Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T04:33:36.951Z Has data issue: false hasContentIssue false

Section 1 - Starting a New Laboratory and Training Protocols

Published online by Cambridge University Press:  11 May 2017

Markus H. M. Montag
Affiliation:
ilabcomm GmbH, St Augustin, Germany
Dean E. Morbeck
Affiliation:
Fertility Associates, New Zealand
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Principles of IVF Laboratory Practice
Optimizing Performance and Outcomes
, pp. 1 - 78
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Swain, J. and Lagunov, A. IVF incubator handling, in Standard Operational Procedures in Reproductive Medicine Laboratory and Clinical Practice, ed. Rizk, B. and Montag, M.. (Boca Raton, FL: CRC Press, in press).Google Scholar
Swain, J. E. Optimizing the culture environment in the IVF laboratory: impact of pH and buffer capacity on gamete and embryo quality. Reprod Biomed Online 2010; 21(1):616.Google Scholar
Swain, J. E. Is there an optimal pH for culture media used in clinical IVF? Hum Reprod Update 2012; 18(3):333–9.CrossRefGoogle ScholarPubMed
Hall, J., et al. The origin, effects and control of air pollution in laboratories used for human embryo culture. Hum Reprod 1998; 13(Suppl. 4):146–55.CrossRefGoogle ScholarPubMed
Schimmel, T., et al. Removal of volatile organic compounds from incbuators used for gamete and embryo culture. Fertil Steril 1997; 68(Suppl. 1):S165.CrossRefGoogle Scholar
Morbeck, D. E. Air quality in the assisted reproduction laboratory: a mini-review. J Assist Reprod Genet 2015; 32(7):1019–24.CrossRefGoogle ScholarPubMed
Heitmann, R. J., et al. Live births achieved via IVF are increased by improvements in air quality and laboratory environment. Reprod Biomed Online, 2015.CrossRefGoogle Scholar

References

Human Fertilisation and Embryology Authority (HFEA). Code of Practice, 8th edn. (London: HFEA, 2009, revised 2015).Google Scholar
Commission Directive 2006/17/EC of 8 February 2006 Implementing Directive 2004/23/EC of the European Parliament and of the Council as Regards Certain Technical Requirements for the Donation, Procurement and Testing of Human Tissues and Cells.Google Scholar
Khoudja, R. Y., Xu, Y., Li, T. and Zhou, C. Better IVF outcomes following improvements in laboratory air quality. J Assist Reprod Genet 2013; 30(1):6976.CrossRefGoogle ScholarPubMed
Toft, B. Independent Review of the Circumstances Surrounding Four Adverse Events That Occurred in the Reproductive Medicine Units at The Leeds Teaching Hospitals NHS Trust, West Yorkshire, Department of Health 40216 1P 0.4k Jun 4 (CWP).Google Scholar
Toft, B. and Mascie-Taylor, H. Involuntary automaticity: a work-system induced risk to safe health care. Health Services Manage Res 2005; 18(4):211–16.CrossRefGoogle ScholarPubMed

References

ASRM Practice Committee. Recommended practices for the management of embryology, andrology, and endocrinology laboratories: a committee opinion. American Society for Reproductive Medicine, Birmingham, AL, 2014.Google Scholar
Centers for Medical and Medicaid Services. What do I need to do to assess personnel competency? Available at www.cms.gov/Regulations-and-Guidance/Legislation/CLIA/Downloads/CLIA_CompBrochure_508.pdf (accessed 30 September, 2015).Google Scholar

References

Johansson, L. Handling gametes and embryos: oocyte collection and embryo culture. In A Practical Guide to Selecting Gametes and Embryos, ed. Montag, M. (Boca Raton, FL: CRC Press, 2014).Google Scholar
Swain, J. E. Optimizing the culture environment in the IVF laboratory: impact of pH and buffer capacity on gamete and embryo quality. Reprod Biomed Online 2010; 18(6):799810.CrossRefGoogle Scholar

