Skip to main content Accessibility help
×
Home
  • Print publication year: 2009
  • Online publication date: August 2010

Part 1 - Sleep and normal aging

References

1. Pandi-PerumalSR, SeilsLK, KayumovL, et al. Senescence, sleep, and circadian rhythms. Ageing Res Rev 2002;1:559–604.
2. TurekFW, PenevP, ZhangY, Van ReethO, ZeeP. Effects of age on circadian system. Neurosci Biobehav Rev 1995;19:53–58.
3. TurekFW, PenevP, ZhangY, et al. Alterations in the circadian system in advanced age. Ciba Found Symp 1995;183:212–26.
4. WeinertD. Age-dependent changes of the circadian system. Chronobiol Int 2000;17:261–83.
5. PittendrighCS, MinisDH. Circadian systems: longevity as a function of circadian resonance inDrosophila melanogaster. Proc Natl Acad Sci USA 1972;69:1537–9.
6. DavisFC. Ontogeny of circadian rhythms. In AschoffJ, ed. Biological Rhythms: Handbook of Behavioral Neurobiology, vol. 4. 1981: pp. 257–74.
7. SamisHV Jr. Aging: the loss of temporal organization. Perspect Biol Med 1968;12:95–102.
8. IngramDK, LondonED, ReynoldsMA. Circadian rhythmicity and sleep: effects of aging in laboratory animals. Neurobiol Aging 1982;3:287–97.
9. Van GoolWA, MirmiranM. Effects of aging and housing in an enriched environment on sleep-wake patterns in rats. Sleep 1986;9:335–47.
10. Van GoolWA, MirmiranM. Aging and circadian rhythms. Prog Brain Res 1986;70:255–77.
11. WelshDK, RichardsonGS, DementWC. Effect of age on the circadian pattern of sleep and wakefulness in the mouse. J Gerontol 1986;41:579–86.
12. BrockMA. Chronobiology of aging. J Am Geriatr Soc 1991;39:74–91.
13. StoneWS, RuddRJ, ParsonsMW, GoldPE. Memory scores in middle aged rats predict later deficits in memory, paradoxical sleep, and blood glucose regulation in old age. Exp Aging Res 1997;23:287–300.
14. MorinLP. Age-related changes in hamster circadian period, entrainment and rhythm splitting. J Biol Rhythms 1988;3:237–48.
15. SwaabDF, FliersE, PartimanTS. The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res 1985;342:37–44.
16. RoozendaalB, Van GoolWA, SwaabDF, HoogendijkJE, MirmiranM. Changes in vasopressin cells of the rat suprachiasmatic nucleus with aging. Brain Res 1987;409:259–64.
17. CheeCA, RoozendaalAB, SwaabDF, GoudsmitE, MirmiranM. Vasoactive intestinal polypeptide neuron changes in the senile rat suprachiasmatic nucleus. Neurobiol Aging 1988;9:307–12.
18. WisePM, CohenIR, WeilandNG, LondonDE. Aging alters the circadian rhythm of glucose utilization in the suprachiasmatic nucleus. Proc Natl Acad Sci USA 1988;85:5305–09.
19. SatinoffE, LiH, TchengTK, et al. Do the suprachiasmatic nuclei oscillate in old rats as they do in young ones?Am J Physiol 1993;265:R1216–22.
20. SutinEL, DementWC, HellerHC, KilduffTS. Light-induced gene expression in the suprachiasmatic nucleus of young and aged rats. Neurobiol Aging 1993;14:441–6.
21. HofmanMA, SwaabDF. Alterations in circadian rhythmicity of the vasopressin-producing neurons of the suprachiasmatic nucleus (SCN) with aging. Brain Res 1994;651:134–42.
22. HofmanMA, SwaabDF. Influence of aging on the seasonal rhythm of the vasopressin-expressing neurons in the human suprachiasmatic nucleus. Neurobiol Aging 1995;16:965–71.
23. ReiterRJ, RichardsonB, JohnsonL, FergusonB, DinhD. Pineal melatonin rhythm: reduction in aging Syrian hamsters. Science 1980;210:1372–74.
24. ReiterRJ, CraftCM, JohnsonJE Jr, et al. Age associated reduction in nocturnal pineal melatonin levels in female rats. Endocrinology 1981;109:1295–97.
25. YunisEJ, FernandesG, NelsonW, HalbergF. Circadian temperature rhythms and aging in rodents. In ShevingLE, HalbergF, PaulyJE, eds. Chronobiology. Great Britain: William Heinemann; 1974: pp. 54–65.
26. McDonaldRB, Hoban-HigginsTM, RuheRC, FullerCA, HorwitzBA. Alterations in endogenous circadian rhythm of core temperature in senescent Fischer 344 rats. Am J Physiol 1999;276:R824–30.
27. RosenbergRS, ZepelinH, RechtschaffenA. Sleep in young and old rats. J Gerontol 1979;34:525–32.
28. MyersBL, BadiaP. Changes in circadian rhythms and sleep quality with aging: mechanisms and interventions. Neurosci Biobehav Rev 1995;19:553–71.
29. DavisFC, MenakerM. Hamsters through time’s window: temporal structure of hamster locomotor rhythmicity. Am J Physiol 1980;239:R149–R55.
30. PittendrighCS, DaanS. Circadian oscillation in rodents: a systematic increase of their frequency with age. Science 1974;186:548–50.
31. WeverR. The meaning of circadian rhythmicity with regard to aging. Verhandlungen der Deutschen Gesellschaft fur Pathologie 1975;59:160–80.
32. SimpkinsJW, MillardWJ. Influence of age on neurotransmitter function. Endocrinol Metab Clin North Am 1987;16:893–917.
33. WaterhouseJM, MinorsDS. Circadian rhythms in the neonate and in old age: what do they tell us about the development and decay of the body clock in humans?Braz J Med Biol Res 1996;29:87–94.
34. HalbergF, NelsonW. Chronobiologic optimization of aging. In SamisHV, Jr, CapobiancoS, eds. Aging and Biological Rhythms. New York and London: Plenum Press; 1978: pp. 5–56.
35. HurdMW, ZimmerKA, LehmanMN, Ralph, MR. Circadian locomotor rhythms in aged hamsters following suprachiasmatic transplant. Am J Physiol 1995;269:R958–68.
36. ScarbroughK, Losse-OlsonS, WallenEP, TurekFW. Aging and photoperiod affect entrainment and quantitative aspects of locomotor behavior in Syrian hamsters. Am J Physiol 1997;272:R1219–25.
37. ValentinuzziVS, ScarboroughK, TakahashiJS, TurekFW. Effects of aging on the circadian rhythm of wheel-running activity in C57BL/6 mice. Am J Physiol 1997;273:R1957–64.
38. DavisFC, ViswanathanN. Stability of circadian timing with age in Syrian hamsters. Am J Physiol 1998;275:R960–8.
39. MinorsDS, WaterhouseJM. Endogenous and exogenous components of circadian rhythms when living on a 21-hour day. Int J Chronobiol 1981;8:31–48.
40. PengMT, JiangMJ, HsuHK. Changes in wheel-running activity, eating and drinking and their day/night distributions throughout the life span of the rat. J Gerontol 1980;35:339–47.
41. WeitzmanED, MolineM, CzeislerC, ZimmermanJC. Chronobiology of aging: temperature, sleep-wake rhythms and entrainment. Neurobiol Aging 1982;3:299–309.
42. RenfrewJW, PettigrewKD, RapportSI. Motor activity and sleep duration as a function of age in healthy men. Physiol Behav 1987;41:627–34.
43. SacherGA, DuffyPH. Age changes in rhythms of energy metabolism, activity, and body temperature in Mus and Peromyscus. Adv Exp Med Biol 1978;108:105–24.
