), New insights into the mechanics of fluvial bedrock erosion through flume experiments and theory, Geomorphology, 244, 3355, doi:10.1016/j.geomorph.2015.03.003.
Lambeck, K., and Johnston, P. (1998), The viscosity of the Mantle: Evidence from analyses of glacial-rebound phenomena, in The Earth’s Mantle: Composition, structure and evolution, edited by Jackson, I., pp. 461502, Cambridge University Press, Cambridge.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M. (2014), Sea level and global ice volumes from the Last Glacial Maximum to the Holocene, Proceedings of the National Academy of Sciences U.S.A, 111(43), 1529615303, doi:10.1073/pnas.1411762111.
Lambers, H., Chapin, F. S., and Pons, T. L. (2008), Plant physiological ecology, 2nd ed., Springer, New York.
Lancaster, S. T., and Bras, R. L. (2002), A simple model of river meandering and its comparison to natural channels, Hydrological Processes, 16(1), 126.
Lane, E. W. (1955), Design of stable channels, Transactions of the American Society of Civil Engineers, 120(1), 12341260.
Lane, L. J., Shirley, E. D., and Singh, V. P. (1988), Modelling erosion on hillslopes, in Modelling geomorphological systems, edited by Anderson, M. G., pp. 287308, John Wiley & Sons, New York.
Lane, P. N. J., Sheridan, G. J., and Noske, P. J. (2006), Changes in sediment loads and discharge from small mountain catchments following wildfire in south eastern Australia, Journal of Hydrology, 331, 495510, doi:10.1016/j.jhydrol.2006.05.035.
Langbein, W. B., and Schumm, S. A. (1958), Yield of sediment in relation to mean annual precipitation, Transactions of the American Geophysical Union, 30(6), 10761084, doi:10.1029/ TR039i006p01076.
Langhans, C., Smith, H. G., Chong, D. M. O., Nyman, P., Lane, P. N. J., and Sheridan, G. J. (2016), A model for assessing water quality risk in catchments prone to wildfire, Journal of Hydrology, 534, 407426, doi:10.1016/j.jhydrol.2015.12.048.
Lapotre, M. G. A., Lamb, M. P., and Williams, R. M. E. (2016), Canyon formation constraints on the discharge of catastrophic outburst floods of Earth and Mars, Journal of Geophysical Research (Planets), 121, doi:10.1002/2016JE005061.
Larcher, W. (2003), Physiological plant ecology: Ecophysiology and stress physiology of functional groups, Springer-Verlag, Berlin.
Larsen, I. J., Montgomery, D. R., and Korup, O. (2010), Landslide erosion controlled by hillslope material, Nature Geoscience, 3, 247251, doi:10.1038/NGEO776.
Larsen, L. G., Eppinga, M. B., Passalacqua, P., Getz, W. M., Rose, K. A., and Liang, M. (2016), Appropriate complexity landscape modeling, Earth-Science Reviews, 160, 111130, doi:10.1016/j.earscirev.2016.06.016.
Lasaga, A. C. (1984), Chemical kinetics of water-rock interactions, Journal of Geophysical Research, 89(B6), 40094025, doi:10.1029/JB089iB06p04009.
Lauer, J. W., and Parker, G. (2004), Modeling channel-floodplain co-evolution in sand-bed streams, in ASCE World Water and Environmental Resources 2004 Congress, 27 June–1 July, p. 10, ASCE, Salt Lake City.
Lavier, L. L., and Buck, W. R. (2002), Half graben versus large-offset low-angle normal fault: Importance of keeping cool during normal faulting, Journal of Geophysical Research (Solid Earth), 107(B6), ETG 81, doi:10.1029/2001JB000513.
Lavier, L. L., Buck, W. R., and Poliakov, A. N. B. (2000), Factors controlling normal fault offset in an ideal brittle layer, Journal of Geophysical Research (Solid Earth), 105(B10), 2343123442.
LeB. Hooke, R. (2005), Principles of glacier mechanics, Cambridge University Press, Cambridge.
Lebedeva, M. I., Fletcher, R. C., Balashov, V. N., and Brantley, S. L. (2007), A reactive diffusion model describing transformation of bedrock to saprolite, Chemical Geology, 244, 624645, doi:10.1016/j.chemgeo.2007.07.008.
Legates, D. R., Mahmood, R., Levia, D. F., DeLiberty, T. L., Quiring, S. M., Houser, C., and Nelson, F. E. (2010), Soil moisture: A central and unifying theme in physical geography, Progress in Physical Geography, 35(1), 6586, doi:10.1177/0309133310386514.