References

Pasqualini, R. S. and Quintans, C. J. Clinical practice of embryo transfer. Reprod Biomed Online 2002; 4(1):8392.CrossRefGoogle ScholarPubMed
Eytan, O., Elad, D. and Jaffa, A. J. Bioengineering studies of the embryo transfer procedure. Ann NY Acad Sci 2007; 1101:2137.CrossRefGoogle ScholarPubMed
Derks, R. S., Farquhar, C., Mol, B. W., Buckingham, K. and Heineman, M. J. Techniques for preparation prior to embryo transfer. Cochrane Database Syst Rev 2009; (4):CD007682.Google Scholar
Abou-Setta, A. M. Air-fluid versus fluid-only models of embryo catheter loading: a systematic review and meta-analysis. Reprod Biomed Online 2007; 14(1):80–4.Google ScholarPubMed
Halvaei, I., Khalili, M. A., Razi, M. H., Agha-Rahimi, A. and Nottola, S. A. Impact of different embryo loading techniques on pregnancy rates in in vitro fertlization/embryo transfer cycles. J Hum Reprod Sci 2013; 6(1):65–9.Google Scholar
de los Santos, M. J. and Ruiz, A. Protocols for tracking and witnessing samples and patients in assisted reproductive technology. Fertil Steril 2013; 100(6):1499–502.CrossRefGoogle ScholarPubMed
Schoolcraft, W. B., Surrey, E.S. and Gardner, D. K. Embryo transfer: techniques and variables affecting success. Fertil Steril 2001; 76(5):863–70 (Epub 2001/11/13).Google Scholar
Lopez, M. J., Garcia, D., Rodriguez, A., Colodron, M., Vassena, R. et al. Individualized embryo transfer training: timing and performance. Hum Reprod 2014; 29(7):1432–7.CrossRefGoogle ScholarPubMed
Gianaroli, L., Plachot, M., van Kooij, R., Al-Hasani, S., Dawson, K. et al. ESHRE guidelines for good practice in IVF laboratories. Committee of the Special Interest Group on Embryology of the European Society of Human Reproduction and Embryology. Hum Reprod 2000; 15(10):2241–6.Google Scholar
Keck, C., Fischer, R., Baukloh, V. and Alper, M. Staff management in the in vitro fertilization laboratory. Fertil Steril 2005; 84(6):1786–8.CrossRefGoogle ScholarPubMed

References

Katz, E., Watts, L. D., Wright, K. E., Bennett, F. C., Litz, J. L. et al. Effect of incremental time experience on the results of in vitro fertilisation with intracytoplasmic sperm injection (ICSI). J Assist Reprod Genet 1996; 13(6):501–4.Google Scholar
Ebner, T., Yaman, C., Moser, M., Sommergruber, M., Jesacher, K. et al. A prospective study on oocyte survival rate after ICSI: influence of injection technique and morphological features. J Assist Reprod Genet 2001; 18(12):623–8.CrossRefGoogle ScholarPubMed
Daniel, C. E., Hickman, C., Wilkinson, T., Oliana, O. Gwinnett, D. et al. Maximising success rates by improving ICSI technique: which factors affect outcome? Fertility and Sterility 2015; 104(3):e95–6.Google Scholar
Dumoulin, J. M., Coonen, E., Bras, M., Bergers-Janssen, J. M., Ignoul-Vanvuchelen, R. C. et al. Embryo development and chromosomal anomalies after ICSI: effect of the injection procedure. Hum Reprod 2001; 16(2):306–12.Google Scholar
Tsai, M. Y., Huang, F. J., Kung, F. T., Lin, Y. C., Chang, S. Y. et al. Influence of polyvinylpyrrolidone on the outcome of intracytoplasmic sperm injection. J Reprod Med 2000; 45(2):115–20.Google ScholarPubMed
Nagy, Z. P., Liu, J., Joris, H., Bocken, G., Desmet, B. et al. The influence of the site of sperm deposition and mode of oolemma breakage at intracytoplasmic sperm injection on fertilization and embryo development rates. Hum Reprod 1995; 10(12):3171–7.CrossRefGoogle ScholarPubMed
Rubino, P., Viganò, P., Luddi, A. and Piomboni, P. The ICSI procedure from past to future: a systematic review of the more controversial aspects. Hum Reprod Update 2016; 22(2):194227.Google ScholarPubMed
Flaherty, S. P., Payne, D., Swann, N. J. and Mattews, C. D. Aetiology of failed and abnormal fertilization after intracytoplasmic sperm injection. Hum Reprod 1995; 10(10):2623–9.CrossRefGoogle ScholarPubMed
Blake, M., Garrisi, J., Tomkin, G. and Cohen, J. Sperm deposition site during ICSI affects fertilization and development. Fertil Steril 2000; 73(1):31–7.CrossRefGoogle ScholarPubMed
Nagy, Z. P., Oliveira, S. A., Abdelmassih, V. and Abdelmassih, R. Novel use of laser to assist ICSI for patients with fragile oocytes: a case report. Reprod Biomed Online 2002; 4(1):2731.Google Scholar