44. RefinettiR, MaH, SatinoffE. Body temperature rhythms, cold tolerance, and fever in young and old rats of both genders. Exp Gerontol 1990;25:533–43.
45. MagriF, TerenziF, MiglioratiG, et al. Biochemical and cerebral morphometric correlates of physiological aging and senile dementia. Aging (Milano) 1997;9(Suppl. 4):53–4.
46. MagriF, LocatelliM, BalzaG, et al. Changes in endocrine circadian rhythms as markers of physiological and pathological brain aging. Chronobiol Int 1997;14:385–96.
47. SatinoffE. Patterns of circadian body temperature rhythms in aged rats. Clin Exp Pharmacol Physiol 1998;25:135–40.
48. HalbergF. Biological rhythms, hormones, and aging. In VernadakisA, TimirasPS, eds. Hormones in Development and Aging. SP Medical & Scientific Books; 1982: pp. 451–76.
49. WisePM, WalovitchRC, CohenIR, WeilandNG, LondonED. Diurnal rhythmicity and hypothalamic deficits in glucose utilization in aged ovariectomized rats. J Neurosci 1987;7:3469–73.
50. KawakamiF, OkamuraH, TamadaY, et al. Loss of day-night differences in VIP mRNA levels in the suprachiasmatic nucleus of aged rats. Neurosci Lett 1997;222:99–102.
51. DuncanMJ, HerronJM, HillSA. Aging selectively suppresses vasoactive intestinal peptide messenger RNA expression in the suprachiasmatic nucleus of the Syrian hamster. Mol Brain Res 2001;87:196–203.
52. KrajnakK, KashonML, RosewellKL, WisePM. Aging alters the rhythmic expression of vasoactive intestinal polypeptide mRNA but not arginine vasopressin mRNA in the suprachiasmatic nuclei of female rats. J Neurosci 1998;18:4767–74.
53. LiH, SatinoffE. Fetal tissue containing the suprachiasmatic nucleus restores multiple circadian rhythms in old rats. Am J Physiol 1998;275: R1735–44.
54. HurdMW, RalphMR. The significance of circadian organization for longevity in the golden hamster. J Biol Rhythms 1998;13:430–6.
55. LobbanMC, TredreBE. Diurnal rhythms of renal excretion and of body temperature in aged subjects. J Physiol 1967;188:48P–49P.
56. CahnAA, FolkGE, HustonPE. Age comparison of human day-night physiological differences. Aerospace Med 1968;39:608–10.
57. AmirS, StewartJ. Conditioning in the circadian system. Chronobiol Int 1998;15:447–56.
58. MrosovskyN, BielloSM. Nonphotic phase shifting in the old and the cold. Chronobiol Int 1994;11:232–52.
59. MrosovskyN. Locomotor activity and non-photic influences on circadian clocks. Biol Rev Camb Philos Soc 1996;71:343–72.
60. ZeePC, RosenbergRS, TurekFW. Effects of aging on entrainment and rate of resynchronization of circadian locomotor activity. Am J Physiol 1992;263:R1099–103.
61. RosenbergRS, ZeePC, TurekFW. Phase response curves to light in young and old hamsters. Am J Physiol 1991;261:R491–5.
62a. BenloucifS, MasanaMI, DubocovichML. Responsiveness to melatonin and its receptor expression in the aging circadian clock of mice. Am J Physiol 1997;273:R1855–60.
62b. BenloucifS, MasanaMI, DubocovichML. Light-induced phase-shifts of circadian activity rhythms and immediate early gene expression in the suprachiasmatic nucleus are attenuated in old C3H/HeN mice. Brain Res 1997;747:34–42.
63. ZhangY, KornhauserJM, ZeePC, et al. Effects of aging on light-induced phase-shifting of circadian behavioral rhythms, fos expression and CREB phosphorylation in the hamster suprachiasmatic nucleus. Neuroscience 1996;70:951–61.
64. AntoniadisEA, KoCH, RalphMR, McDonaldRJ. Circadian rhythms, aging and memory. Behav Brain Res 2000;114:221–33.
65. RalphMR, MrosovskyN. Behavioral inhibition of circadian responses to light. J Biol Rhythms 1992;7:353–9.
66. PenevPD, ZeePC, WallenEP, TurekFW. Aging alters the phase-resetting properties of a serotonin agonist on hamster circadian rhythmicity. Am J Physiol 1995;268:R293–8.
67. Van ReethO, ZhangY, ReddyA, ZeeP, TurekFW. Aging alters the entraining effects of an activity-inducing stimulus on the circadian clock. Brain Res 1992;607:286–92.
68. Van ReethO, ZhangY, ZeePC, TurekFW. Grafting fetal suprachiasmatic nuclei in the hypothalamus of old hamsters restores responsiveness of the circadian clock to a phase shifting stimulus. Brain Res 1994;643:338–42.
69. Van ReethO, WeibelL, OlivaresE, et al. Melatonin or a melatonin agonist corrects age-related changes in circadian response to environmental stimulus. Am J Physiol 2001;280:R1582–91.
70. WeibelL, TurekFW, MocaerE, Van ReethO. A melatonin agonist facilitates circadian resynchronization in old hamsters after abrupt shifts in the light-dark cycle. Brain Res 2000;880:207–11.
71. MonkTH. Circadian rhythm. Clin Geriatric Med 1989;5: 331–46.
72. Aschoff, J. On the aging of circadian systems. In HiroshigeT, HonmaK, eds. Evolution of Circadian Clock. Sapporo: Hokkaido University Press; 1994: pp. 23–45.
73. AujardF, Dkhissi-BenyahyaO, FournierI, et al. Artificially accelerated aging by shortened photoperiod alters early gene expression (Fos) in the suprachiasmatic nucleus and sulfatoxymelatonin excretion in a small primate, Microcebus murinus. Neuroscience 2001;105:403–12.
74. PossidenteB, McEldowneyS, PabonA. Aging lengthens circadian period for wheel-running activity C57BL mice. Physiol Behav 1995;57:575–9.
75. SharmaVK, ChandrashekaranMK. Age-dependent modulation of circadian parameters in the field mouse Mus booduga. J Exp Zool 1998;280:321–6.
76. CzeislerCA, DuffyJF, ShanahanTL, et al. Stability, precision, and near 24 h period of human circadian pacemaker. Science 1999;284:2177–81.
77. AsaiM, IkedaM, AkiyamaM, OhimaI, ShibataS. Administration of melatonin in drinking water promotes the phase-advance of light-dark cycle in senescence-accelerated mice, SAMR1 but not SAMP8. Brain Res 2000;876:220–4.
78. DuffyJF, ViswanathanN, DavisFC. Free-running circadian period does not shorten with age in female Syrian hamsters. Neurosci Lett 1999;271:77–80.
79. WittingW, MirmiranM, BosNP, SwaabDF. The effect of old age on the free-running period of circadian rhythms in rat. Chronobiol Int 1994;11:103–12.
80. KendallAR, LewyAJ, SackRL. Effects of aging on the intrinsic circadian period of totally blind humans. J Biol Rhythms 2001;16:87–95.
81. Van SomerenEJW, HagebeukEEO, LijzengaC, et al. Circadian rest-activity rhythm disturbances in Alzheimer’s disease. Biol Psychiatry 1996;40:259–70.
82. Van SomerenEJW, SwaabDF, ColendaCC, et al. Bright light therapy: improved sensitivity to its effects on rest-activity rhythms in Alzheimer patients by application of nonparametric methods. Chronobiol Int 1999;16:505–18.
83. MonkTH, Reynolds CF 3rd, MachenMA, KupferDJ. Daily social rhythms in the elderly and their relation to objectively recorded sleep. Sleep 1992;15:322–9.
84. MinorsDS, WaterhouseJM. The role of naps in alleviating sleepiness during an irregular sleep-wake schedule. Ergonomics 1987;30:1261–73.