Legros, J. P., and Pedro, G. (1985), The causes of particle-size distribution in soil profiles derived from crystalline rocks, France, Geoderma, 36(1), 1525.
Lehsten, V., Arneth, A., Spessa, A., Thonicke, K., and Moustakas, A. (2016), The effect of fire on tree–grass coexistence in savannas: A simulation study, International Journal of Wildland Fire, 25, 137146, doi:10.1071/WF14205.
Leithold, E. L., Blair, N. E., and Wegmann, K. W. (2016), Source-to-sink sedimentary systems and global carbon burial: A river runs through it, Earth-Science Reviews, 153, 3042, doi:10.1016/j.earscirev.2015.10.011.
Leopold, L. B., Wolman, M. G., and Miller, J. P. (1964), Fluvial processes in geomorphology, Freeman, London.
Li, F., Dyt, C., and Griffiths, C. (2004), 3D modelling of flexural isostatic deformation, Computers & Geosciences, 30, 11051115, doi:10.1016/j.cageo.2004.08.005.
Li, Z., Liu, L., Chen, J., and Teng, H. H. (2016), Cellular dissolution at hypha- and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering, Geology, 44(4), 319322, doi:10.1130/G37561.1.
Little, D. A., Field, J. B., and Welch, S. A. (2005), Metal Dissolution from Rhizosphere and non-Rhizosphere soils using low molecular weight organic acids, paper presented at Regolith 2005: Ten Years of CRC LEME, Cooperative Research Centre for Landscape Environments and Mineral Exploration (CRC LEME), Canberra.
Llovet, J., Ruiz-Valera, M., Josa, R., and Vallejo, V. R. (2009), Soil responses to fire in Mediterranean forest landscapes in relation to the previous stage of land abandonment, International Journal of Wildland Fire, 18, 222232, doi:10.1071/WF07089.
Lobry de Bruyn, L. A., and Conacher, A. J. (1990), The role of termites and ants in soil modification: A review, Australian Journal of Soil Research, 28(1), 5593.
Lobry de Bruyn, L. A., and Conacher, A. J. (1994), The bioturbation activity of ants in agricultural and naturally vegetated habitats in semi-arid environments, Australian Journal of Soil Research, 32, 555570, doi:10.1071/SR9940555.
Lockart, N., Willgoose, G. R., Kuczera, G., Kiem, A. S., Chowdhury, A. F. M. K., Manage, N. P., Zhang, L., and Twomey, C. (2016), Case study on the use of dynamically downscaled GCM data for assessing water security on coastal NSW, Journal of Southern Hemisphere Earth Systems Science, 66(2), 177202.
Loewenherz-Lawrence, D. S. (1994), Theoretical constraints on the development of surface rills: Mode shapes, amplitude limitations and implications for nonlinear evolution, in Process Models and Theoretical Geomorphology, edited by Kirkby, M. J., pp. 315334, Wiley, Chichester, UK.
Lopéz, F., and García, M. (1998), Open-channel flow through simulated vegetation: Suspended sediment transport modeling, Water Resources Research, 34(9), 23412352, doi:10.1029/98WR01922.
Lucas, Y. (2001), The role of plants in controlling rates and products of weathering: Importance of biological pumping, Annual Review of Earth and Planetary Sciences , 29, 135163.
Luchi, R., Hooke, J. M., Zolezzi, G., and Bertoldi, W. (2010), Width variations and mid-channel bar inception in meanders: River Bollin (UK), Geomorphology, 119, 18, doi:10.1016/j.geomorph.2010.01.010.
Ludwig, J. A., Tongway, D. J., and Marsden, S. G. (1999), Stripes, strands or stipples: Modelling the influence of three landscape banding patterns on resource capture and productivity in semi-arid woodlands, Australia, Catena, 37(1–2), 257273.
Ludwig, J. A., Wilcox, B. P., Breshears, D. D., Tongway, D. J., and Imeson, A. C. (2005), Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes, Ecology, 86(2), 288297.
Lugato, E., Bampa, F., Panagos, P., Montanarella, L., and Jones, A. (2015), Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices, Global Change Biology, 20, 35573567, doi:10.1111/gcb.12551.
Lugato, E., Panagos, P., Bampa, F., Jones, A., and Montanarella, L. (2014), A new baseline of organic carbon stock in European agricultural soils using a modelling approach, Global Change Biology, 20, 313316, doi:10.1111/gcb.12292.