References

McLaren, A. Can mouse blastocysts stimulate a uterine response before losing the zona pellucida? J Reprod Fertil 1969; 19:199201.Google Scholar
Gonzales, D. S. and Bavister, B. D. Zona pellucida escape by hamster blastocysts in vitro is delayed and morphologically different compared with zona escape in vivo. Biol Reprod 1995; 52(2):470–80.CrossRefGoogle ScholarPubMed
Montag, M., Koll, B., Holmes, P. and van der Ven, H. Significance of the number of embryonic cells and the state of the zona pellucida for hatching of mouse blastocysts in vitro versus in vivo. Biol Reprod 2000; 62(6):1738–44.CrossRefGoogle ScholarPubMed
Malter, H. E. and Cohen, J. Blastocyst formation and hatching in vitro following zona drilling of mouse and human embryos. Gamete Res 1989; 24:6780.Google Scholar
Cohen, J., Alikani, M., Trowbridge, J. and Rosenwaks, Z. Implantation enhancement by selective assisted hatching using zona drilling of human embryos with poor prognosis. Hum Reprod 1992; 7:685–91.CrossRefGoogle ScholarPubMed
Cohen, J. Assisted hatching: indications and techniques. Acta Eur Fertil 1993; 24:215–19.Google ScholarPubMed
Schimmel, T., Cohen, J., Saunders, H. and Alikani, M. Laser-assisted zona pellucida thinning does not facilitate hatching and may disrupt the in vitro hatching process: a morphokinetic study in the mouse. Hum Reprod 2014; 29:2670–9.Google Scholar
Cohen, J. and Feldberg, D. Effects of the size and number of zona pellucida openings on hatching and trophoblast outgrowth in the mouse embryo. Mol Reprod Dev 1991; 30:70–8.CrossRefGoogle ScholarPubMed
Carney, S. K., Das, S., Blake, D., Farquhar, C., Seif, M. M. et al. Assisted hatching on assisted conception (in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI)). Cochrane Database Syst Rev 2012; 12:CD001894.Google ScholarPubMed
Martins, W. P., Rocha, I. A., Ferriani, R. A. and Nastri, C. O. Assisted hatching of human embryos: a systematic review and meta-analysis of randomized controlled trials. Hum Reprod Update 2011; 17:438–53.CrossRefGoogle ScholarPubMed
Practice Committee of the American Society for Reproductive Medicine and Practice Committee of the Society for Assisted Reproductive Technology. Role of assisted hatching in in vitro fertilization: a guideline. Fertil Steril 2014; 102:348–51.Google Scholar
Singh, H., Nardo, L., Kimber, S. J. and Aplin, J. D. Early stages of implantation as revealed by an in vitro model. Reproduction 2010; 139:905–14.CrossRefGoogle ScholarPubMed
Vajta, G., Rienzi, L. and Bavister, B. D. Zona-free embryo culture: is it a viable option to improve pregnancy rates? Reprod Biomed Online 2010; 21(1):1725.CrossRefGoogle ScholarPubMed
Ge, H. S., Zhou, W., Zhang, W. and Lin, J. J. Impact of assisted hatching on fresh and frozen-thawed embryo transfer cycles: a prospective, randomized study. Reprod Biomed Online 2008; 16:589–96.Google Scholar
Cohen, J. and Alikani, M. Evidence-based medicine and its application in clinical preimplantation embryology. Reprod Biomed Online 2013; 27:547–61.CrossRefGoogle ScholarPubMed
Chailert, C., Sanmee, U., Piromlertamorn, W., Samchimchom, S. and Vutyavanich, T. Effects of partial or complete laser-assisted hatching on the hatching of mouse blastocysts and their cell numbers. Reprod Biol Endocrinol 2013; 11:21.CrossRefGoogle ScholarPubMed
Douglas-Hamilton, D. H. and Conia, J. Thermal effects in laser-assisted pre-embryo zona drilling. J Biomed Opt 2001; 6(2):205–13.CrossRefGoogle ScholarPubMed