85. ManberR, BootzinRR, AceboC, CarskadonMA. The effects of regularizing sleep-wake schedules on daytime sleepiness. Sleep 1996;19:432–41.
86. ChoK. Chronic ‘jet lag’ produces temporal lobe atrophy and spatial cognitive deficits. Nat Neurosci 2001;4:567–8.
87. Van SomerenEJW. Chronic ‘jet lag’ produces temporal lobe atrophy and spatial cognitive deficits. Sleep Med 2002;3:81–2.
88. Van SomerenEJW, RiemersmaRF, SwaabDF. Functional plasticity of the circadian timing system in old age: light exposure. Prog Brain Res 2002;138:205–31.
89. Van SomerenEJW, KesslerA, MirmiranM, SwaabDF. Indirect bright light improves circadian rest-activity rhythm disturbances in demented patients. Biol Psychiatry 1997;41:955–963.
90. AbbottA. Restless nights, listless days. Nature 2003;425:896–8.
91. VitielloMV, SmallwoodRG, AveryDH, et al. Circadian temperature rhythms in young adult and aged men. Neurobiol Aging 1986;7(2):97–100.
92. van GoolWA, WittingW, MirmiranM. Age-related changes in circadian sleep-wakefulness rhythms in male rats isolated from time cues. Brain Res 1987;413:384–7.
93. SloanEP, FlintAJ, ReinishL, ShapiroCM. Circadian rhythms and psychiatric disorders in the elderly. J Geriatr Psychiatry Neurol 1996;9:164–70.
94. MonkTH, BuysseDJ, RoseLR, HallJA, KupferDJ. The sleep of healthy people – a diary study. Chronobiol Int 2000;17:49–60.
95. Van HoofJ, AartsMPJ, RenseCG, SchoutensAMC. Ambient bright light in dementia: effects on behaviour and circadian rhythmicity. Building Environment 2009;44:146–55.
96. Carvalho-BosSS, RiemersmaRF, WaterhouseJ, ReillyT, Van SomeranEJW. Strong association of the rest-activity rhythm with well-being in demented elderly women. Am J Geriatr Psychiatry 2007;15:92–100.
97. WeinertD, WeinertH. The relative Zeitgeber strength of lights-on and lights-off is changed in old mice. Chronobiol Int 2003;20:405–16.
98. MiyamotoM. Characteristics of age-related behavioral changes in senescence-accelerated mouse SAMP8 and SAMP10. Exp Gerontol 1997;32:139–48.
99. DriverC. The circadian clock in old Drosophila melanogaster. Biogerontology 2000;1:157–62.
100. OsterH, BaeriswylS, Van Der HorstGT, AlbrechtU. Loss of circadian rhythmicity in aging mPer1-/-mCry2-/- mutant mice. Genes Dev 2003;17:1366–79.
101. JagotaA, KalyaniD. Daily serotonin rhythms in rat brain during postnatal development and aging. Biogerontology 2008;9:229–34.
102. KuniedaT, MinaminoT, MiuraK, et al. Reduced nitric oxide causes age-associated impairment of circadian rhythmicity. Circ Res 2008;102:607–14.
103. PangKC, MillerJP, McAuleyJD. Circadian rhythms in SAMP8: a longitudinal study of the effects of age and experience. Neurobiol Aging 2004;25:111–23.
104. HarperDG, VolicerL, StopaEG, et al. Disturbance of endogenous circadian rhythm in aging and Alzheimer disease. Am J Geriatr Psychiatry 2005;13:359–68.
105. MartinJR, FuchsA, BenderR, HartingJ. Altered light/dark activity difference with aging in two rat strains. J Gerontol 1986;41:2–7.
106. DawsonKA, CrowneDP, RichardsonCM, AndersonE. Effects of age on nocturnal activity rhythms in rats. Prog Clin Biol Res 1987;227B:107–10.
107. DuffyPH, FeuersRJ, PipkinJL, TurturroA, HartRW. Age and temperature related changes in behavioral and physiological performance in the Peromyscus leucopus mouse. Mech Ageing Dev 1997;95:43–61.
108. HuangYL, LiuRY, WangQS, et al. Age-associated difference in circadian sleep-wake and rest-activity rhythms. Physiol Behav 2002;76:597–603.
109. Huitrón-ReséndizS, Sánchez-AlavezM, GallegosR, et al. Age-independent and age-related deficits in visuospatial learning, sleep-wake states, thermoregulation and motor activity in PDAPP mice. Brain Res 2002;928:126–37.
110. PerretM, AujardF. Aging and biological rhythms in primates. Med Sci (Paris) 2006;22:279–83.
111. Sánchez-BarcelóEJ, MegiasM, VerdugaR, CrespoD. Differences between the circadian system of two strains of senescence-accelerated mice (SAM). Physiol Behav 1997;62:1225–9.
112. KoppC, ResselV, WiggerE, ToblerI. Influence of estrus cycle and ageing on activity patterns in two inbred mouse strains. Behav Brain Res 2006;167:165–74.
113. BuresováM, BenesováO, IllnerováH. Aging alters resynchronization of the circadian system in rats after a shift of the light-dark cycle. Experientia 1990;46:75–7.
114. DuffyJF, CzeislerCA. Age-related change in the relationship between circadian period, circadian phase, and diurnal preference in humans. Neurosci Lett 2002;318:117–20.
115. MayedaAR, HofstetterJR, PossidenteB. Aging lengthens TauDD in C57BL/6J, DBA/2J, and outbred SWR male mice (Mus musculus). Chronobiol Int 1997;14:19–23.
116. YoonIY, KripkeDF, ElliottJA, et al. Age-related changes of circadian rhythms and sleep-wake cycles. J Am Geriatr Soc 2003;51:1085–91.
117. KripkeDF, ElliottJA, YoungstedtSD, RexKM. Circadian phase response curves to light in older and young women and men. J Circadian Rhythms 2007;5:4.
118. JanvierB, TestuF. Age-related differences in daily attention patterns in preschool, kindergarten, first-grade, and fifth-grade pupils. Chronobiol Int 2007;24:327–43.
119. KlermanEB, DuffyJF, DijkDJ, CzeislerCA. Circadian phase resetting in older people by ocular bright light exposure. J Investig Med 2001;49:30–40.
120. BenloucifS, GreenK, L’Hermite-BalériauxM, et al. Responsiveness of the aging circadian clock to light. Neurobiol Aging 2006;27:1870–9.
121. AujardF, CayetanotF, TerrienJ, Van SomerenEJW. Attenuated effect of increased daylength on activity rhythm in the old mouse lemur, a non-human primate. Exp Gerontol 2007;42:1079–87.
122. DavidsonAJ, YamazakiS, ArbleDM, MenakerM, BlockGD. Resetting of central and peripheral circadian oscillators in aged rats. Neurobiol Aging 2008;29:471–77.
123. PenevPD, TurekFW, WallenEP, ZeePC. Aging alters the serotonergic modulation of light-induced phase advances in golden hamsters. Am J Physiol 1997;272:R509–13.
124. DuffyJF, ZeitzerJM, CzeislerCA. Decreased sensitivity to phase-delaying effects of moderate intensity light in older subjects. Neurobiol Aging 2007;28:799–807.
125. KowalM, Buda-LewandowskaD, PłytyczB, StyrnaJ. Day/night food consumption in mice is strain and age-dependent. Folia Biol (Krakow) 2002;50:1–3.
126. KavaliersM, HirstM. Aging and day-night rhythms in feeding in mice: effects of the putative sigma opiate agonist, N-allylnormetazocine (SKF-10,047). Neurobiol Aging 1986;7:179–83.
127. BaehrEK, EastmanCI, RevelleW, et al. Circadian phase-shifting effects of nocturnal exercise in older compared with young adults. Am J Physiol Regul Integr Comp Physiol 2003;284:R1542–50.