Lugato, E., Paustian, K., Panagos, P., Jones, A., and Borrelli, P. (2016), Quantifying the erosion effect on current carbon budget of European agricultural soils at high spatial resolution, Global Change Biology, 22, 19761984, doi:10.1111/gcb.13198.
Lynch, A. H., Beringer, J., Kershaw, P., Marshall, A., Mooney, S., Tapper, N., Turney, C., and Van Der Kaars, S. (2007), Using the paleorecord to evaluate climate and fire interactions in Australia, Annual Review of Earth and Planetary Sciences, 35, 215239, doi:10.1146/
McBratney, A. B., Odeh, I. O. A., Bishop, T. F. A., Dunbar, M. S., and Shatar, T. M. (2000), An overview of pedometric techniques for use in soil survey, Geoderma, 97(3–4), 293327.
McBratney, A. B., Santos, M. L. M., and Minasny, B. (2003), On digital soil mapping, Geoderma, 117(1–2), 352, doi:10.1016/S0016-7061(03)00223-4.
McCarthy, M. A., Gill, A. M., and Bradstock, R. A. (2001), Theoretical fire-interval distributions, International Journal of Wildland Fire, 10(1), 7377, doi:10.1071/wf01013.
McFadden, L. D., and Knuepfer, P. L. K. (1990), Soil geomorphology: The linkage of pedology and surficial processes, Geomorphology, 3(3/4), 197205, doi:10.1016/0169–555X(90)90003-9.
McGuire, L. A., Pelletier, J. D., Gomez, J. A., and Nearing, M. A. (2013), Controls on the spacing and geometry of rill networks on hillslopes: Rain splash detachment, initial hillslope roughness, and the competition between fluvial and colluvial transport, Journal of Geophysical Research (Earth Surface), 118, 241256, doi:10.1002/jgrf.20028.
McKenzie, B. M., and Dexter, A. R. (1993), Size and orientation of burrows made by the earthworms Aporrectodea-Rosea and a-Caliginosa, Geoderma, 56(1–4), 233241.
McKinnon, W. B., et al. (2016), Convection in a volatile nitrogen-ice-rich layer drives Pluto’s geological vigour, Nature, 534(7605), 8285, doi:10.1038/nature18289.
McVicar, T. R., Van Niel, T. G., Li, L. T., Hutchinson, M. F., Mu, X. M., and Liu, Z. H. (2007), Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences, Journal of Hydrology, 338, 196220, doi:10.1016/j.jhydrol.2007.02.018.
Maestre, F. T., et al. (2015), Increasing aridity reduces soil microbial diversity and abundance in global drylands, Proceedings of the National Academy of Sciences U.S.A, 112(51), 1568415689, doi:10.1073/pnas.1516684112.
Maher, K. (2010), The dependence of chemical weathering rates on fluid residence time, Earth and Planetary Science Letters, 294(1–2), 101110. doi:10.1016/j.epsl.2010.03.010.
Maher, K., Steefel, C. I., White, A. F., and Stonestrom, D. A. (2009), The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California, Geochimica et Cosmochimica Acta, 73, 28042831, doi:10.1016/j.gca.2009.01.030.
Major, J. J., and Iverson, R. M. (1999), Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins, Geological Society of America Bulletin, 111(10), 14241434.
Malamoud, K., McBratney, A. B., Minasny, B., and Field, D. J. (2009), Modelling how carbon affects soil structure, Geoderma, 149(1–2), 1926, doi:10.1016/j.geoderma.2008.10.018.
Malamud, B. D., Millington, J. D. A., and Perry, G. L. W. (2005), Characterizing wildfire regimes in the Unites States, Proceedings of the National Academy of Sciences U.S.A, 102(13), 46944699, doi:10.1073/pnas.0500880102.
Malamud, B. D., Morein, G., and Turcotte, D. L. (1998), Forest fires: An example of self-organized critical behavior, Science, 281(5384), 18401842.
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenback, P. (2004), Landslide inventories and their statistical properties, Earth Surface Processes and Landforms, 29, 687711, doi:10.1002/esp.1064.
Mann, M. E., Bradley, R. S., and Hughes, M. K. (1999), Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations, Geophysical Research Letters, 26(6), 759762, doi:10.1029/1999GL900070.
Mao, L., Cooper, J. R., and Frostick, L. E. (2011), Grain size and topographical differences between static and mobile armour layers, Earth Surface Processes, 36, 13211334, doi:10.1002/esp.2156.