References

Gardner, D. K. and Schoolcraft, W. B. In vitro culture of human blastocysts. In Toward Reproductive Certainty: Fertility and Genetics Beyond, ed. Jansen, R. and Mortimer, D. (pp. 378–88) (Carnforth, UK: Parthenon, 1999).Google Scholar
Capalbo, A., Ubaldi, F. M., Cimadomo, D., Maggiulli, R., Patassini, C. et al. Consistent and reproducible outcomes of blastocyst biopsy and aneuploidy screening across different biopsy practitioners: a multicentre study involving 2,586 embryo biopsies. Hum Reprod 2016; 31(1):199208.CrossRefGoogle Scholar
Kort, J. D., Lathi, R. B., Brookfield, K., Baker, V. L., Zhao, Q. et al. Aneuploidy rates and blastocyst formation after biopsy of morulae and early blastocysts on day 5. J Assist Reprod Genet 2015; 32(6):925–30.CrossRefGoogle ScholarPubMed

References

Vajta, G. Vitrification in human and domestic animal embryology: work in progress. Reprod Fertil Dev 2013; 25(5):719–27.CrossRefGoogle ScholarPubMed
Cobo, A. and Diaz, C. Clinical application of oocyte vitrification: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril 2011; 96(2):277–85.Google Scholar
Fahy, G. M., Levy, D. L. and Ali, S. E. Some emerging principles underlying the physical properties, biological actions and utility of vitrification solutions. Cryobiology 1987; 24:196213.CrossRefGoogle ScholarPubMed
Rall, W. F. Factors affecting the survival of mouse embryos cryopreserved by vitrification. Cryobiology 1987; 24:387402.CrossRefGoogle ScholarPubMed
Kuleshova, L., Gianaroli, L., Magli, C. Ferraretti, T. and Trounson, A. Birth following vitrification of a small number of human oocytes: case report. Hum Reprod 1999; 14:3077–9.CrossRefGoogle ScholarPubMed
Kuwayama, M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology 2007; 67:7380.CrossRefGoogle ScholarPubMed
Chian, R. C., Huang, J. Y., Gilbert, L., Son, W. Y, Holzer, H. et al. Obstetric outcomes following vitrification of in vitro and in vivo matured oocytes. Fertil Steril 2009; 91:2391–8.CrossRefGoogle ScholarPubMed
Cobo, A., Remohi, J., Chang, C. C. and Nagy, Z. P. Oocyte cryopreservation for donor egg banking. Reprod Biomed Online 2011; 23:341–6.CrossRefGoogle ScholarPubMed
Fahy, G. M. and Wowk, B. Principles of cryopreservation by vitrification. In Cryopreservation and Freeze-Drying Protocols, Methods in Molecular Biology, ed. W. F. Wolkers and H. Oldenhof (pp. 21–62). 2015.CrossRefGoogle Scholar
Pegg, David E. Principles of Cryopreservation. In Cryopreservation and Freeze-Drying Protocols, ed. Day, J. G. and Stacey, G. N. (pp. 3957) (Totowa, NJ: Humana Press, 2007), doi: 10.1007/978-1-59745-362-2_3.CrossRefGoogle Scholar
Leibo, S. P. and Pool, T. B. The principal variables of cryopreservation: solutions, temperatures, and rate changes, Fertility and Sterility, 2011;96(2):269–276.Google Scholar