128. StupfelM, GourletV, CourtL. Effects of aging on circadian and ultradian respiratory rhythms of rats synchronized by an LD12:12 lighting (L=100 lx). Gerontology 1986;32:81–90.
129. LiH, SatinoffE. Changes in circadian rhythms of body temperature and sleep in old rats. Am J Physiol 1995;269:R208–14.
130. WeinertD, WaterhouseJ. Daily activity and body temperature rhythms do not change simultaneously with age in laboratory mice. Physiol Behav 1999;66:605–12.
131. WeinertD, WaterhouseJ. The circadian rhythm of core temperature: effects of physical activity and aging. Physiol Behav 2007;90:246–56.
132. ZeitzerJM, DuffyJF, LockleySW, DijkDJ, CzeislerCA. Plasma melatonin rhythms in young and older humans during sleep, sleep deprivation, and wake. Sleep 2007;30:1437–43.
133. SletvoldO, LaerumOD. Multipotent stem cell (CFU-S) numbers and circadian variations in aging mice. Eur J Haematol 1988;41:230–6.
134. SletvoldO, LaerumOD, RiiseT. Age-related differences and circadian and seasonal variations of myelopoietic progenitor cell (CFU-GM) numbers in mice. Eur J Haematol 1988;40:42–9.
135. BarbeitoCG, SururJM, BadránAF. Mitotic activity of the pars intermedia in the female mouse: age-associated variations in proliferation rate and circadian periodicity. Chronobiol Int 2000;17:751–6.
136. PavE, Bubna-LittizH, SkalickyM, HofeckerG. Circadian studies with young and old rats. Aktuelle Gerontol 1981;11:12–6.
137. SeiH, SanoA, OhnoH, et al. Age-related changes in control of blood pressure and heart rate during sleep in the rat. Sleep 2002;25:279–85.
138. ShibataS, MinamotoY, OnoM, WatanabeS. Age-related impairment of food anticipatory locomotor activity in rats. Physiol Behav 1994;55:875–8.
139. MistlbergerRE, HouptTA, Moore-EdeMC. Effects of aging on food-entrained circadian rhythms in the rat. Neurobiol Aging 1990;11:619–24.
140. McAuleyJD, MillerJP, BeckE, NagyZM, PangKC. Age-related disruptions in circadian timing: evidence for “split” activity rhythms in the SAMP8. Neurobiol Aging 2002;23:625–32.
141. McAuleyJD, MillerJP, PangKC. Age-related changes in the spontaneous motor rhythms of the senescence-accelerated mouse (SAMP8). Exp Aging Res 2004;30:113–27.
142. HärmäMI, IlmarinenJE. Towards the 24-hour society—new approaches for aging shift workers?Scand J Work Environ Health 1999;25:610–5.
143. ChanG, TanV, KohD. Ageing and fitness to work. Occup Med (Lond) 2000;50:483–91.
144. CostaG. Work capacity and aging. Med Lav 2000;91:302–12.
145. CostaG, SartoriS. Ageing, working hours and work ability. Ergonomics 2007;50:1914–30.
146. BohleP, Di MiliaL, FletcherA, RajaratnamS. Introduction: aging and the multifaceted influences on adaptation to working time. Chronobiol Int 2008;25:155–64.
147. CostaG, Di MiliaL. Aging and shift work: a complex problem to face. Chronobiol Int 2008;25:165–81.
148. GanderP, SignalL. Who is too old for shift work? Developing better criteria. Chronobiol Int 2008;25:199–213.
149. KecklundG, EriksenCA, AkerstedtT. Police officers attitude to different shift systems: association with age, present shift schedule, health and sleep/wake complaints. Appl Ergon 2008;39:565–71.
150. AsaiM, YoshinobuY, KanekoS, et al. Circadian profile of Per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats. J Neurosci Res 2001;66:1133–9.
151. AntochMP, GorbachevaVY, VykhovanetsO, et al. Disruption of the circadian clock due to the Clock mutation has discrete effects on aging and carcinogenesis. Cell Cycle 2008;7:1197–204.
152. ZhdanovaIV, YuL, Lopez-PatinoM, et al. Aging of the circadian system in zebrafish and the effects of melatonin on sleep and cognitive performance. Brain Res Bull 2008;75:433–41.
153. YamazakiS, StraumeM, TeiH, et al. Effects of aging on central and peripheral mammalian clocks. Proc Natl Acad Sci USA 2002;99:10 801–6.
154. WeinertH, WeinertD, SchurovI, MaywoodES, HastingsMH. Impaired expression of the mPer2 circadian clock gene in the suprachiasmatic nuclei of aging mice. Chronbiol Int 2001;18:559–65.
155. KolkerDE, FukuyamaH, HuangDS, et al. Aging alters circadian and light-induced expression of clock genes in golden hamsters. J Biol Rhythms 2003;18:159–69.
156. ClaustratF, FournierI, GeelenG, et al. Aging and circadian clock gene expression in peripheral tissues in rats. Pathol Biol (Paris) 2005;53:257–60.
157. SitzmannBD, LemosDR, OttingerMA, UrbanskiHF. Effects of age on clock gene expression in the rhesus macaque pituitary gland. Neurobiol Aging 7 July 2008 [Epub ahead of print].
158. CaiA, WisePM. Age-related changes in light-induced Jun-B and Jun-D expression: effects of transplantation of fetal tissue containing the suprachiasmatic nucleus. J Biol Rhythms 1996;11:284–90.
159. CaiA, WisePM. Age-related changes in the diurnal rhythm of CRH gene expression in the paraventricular nuclei. Am J Physiol 1996;270:E238–43.
160. ServilloG, Della FaziaMA, Viola-MagniM. Tyrosine aminotransferase gene regulation during aging. Arch Gerontol Geriatr 1992;15(Suppl 1):339–47.
161. KolkerDE, VitaternaMH, FruechteEM, TakahashiJS, TurekFW. Effects of age on circadian rhythms are similar in wild-type and heterozygous Clock mutant mice. Neurobiol Aging 2004;25:517–23.
162. XueQ, HouJ. Age-related change of synaptic number in the suprachiasmatic nucleus of the rat hypothalamus. Hua Xi Yi Ke Da Xue Xue Bao 1992;23:160–3.
163. XueQ, HouJ, LiY. Age-related morphological changes in the suprachiasmatic nucleus of the rat hypothalamus. Hua Xi Yi Ke Da Xue Xue Bao 1992;23:314–7.
164. WatanabeA, ShibataS, WatanabeS. Circadian rhythm of spontaneous neuronal activity in the suprachiasmatic nucleus of old hamsters in vitro. Brain Res 1995;695:237–39.
165. AujardF, HerzogED, BlockGD. Circadian rhythms in firing rate of individual suprachiasmatic nucleus neurons from adult and middle aged mice. Neuroscience 2001;106:255–61.
166. NygårdM, HillRH, WikströmMA, KristenssonK. Age-related changes in electrophysiological properties of the mouse suprachiasmatic nucleus in vitro. Brain Res Bull 2005;65:149–54.
167. Von GallC, WeaverDR. Loss of responsiveness to melatonin in the aging mouse suprachiasmatic nucleus. Neurobiol Aging 2008;29:464–70.
168. KalamatianosT, KallóI, CoenCW. Ageing and the diurnal expression of the mRNAs for vasopressin and for the V1a and V1b vasopressin receptors in the suprachiasmatic nucleus of male rats. J Neuroendocrinol 2004;16:493–501.
169. KallóI, KalamatianosT, PigginsHD, CoenCW. Ageing and the diurnal expression of mRNAs for vasoactive intestinal peptide and for the VPAC2 and PAC1 receptors in the suprachiasmatic nucleus of male rats. J Neuroendocrinol 2004;16:758–66.