Markgraf, W., Watts, C. W., Whalley, W. R., Hrkac, T., and Horn, R. (2012), Influence of organic matter on rheological properties of soil, Applied Clay Science, 64, 2533, doi:10.1016/j.clay.2011.04.009.
Marshall, J. S., and Palmer, W. M. (1948), The distribution of raindrops with size, Journal of Meteorology, 5, 165166.
Martin, Y. E. (2007), Wildfire disturbance and shallow landsliding in coastal British Columbia over millennial time scales: A numerical modelling study, Catena, 69(3), 206219, doi:10.1016/j.catena.2006.05.006.
Martinez-Casasnovas, J. A. (2003), A spatial information technology approach for the mapping and quantification of gully erosion, Catena, 50(2–4), 293308.
Mataix-Solera, J., Gómez, I., Navarro-Pedreño, J., Guerrero, C., and Moral, R. (2002), Soil organic matter and aggregates affected by wildfire in a Pinus halepensis forest in a Mediterranean environment, International Journal of Wildland Fire, 11, 107114, doi:10.1071/WF02020.
Matsuoka, N., and Moriwaki, K. (1992), Frost heave and creep in the Sør Rondane Mountains, Antarctica, Arctic and Alpine Research, 24(4), 271280.
Mead, S. R., and Cleary, P. W. (2015), Validation of DEM prediction for granular avalanches on irregular terrain, Journal of Geophysical Research (Earth Surface), 120, 17241742, doi:10.1002/2014JF003331.
Mein, R. G., Laurenson, E. M., and McMahon, T. A. (1976), Simple nonlinear model for flood estimation, Journal of Hydraulic Division – ASCE 100(NHY11), 15071518.
Meisina, C., and Scarabelli, S. (2007), A comparative analysis of terrain stability models for predicting shallow landslides in colluvial soils, Geomorphology, 87, 207223, doi:10.1016/j.geomorph.2006.03.039.
Melini, D., Gegout, P., Spada, G., and King, M. A. (2015), REAR: A Regional Elastic Rebound calculator, GitHub.
Mesa, O. J. (1986), Analysis of channel networks parameterized by elevation, PhD thesis, University of Mississippi.
Metherell, A. K., Harding, L. A., Cole, C. V., and Parton, W. J. (1994), CENTURY Soil organic matter environment, Technical Documentation Agrosystem, Version 4.0, Great Plains System Research Unit Technical Report No. 4, USDA-ARS, Fort Collins, CO.
Michaelides, K., and Martin, G. J. (2012), Sediment transport by runoff on debris-mantled dryland hillslopes, Journal of Geophysical Research (Earth Surface), 117, F03014, doi:10.1029/2012JF002415.
Michaelides, K., and Singer, M. B. (2014), Impact of coarse sediment supply from hillslopes to the channel in runoff-dominated, dryland fluvial systems, Journal of Geophysical Research (Earth Surface), 119, 12051221, doi:10.1002/2013JF002959.
Migon, P., and Thomas, M. F. (2002), Grus weathering mantles – Problems of interpretation, Catena, 49(1–2), 524.
Millar, R. G. (2005), Theoretical regime equations for mobile gravel-bed rivers with stable banks, Geomorphology, 64(3–4), 207220, doi:10.1016/j.geomorph.2004.07.001.
Milledge, D. G., Bellugi, D., McKean, J. A., Densmore, A. L., and Dietrich, W. E. (2014), A multidimensional stability model for predicting shallow landslide size and shape across landscapes, Journal of Geophysical Research (Earth Surface), 119, 24812504, doi:10.1002/2014JF003135.
Minasny, B., Finke, P., Stockmann, U., Vanwalleghem, T., and McBratney, A. B. (2015), Resolving the integral connection between pedogenesis and landscape evolution, Earth-Science Reviews, 150, 102120, doi:10.1016/j.earscirev.2015.07.004.
Minasny, B., and McBratney, A. B. (1999), A rudimentary mechanistic model for soil production and landscape development, Geoderma, 90(1–2), 321, doi:10.1016/S0016-7061(98)00115-3.
Minasny, B., and McBratney, A. B. (2001), A rudimentary mechanistic model for soil formation and landscape development II. A two-dimensional model incorporating chemical weathering, Geoderma, 103(1–2), 161179, doi:10.1016/S0016-7061(01)00075-1.
Minasny, B., and McBratney, A. B. (2006), Mechanistic soil–landscape modelling as an approach to developing pedogenetic classifications, Geoderma, 133(1–2), 138149, doi:10.1016/j.geoderma.2006.03.042.