References

Bavister, B. D. Culture of preimplantation embryos: facts and artifacts.Hum Reprod Update 1995; 1(2):91148.CrossRefGoogle ScholarPubMed
Leese, H. J. Metabolic control during preimplantation mammalian development. Human Reproduction Update 1995; 1:6372.Google Scholar
Punt–van der Zalm, J. P. E. M., Hendriks, J. C. M., Westphal, J. R., Kremer, J. A. M., Teerenstra, S. et al. Toxicity testing of human assisted reproduction devices using the mouse embryo assay. Reproductive BioMedicine Online 2009; 18(4):529–35.CrossRefGoogle ScholarPubMed
Bavister, B. and Andrews, J. C. A rapid sperm motility bioassay procedure for quality control testing of water and culture media. J In Vitro Fert Embryo Transf 1988; 5:6775.CrossRefGoogle ScholarPubMed
Critchlow, J. D., Matson, P. L., Newman, M. C. et al. Quality control in an in-vitro fertilization laboratory: use of human sperm survival studies. Hum Reprod 1989; 4:545–9.Google Scholar
Stovall, D. W., Guzick, D. S., Berga, S. L. et al. Sperm recovery and survival: two tests that predict in vitro fertilization outcome. Fertil Steril 1994; 62:1244–9.Google Scholar
Alvarez, J. G. and Storey, B. T. Spontaneous lipid peroxidation in rabbit and mouse epididymal spermatozoa: dependence of rate on temperature and oxygen concentration. Biol Reprod 1985; 32:342–51.CrossRefGoogle ScholarPubMed
Claassens, O. E., Wehr, J. B. and Harrison, K. L. Optimizing sensitivity of the human sperm motility assay for embryo toxicity testing. Hum Reprod 2000; 15:1586–91.Google Scholar
Lane, M. and Gardner, DK. Differential regulation of mouse embryo development and viability by amino acids. J Reprod Fertil 1997; 109:153–64.Google Scholar
Davidson, A., Vermesh, M., Lobo, R. and Paulson, R. Mouse embryo culture as quality control for human in vitro fertilization: the one-cell versus the two-cell model. Fertil Steril 1988; 49:516–21.CrossRefGoogle Scholar
Scott, L. F., Sundaram, S. G. and Smith, S. The relevance and use of mouse embryo bioassays for quality control in an assisted reproductive technology program. Fertil Steril 1993; 60:559–68.CrossRefGoogle Scholar
Hughes, P. M., Morbeck, D. E., Hudson, S., Fredrickson, J., Walker, D. L. et al. Peroxides in mineral oil used for in vitro fertilization: defining limits of standard quality control assays. J Assist Reprod Genet 2010; 27:8792.CrossRefGoogle ScholarPubMed
Morbeck, D.E., Khan, Z., Barnidge, D. R. and Walker, D. L. Washing mineral oil reduces contaminants and embryotoxicity. Fertil Steril 2010; 94:2747–52.CrossRefGoogle ScholarPubMed
Suzuki, O., Asano, T., Yamamoto, Y., Takano, K. and Koura, M. Development in vitro of preimplantation embryos from 55 mouse strains. Reprod Fertil Dev 1996; 8:975–80.Google Scholar
Khan, Z., Morbeck, D. E., Walker, D. L. et al. Mouse embryos and in vitro stress: does mouse strain matter? Fertil Steril 2010; 94:S58.Google Scholar
Gardner, D. K., Reed, L., Linck, D., Sheehan, C. and Lane, M. Quality control in human in vitro fertilization. Semin Reprod Med 2005; 23(4):319–24.Google Scholar
Wolff, H. S., Fredrickson, J. R., Walker, D. L. and Morbeck, D. E. Advances in quality control: mouse embryo morphokinetics are sensitive markers of in vitro stress. Hum Reprod 2013; 28(7):1776–82.Google Scholar

References

Carrell, D. T. and Cartmill, D. A brief review of current and proposed federal government regulation of assisted reproduction laboratories in the United States. J Androl 2002; 23:611–17.Google Scholar
Gorrill, M. J., Rinehart, J. S., Tamhane, A. C. and Gerrity, M. Comparison of the hamster sperm motility assay to the mouse one-cell and two-cell embryo bioassays as quality control tests for in vitro fertilization. Fertil Steril 1991; 55(2):345–54.CrossRefGoogle Scholar
de Jonge, C. J., Centola, G. M. Reed, M. L., Shabanowitz, R. B., Simon, S. D. et al. Andrology lab corner: human sperm survival assay as a bioassay for the assisted reproductive technologies laboratory. J Androl 2003; 24:1618.CrossRefGoogle Scholar
Bavister, B. and Andrews, J. C. A rapid sperm motility bioassay procedure for quality control testing of water and culture media. J In Vitro Fertil Embryo Trans 1988; 5(2):6775.CrossRefGoogle ScholarPubMed
Rinehart, J. S., Bavister, B. D. and Gerrity, M. Quality control in the in vitro fertilization laboratory: comparison of bioassay systems for water quality. J In Vitro Fertil Embryo Trans 1988; 5(6):335–42.CrossRefGoogle ScholarPubMed
Davidson, A., Vermesh, M., Lobo, R. A. and Paulson, R. J. Mouse embryo culture as a quality control for human in vitro fertilization: the one-cell versus the two-cell model. Fertil Steril 1988; 49:516–21.CrossRefGoogle Scholar
Claasens, O. E., Wehr, J. B. and Harrison, K. L. Optimizing sensitivity of the human sperm motility assay for embryo toxicity testing. Hum Reprod 2000; 15(7):1586–91.CrossRefGoogle Scholar
Critchlow, J. D., Matson, P. L., Newman, M. C., Horne, G., Troup, S. A. et al. Quality control in an in vitro fertilization laboratory: use of human sperm survival studies. Hum Reprod 1989; 4(5):545–9.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×