170. BentivoglioM, DengXH, NygårdM, SadkiA, KristenssonK. The aging suprachiasmatic nucleus and cytokines: functional, molecular, and cellular changes in rodents. Chronobiol Int 2006;23:437–49.
171. PalombaM, NygårdM, FlorenzanoF, et al. Decline of the presynaptic network, including GABAergic terminals, in the aging suprachiasmatic nucleus of the mouse. J Biol Rhythms 2008;23:220–31.
172. NygårdM, PalombaM. The GABAergic network in the suprachiasmatic nucleus as a key regulator of the biological clock: does it change during senescence?Chronobiol Int 2006;23:427–35.
173. SemoM, PeirsonS, LupiD, et al. Melanopsin retinal ganglion cells and the maintenance of circadian and pupillary responses to light in aged rodless/coneless (rd/rd cl) mice. Eur J Neurosci 2003;17:1793–801.
174. BassoA, PiantanelliL. Influence of age on circadian rhythms of adrenoceptors in brain cortex, heart and submandibular glands of BALB/c mice: when circadian studies are not only useful but necessary. Exp Gerontol 2002;37:1441–50.
175. Jenni-EiermannS, von HahnHP, HoneggerCG. Circadian variations of neurotransmitter binding in three age groups of rats. Gerontology 1985;31:138–49.
176. RichterV, RassoulF, RotzschW. Circadian rhythm and aging. Z Gesamte Inn Med 1980;35:119–23.
177. PazoD, CardinaliDP, CanoP, Reyes Toso CA, Esquifino AI. Age-related changes in 24-hour rhythms of norepinephrine content and serotonin turnover in rat pineal gland: effect of melatonin treatment. Neurosignals 2002;11:81–7.
178. CanoP, CardinaliDP, SpinediE, EsquifinoAI. Effect of aging on 24-hour pattern of stress hormones and leptin in rats. Life Sci 2008;83:142–8.
179. Jean-FaucherC, BergerM, de TurckheimM, VeyssièreG, JeanC. Circadian variations in plasma LH and FSH in juvenile and adult male mice. Horm Res 1986;23:185–92.
180. FeuersRJ, DelongchampRR, KramerS, SchevingLE, CascianoDA. The effect of age on the circadian rhythms of 23 liver or brain enzymes from C57BL/6J mice. Gerontology 1985;31:46–53.
181. LabunetsIF. Age-related changes in circadian and circannual fluctuations of the immune response and the number of cells in lymphoid organs of animals: a possible connection to thymic factors. Fiziol Zh 2001;47:54–62.
182. DesarnaudF, Murillo-RodriguezE, LinL, et al. The diurnal rhythm of hypocretin in young and old F344 rats. Sleep 2004;27:851–6.
183. Murillo-RodriguezE, Blanco-CenturionC, GerashchenkoD, Salin-PascualRJ, ShiromaniPJ. The diurnal rhythm of adenosine levels in the basal forebrain of young and old rats. Neuroscience 2004;123:361–70.
184. DuncanMJ, GrearKE, HoskinsMA. Aging and SB-269970-A, a selective 5-HT7 receptor antagonist, attenuate circadian phase advances induced by microinjections of serotonergic drugs in the hamster dorsal raphe nucleus. Brain Res 2004;15:40–8.
185. CervenkaS, HalldinC, FardeL. Age-related diurnal effect on D2 receptor binding: a preliminary PET study. Int J Neuropsychopharmacol 2008;11:671–8.
186. DuncanMJ, DavisFC. Developmental appearance and age related changes in specific 2-[125I]iodomelatonin binding sites in the suprachiasmatic nuclei of female Syrian hamsters. Brain Res Dev Brain Res 1993;73:205–12.
187. CayetanotF, DeprezJ, AujardF. Calbindin D28K protein cells in a primate suprachiasmatic nucleus: localization, daily rhythm and age-related changes. Eur J Neurosci 2007;26:2025–32.
188. IwahanaE, HamadaT, UchidaA, ShibataS. Differential effect of lithium on the circadian oscillator in young and old hamsters. Biochem Biophys Res Commun 2007;354:752–6.
189. YoshimuraA, MasuiA, JindeS, et al. Influence of age or circadian time on Bcl-2 and Bax mRNA expression in the rat hippocampus after corticosterone exposure. Brain Res Bull 2007;73:254–8.
190. FerrariE, MiraniM, BariliL, et al. Cognitive and affective disorders in the elderly: a neuroendocrine study. Arch Gerontol Geriatr Suppl 2004;9:171–82.
191. Van CauterE, LeproultR, PlatL. Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA 2000;284:861–8.
192. CopinschiG, Van CauterE. Effects of aging on modulation of hormonal secretions by sleep and circadian rhythmicity. Horm Res 1995;43:20–4.
193. CopinschiG, LeproultR, Van CauterE. Sleep and hormonal rhythms in humans. In HofPR, MobbsCV, eds. Functional Neurobiology of Aging. San Diego, CA:Academic Press; 2001: pp. 855–68.
194. PierpaoliW, RegelsonW. Pineal control of aging: effect of melatonin and pineal grafting on aging mice. Proc Natl Acad Sci USA 1994;91:787–91.
195. LesnikovVA, PierpaoliW. Pineal cross-transplantation (old-to-young and vice versa) as evidence for an endogenous “aging clock. Ann N Y Acad Sci 1994;719:456–60.
196. HumbertW, PévetP. The pineal gland of the aging rat: calcium localization and variation in the number of pinealocytes. J Pineal Res 1995;18:32–40.
197. ReussS, SpiesC, SchröderH, VollrathL. The aged pineal gland: reduction in pinealocyte number and adrenergic innervation in male rats. Exp Gerontol 1990;25:183–8.
198. SchmidtRE, DorseyDA, ParvinCA, BeaudetLN. Sympathetic neuroaxonal dystrophy in the aged rat pineal gland. Neurobiol Aging 2006;27:1514–23.
199. Pandi-PerumalSR, ZisapelN, SrinivasanV, CardinaliDP. Melatonin and sleep in aging populations. Exp Gerontol 2005;40:911–25.
200. GarauC, AparicioS, RialRV, NicolauMC, EstebanS. Age-related changes in circadian rhythm of serotonin synthesis in ring doves: effects of increased tryptophan ingestion. Exp Gerontol 2006;41:40–8.
201. HaugerRL, ThrivikramanKV, PlotskyPM. Age-related alterations of hypothalamic-pituitary-adrenal axis function in male Fischer 344 rats. Endocrinology 1994;134:1528–36.
202. DalmS, EnthovenL, MeijerOC, et al. Age-related changes in hypothalamic-pituitary-adrenal axis activity of male C57BL/6J mice. Neuroendocrinology 2005;81:372–80.
203. PivinaSG, AkulovaVK, OrdyanNE. Changed activity of the hypothalamic-pituitary-adrenocortical system in prenatally stressed female rat during aging. Bull Exp Biol Med 2007;143:740–3.
204. CizzaG, GoldPW, ChrousosGP. Aging is associated in the 344/N Fischer rat with decreased stress responsivity of central and peripheral catecholaminergic systems and impairment of the hypothalamic-pituitary-adrenal axis. Ann N Y Acad Sci 1995;771:491–511.
205. FerrariE, ArcainiA, GornatiR, et al. Pineal and pituitary-adrenocortical function in physiological aging and in senile dementia. Exp Gerontol 2000;35:1239–50.
206. GoncharovaND, OganyanTE, SmelkovaSA. Effect of aging on stress reactivity of the adrenal cortex in laboratory primates: dependence on the time of day. Bull Exp Biol Med 2006;141:368–71.
207. GoncharovaND, ShmaliyAV, MareninVY, SmelkovaSA. Hypothalamic-pituitary-adrenal system and enzymes of the glutathione-dependent antioxidant system during stress and aging. Bull Exp Biol Med 2007;144:730–3.
208. GoncharovaND, ShmaliyAV, MareninVY, SmelkovaSA, LapinBA. Circadian and age-related changes in stress responsiveness of the adrenal cortex and erythrocyte antioxidant enzymes in female rhesus monkeys. J Med Primatol 2008;37:229–38.
209. FowlerCG, TorreP 3rd, KemnitzJW. Effects of caloric restriction and aging on the auditory function of rhesus monkeys (Macaca mulatta): The University of Wisconsin Study. Hear Res 2002;169:24–35.
210. UrbanskiHF, DownsJL, GaryfallouVT, et al. Effect of caloric restriction on the 24-hour plasma DHEAS and cortisol profiles of young and old male rhesus macaques. Ann N Y Acad Sci 2004;1019:443–7.
211. MattisonJA, BlackA, HuckJ, et al. Age-related decline in caloric intake and motivation for food in rhesus monkeys. Neurobiol Aging 2005;26:1117–27.
212. DownsJL, MattisonJA, IngramDK, UrbanskiHF. Effect of age and caloric restriction on circadian adrenal steroid rhythms in rhesus macaques. Neurobiol Aging 2008;29:1412–22.
213. FroyO, MiskinR. The interrelations among feeding, circadian rhythms and ageing. Prog Neurobiol 2007;82:142–50.
214. JiménezAJ, García-FernándezJM, GonzálezB, FosterRG. The spatio-temporal pattern of photoreceptor degeneration in the aged rd/rd mouse retina. Cell Tissue Res 1996;284:193–202.
215. MrosovskyN, ThompsonS. Negative and positive masking responses to light in retinal degenerate slow (rds/rds) mice during aging. Vision Res 2008;48:1270–3.
216. KidaT, LiuJH, WeinrebRN. Effects of aging on corneal biomechanical properties and their impact on 24-hour measurement of intraocular pressure. Am J Ophthalmol 2008;146:567–72.
217. DaszutaA, GambarelliF, TernauxJP. Sleep variations in C57BL and BALBc mice from 3 weeks to 14 weeks of age. Brain Res 1983;283:87–96.
218. Van GoolWA, WittingW, MirmiranM. Age-related changes in circadian sleep-wakefulness rhythms in male rats isolated from time cues. Brain Res 1987;413:384–87.
219. NaylorE, BuxtonOM, BergmannBM, et al. Effects of aging on sleep in the golden hamster. Sleep 1998;21:687–93.
220. DijkDJ, DuffyJF. Circadian regulation of human sleep and age-related changes in its timing, consolidation and EEG characteristics. Ann Med 1999;31:130–40.
221. MendelsonWB, BergmannBM. Age-related changes in sleep in the rat. Sleep 1999;22:145–50.
222. DijkDJ, DuffyJF, CzeislerCA. Contribution of circadian physiology and sleep homeostasis to age-related changes in human sleep. Chronobiol Int 2000;17:285–311.
223. DijkDJ, DuffyJF, CzeislerCA. Age-related increase in awakenings: impaired consolidation of nonREM sleep at all circadian phases. Sleep. 2001;24:565–77.
224. ColasD, CespuglioR, SardaN. Sleep wake profile and EEG spectral power in young or old senescence accelerated mice. Neurobiol Aging 2005;26:265–73.
225. KnoblauchV, MünchM, BlatterK, et al. Age-related changes in the circadian modulation of sleep-spindle frequency during nap sleep. Sleep 2005;28:1093–101.
226. YangCK, KimJK, PatelSR, LeeJH. Age-related changes in sleep/wake patterns among Korean teenagers. Pediatrics 2005;115(Suppl. 1):250–6.
227. Ancoli-IsraelS, AyalonL. Diagnosis and treatment of sleep disorders in older adults. Am J Geriatr Psychiatry 2006;14:95–103.
228. KohK, EvansJM, HendricksJC, SehgalA. A Drosophila model for age-associated changes in sleep:wake cycles. Proc Natl Acad Sci USA 2006;103:13 843–7.
229. SpencerRM, GouwAM, IvryRB. Age-related decline of sleep-dependent consolidation. Learn Mem 2007;14:480–4.
230. MisraS, MalowBA. Evaluation of sleep disturbances in older adults. Clin Geriatr Med 2008;24:15–26.
231. KripkeDF, YoungstedtSD, ElliottJA, et al. Circadian phase in adults of contrasting ages. Chronobiol Int 2005;22:695–709.
232. WalcottEC, TateBA. Entrainment of aged, dysrhythmic rats to restricted feeding schedule. Physiol Behav 1996;60:1205–8.
233. MalatestaM, BaldelliB, BattistelliS, FattorettiP, Bertoni-FreddariC. Aging affects the distribution of the circadian CLOCK protein in rat hepatocytes. Microsc Res Tech 2005;68:45–50.
234. MalatestaM, FattorettiP, BaldelliB, et al. Effects of ageing on the find distribution of the circadian CLOCK protein in reticular formation neurons. Histochem Cell Biol 2007;27:641–7.

References

1. PhillipsB, ManninoD. Correlates of sleep complaints in adults: the ARIC study. J Clin Sleep Med 2005;1(3):277–83.
2. CarrierJ, BliwiseD. Sleep and circadian rhythms in normal aging. In BilliardM, ed. Sleep Physiology, Investigations, and Medicine. New York: Kluwer Academic/Plenum Publishers; 2003. pp. 297–332.
3. DijkDJ, BeersmaDGM, van den HoofdakkerRH. All night spectral analysis of EEG sleep in young adult and middle-aged male subjects. Neurobiol Aging 1989;10:677–82.
4. CarrierJ, MonkTH, BuysseDJ, KupferDJ. Sleep and morningness-eveningness in the “middle” years of life (20y-59y). J Sleep Res 1997;6:230–7.
5. CarrierJ, LandS, BuysseDJ, KupferDJ, MonkTH. The effects of age and gender on sleep EEG power spectral density in the middle years of life. Psychophysiology 2001;38:232–42.
6. LandoltHP, DijkDJ, AchermannP, BorbélyAA. Effect of age on the sleep EEG: slow-wave activity and spindle frequency activity in young and middle-aged men. Brain Res 1996;738(2):205–12.
7. LandoltHP, BorbélyAA. Age-dependent changes in the sleep EEG topography. Clin Neurophysiol 2001;112:369–77.
8. GaudreauH, CarrierJ, MontplaisirJ. Age-related modifications of NREM sleep EEG: from childhood to middle age. J Sleep Res 2001;10:165–72.
9. De GennaroL, FerraraM. Sleep spindles: an overview. Sleep Med Rev 2003;7:423–40.
10. NicolasA, PetitD, RompreS, MontplaisirJ. Sleep spindle characteristics in healthy subjects of different age groups. Clin Neurophysiol 2001;112(3):521–7.
11. SteriadeM. Grouping of brain rhythms in corticothalamic systems. Neuroscience 2006;137:1087–106.
12. SalatDH, BucknerRL, SnyderAZ, et al. Thinning of the cerebral cortex in aging. Cerebral Cortex 2004;14:721–30.
13. TisserandDJ, PruessnerJC, Sanz ArigitaEJ, et al. Regional frontal cortical volumes decrease differentially in aging: an MRI study to compare volumetric approaches and voxel-based morphometry. NeuroImage 2002;17:657–69.
14. RazN, Gunning-DixonF, HeadD, et al. Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiol Aging 2004;25(3):377–96.
15. DijkDJ, BeersmaDGM, HoofdakkerRH. Sex differences in the sleep EEG of young adults: visual scoring and spectral analysis. Sleep 1989;12:500–7.
16. DriverHS, DijkDJ, WerthE, BiedermannK, BorbélyAA. Sleep and the sleep electroencephalogram across the menstrual cycle in young healthy women. J Clin Endocrinol Metab 1996;81(2):728–35.
17. BrunnerDP, MunchM, BiedermannK, et al. Changes in sleep and sleep electroencephalogram during pregnancy. Sleep 1994;17:576–82.
18. BakerFC, WanerJI, VieiraEF, et al. Sleep and 24 hour body temperatures: a comparison in young men, naturally cycling women and women taking hormonal contraceptives. J Physiol 2001;530:565–74.
19. MontplaisirJ, LorrainJ, DesneleR, PetitD. Sleep in menopause: differential effects of two forms of hormonal replacement therapy. Menopause:The Journal of The North American Menopause Society 2001;8:10–16.
20. MendelsonWB. Are periodic leg movements associated with clinical sleep disturbance?Sleep 1996;19:219–23.
21. NicolasA, LespéranceP, MontplaisirJ. Is excessive daytime sleepiness with periodic leg movements during sleep a specific diagnostic category?Eur Neurol 1998;40:22–6.
22. HilbertJ, MohseninV. Can periodic limb movement disorder be diagnosed without polysomnography? A case-control study. Sleep Med 2003;4:35–41.
23. CarrierJ, FrenetteS, MontplaisirJ, et al. Effects of periodic leg movements during sleep in middle-aged subjects without sleep complaints. Mov Disord 2005;20:1127–32.
24. KollerM. Health risks related to shift work: an example of time-contingent effects of long-term stress. Int Arch Occup Environ Health 1983;53(1):59–75.
25. MolineML, PollakCP, MonkTH, et al. Age-related differences in recovery from simulated jet lag. Sleep 1992;15(1):28–40.
26. VgontzasAN, BixlerE, WittmanAM, et al. Middle-aged men show higher sensitivity of sleep to the arousing effects of corticotropin-releasing hormone than young men: clinical implications. J Clin Endocrinol Metab 2001;86:1489–95.
27. DijkDJ, DuffyJF, RielE, ShanahanTL, CzeislerCA. Ageing and the circadian and homeostatic regulation of human sleep during forced desynchrony of rest, melatonin and temperature rhythms. J Physiol 1999;516:611–27.
28. GaudreauH, MorettiniJ, LavoieHB, CarrierJ. Effects of a 25-h sleep deprivation on daytime sleep in the middle-aged. Neurobiol Aging 2001;22:461–8.
29. SeugnetL, BoeroJ, GottschalkL, DuntleySP, ShawPJ. Identification of a biomarker for sleep drive in flies and humans. Proc Natl Acad Sci USA 2006;103(52):19913–8.
30. FrankenP, CholletD, TaftiM. The homeostatic regulation of sleep need is under genetic control. J Neurosci 2001;21(8):2610–21.
31. BorbélyAA, BaumannF, BrandeisD, StrauchI, LehmannD. Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr Clin Neurophysiol 1981;51:483–93.
32. DijkDJ, BeersmaDGM, DaanS. EEG power density during nap sleep: reflection of an hourglass measuring the duration of prior wakefulness. J Biol Rhythms 1987;2:207–19.
33. AchermannP, DijkDJ, BrunnerDP, BorbélyA. A model of human sleep homeostasis based on EEG slow-wave activity: quantitative comparison of data and simulations. Brain Res Bull 1993;31:97–113.
34. WerthE, AchermannP, BorbélyAA. Brain topography of the human sleep EEG: antero-posterior shifts of spectral power. NeuroReport 1996;8:123–7.
35. WerthE, AchermannP, BorbélyAA. Fronto-occipital EEG power gradients in human sleep. J Sleep Res 1997;6:102–12.
36. SchwierinB, AchermannP, DeboerT, OleksenkoA, BorbélyAA. Regional differences in the dynamics of the cortical EEG in the rat after sleep deprivation. Clin Neurophysiol 1999;110:869–75.
37. HuberR, DeboerT, ToblerI. Topography of EEG dynamics after sleep deprivation in mice. J Neurophysiol 2000;84:1888–93.
38. CajochenC, FoyR, DijkDJ. Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans. Sleep Res Online 1999;2:65–9.
39. CzeislerCA, WeitzmanED, Moore-EdeMC, ZimmermanJC, KnauerRS. Human sleep: its duration and organization depend on its circadian phase. Science 1980;210:1264–7.
40. ZulleyJ, WeverR, AschoffJ. The dependence of onset and duration of sleep on the circadian rhythm of rectal temperature. Pflugers Arch 1981;391(4):314–8.
41. DijkDJ, CzeislerCA. Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci Lett 1994;166(1):63–8.
42. ShiromaniPJ, LuJ, WagnerD, et al. Compensatory sleep response to 12 h wakefulness in young and old rats. Am J Physiol 2000;278:R125–33.
43. MendelsonWB, BergmannBM. Age-dependent changes in recovery sleep after 48 hours of sleep deprivation in rats. Neurobiol Aging 2000;21:689–93.
44. BonnetMH, RosaRR. Sleep and performance in young adults and older normals and insomniacs during acute sleep loss and recovery. Biol Psychol 1987;25:153–72.
45. CarskadonMA, DementWC. Sleep loss in elderly volunteers. Sleep 1985;8:207–21.
46. MunchM, KnoblauchV, BlatterK, et al. The frontal predominance in human EEG delta activity after sleep loss decreases with age. Eur J Neurosci 2004;20(5):1402–10.
47. MorettiniJ, Massicotte-MarquezJ, BarbierS, et al. Topographical differences in SWA rebound after an acute sleep deprivation in the middle years of life. Sleep 2002;25:A85.
48. BrendelDH, ReynoldsCF, JenningsJR, et al. Sleep stage physiology, mood, and vigilance responses to total sleep deprivation in healthy 80-year-olds and 20-year-olds. Psychophysiology 1990;27:677–85.
49. DijkDJ, DuffyJF, CzeislerCA. Contribution of circadian physiology and sleep homeostasis to age-related changes in human sleep. Chronobiol Int 2000;17:285–311.
50. CampbellIG, FeinbergI. Homeostatic sleep response to naps is similar in normal elderly and young adults. Neurobiol Aging 2005;26(1):135–44.
51. IshiharaK, MiyakeS, MiyasitaA, MiyataY. Morningness-eveningness preference and sleep habits in Japanese office workers of different ages. Chronobiologia 1991;18:9–16.
52. CarrierJ, PaquetJ, MorettiniJ, TouchetteE. Phase advance of sleep and temperature circadian rhythms in the middle years of life in humans. Neurosci Lett 2002;320:1–4.
53. KawinskaA, DumontM, SelmaouiB, PaquetJ, CarrierJ. Are modifications of melatonin circadian rhythm in the middle years of life related to habitual patterns of light exposure?J Biol Rhythms 2005;20(5):451–60.
54. ZhouJN, LiuRY, Van HeerikhuizeJ, HofmanMA, SwaabDF. Alterations in the circadian rhythm of salivary melatonin begin during middle-age. J Pineal Res 2003;34:11–6.
55. CampbellSS, DawsonD. Aging young sleep: a test of the phase advance hypothesis of sleep disturbance in the elderly. J Sleep Res 1992;1:205–10.
56. CampbellSS, DawsonD, AndersonMW. Alleviation of sleep maintenance insomnia with timed exposure to bright light. JAGS 1993;41:829–36.
57. DrapeauC, CarrierJ. Fluctuation of waking electroencephalogram and subjective alertness during a 25-hour sleep-deprivation episode in young and middle-aged subjects. Sleep 2004;27:55–60.
58. CzeislerCA, KronauerRW, AllanJS, et al. Bright light induction of strong (Type 0) resetting of the human circadian pacemaker. Science 1989;244:1328–33.
59. MinorsDS, WaterhouseJM, Wirz-JusticeA. A human phase-response curve to light. Neurosci Lett 1991;133(1):36–40.
60. SteriadeM. Brain electrical activity and sensory processing during waking and sleep states. In KrygerMH, RothT, DementWC, eds. Principles and Practice of Sleep Medicine, 4th ed. Philadelphia: Elsevier; 2005: pp. 101–19.
61. MonkTH, BuysseDJ, ReynoldsCF, KupferDJ, HouckPR. Subjective alertness rhythms in elderly people. J Biol Rhythms 1996;11(3):268–76.
62. ZeitzerJM, DanielsJE, DuffyJF, et al. Do plasma melatonin concentrations decline with age?Am J Med 1999;107:432–6.
63. KawinskaA, DumontM, PaquetJ, SelmaouiB, CarrierJ. Relationship between melatonin circadian rhythm and habitual patterns of light exposure in the middle years of life. Sleep 2005;28(Suppl):A67–A68.
64. CarrierJ, Fernandez-BolanosM, RobillardR, et al. Effects of caffeine are more marked on daytime recovery sleep than on nocturnal sleep. Neuropsychopharmacology 2007;32:964–72.
65. DeboerT, VansteenselMJ, DétariL, MeijerJH. Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci 2003;6:1086–90.
66. DeboerT, DetariL, MeijerJH. Long term effects of sleep deprivation on the mammalian circadian pacemaker. Sleep 2007;30(3):257–62.
67. MorinA, DoyonJ, DostieV, et al. Motor sequence learning increases sleep spindles and fast frequencies in post-training sleep. Sleep 2008;31(8):1149–56.
68. HuberR, GhilardiMF, MassiminiM, TononiG. Local sleep and learning. Nature 2004;430:78–81.
69. ClemensZ, FabóD, HalászP. Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience 2005;132:529–35.
70. FogelSM, NaderR, CoteKA, SmithCT. Sleep spindles and learning potential. Behav Neurosci 2007;121(1):1–10.
71. PetersKR, RayL, SmithV, SmithC. Changes in the density of stage 2 sleep spindles following motor learning in young and older adults. J Sleep Res 2008;17(1):23–33.
72. BodizsR, KisT, LazarAS, et al. Prediction of general mental ability based on neural oscillation measures of sleep. J Sleep Res 2005;14(3):285–92.
73. BlackwellT, YaffeK, Ancoli-IsraelS, et al. Poor sleep is associated with impaired cognitive function in older women: the study of osteoporotic fractures. J Geront: Med Sci 2006;61(4):405–10.
74. BastienCH, Fortier-BrochuE, RiouxI, et al. Cognitive performance and sleep quality in the elderly suffering from chronic insomnia. Relationship between objective and subjective measures. J Psychosom Res 2003;54:39–49.
75. YaggiHK, AraujoAB, McKinlayJB. Sleep duration as a risk factor for the development of type 2 diabetes. Diabetes Care 2006;29(3):657–61.
76. Van CauterE, HolmbackU, KnutsonK, et al. Impact of sleep and sleep loss on neuroendocrine and metabolic function. Horm Res 2007;67(Suppl 1):2–9.
77. WolkR, SomersVK. Sleep and the metabolic syndrome. Exp Physiol 2007;92(1):67–78.

References

1. National Institutes of Health State-of-the-Science Conference statement: management of menopause-related symptoms. Ann Intern Med 2005;142(12 Pt 1):1003–13.
2. NelsonHD, HaneyE, HumphreyL, et al. Management of Menopause-Related Symptoms. Evidence Report/Technology Assessment No. 120. (Prepared by the Oregon Evidence-based Practice Center, under Contract No. 290–02–0024.)AHRQ Publication No. 05-E016–2. Rockville, MD: Agency for Healthcare Research and Quality. M. 2005.
3. SoulesMR, ShermanS, ParrottE, et al. Executive summary: Stages of Reproductive Aging Workshop (STRAW). Climacteric 2001;4(4):267–72.
4. UtianWH, BoggsPP. The North American Menopause Society 1998 Menopause Survey. Part I: Postmenopausal women’s perceptions about menopause and midlife. Menopause 1999;6(2):122–8.
5. RousseauME. Women’s midlife health. Reframing menopause. J Nurse Midwifery 1998;43(3):208–23.
6. WHO. Research on the menopause in the 1990s. Report of a WHO Scientific Group. World Health Organ Tech Rep Ser 1996;866:1–107.
7. Barrett-ConnorE, GradyD, StefanickML. The rise and fall of menopausal hormone therapy. Annu Rev Public Health 2005;26:115–40.
8. KravitzHM, GanzPA, BrombergerJ, et al. Sleep difficulty in women at midlife: a community survey of sleep and the menopausal transition. Menopause 2003;10(1):19–28.
9. ObermeyerCM, ReherD, SalibaM. Symptoms, menopause status, and country differences: a comparative analysis from DAMES. Menopause 2007;14(4):788–97.
10. LeidyLE, CanaliC, CallahanWE. The medicalization of menopause: implications for recruitment of study participants. Menopause 2000;7(3):193–9.
11. MeyerVF. The medicalization of menopause: critique and consequences. Int J Health Serv 2001;31(4):769–92.
12. NachtigallLE. The medicalization of the menopause. Ann N Y Acad Sci 1990;592:179; discussion 185–92.
13. Rueda Martinez de SantosJR. Medicalization of menopause and public health. J Psychosom Obstet Gynaecol 1997;18(2):175–80.
14. SievertLL, SalibaM, ReherD, et al. The medical management of menopause: a four-country comparison care in urban areas. Maturitas 2008;59(1):7–21.
15. HaysJ, HuntJR, HubbellFA, et al. The Women’s Health Initiative recruitment methods and results. Ann Epidemiol 2003;13(Suppl. 9):S18–77.
16. JaszmannL, Van LithND, ZaatJC. The age of menopause in the Netherlands: the statistical analysis of a survey. Int J Fertil 1969;14(2):106–17.
17. KuhDL, HardyR, WadsworthM. Women’s health in midlife: the influence of the menopause, social factors and health in earlier life. Br J Obstet Gynaecol 1997;104(12):1419.
18. KrystalAD, EdingerJ, WohlgemuthW, MarshGR. Sleep in peri-menopausal and post-menopausal women. Sleep Med Rev 1998;2(4):243–53.
19. MolineML, BrochL, ZakR, GrossV. Sleep in women across the life cycle from adulthood through menopause. Sleep Med Rev 2003;7(2):155–77.
20. ShaverJL, ZenkSN. Sleep disturbance in menopause. J Womens Health Gend Based Med 2000;9(2):109–18.
21. LandisCA, MoeKE. Sleep and menopause. Nurs Clin North Am 2004;39(1):97–115.
22. WoodsNF, MitchellES. Symptoms during the perimenopause: prevalence, severity, trajectory, and significance in women’s lives. Am J Med 2005;118(Suppl. 12B):14–24.
23. BrownWJ, MishraGD, DobsonA. Changes in physical symptoms during the menopause transition. Int J Behav Med 2002;9(1):53–67.
24. DennersteinL, SmithAM, MorseC, et al. Menopausal symptoms in Australian women. Med J Aust 1993;159(4):232–6.
25. MitchellES, WoodsNF. Symptom experiences of midlife women: observations from the Seattle Midlife Women’s Health Study. Maturitas 1996;25(1):1–10.
26. YoungT, RabagoD, ZgierskaA, AustinD, LaurelF. Objective and subjective sleep quality in premenopausal, perimenopausal, and postmenopausal women in the Wisconsin Sleep Cohort Study. Sleep 2003;26(6):667–72.
27. YoungT, FinnL, AustinD, PetersonA. Menopausal status and sleep-disordered breathing in the Wisconsin Sleep Cohort Study. Am J Respir Crit Care Med 2003;167(9):1181–5.
28. KravitzHM, JanssenI, SantoroN, et al. Relationship of day-to-day reproductive hormone levels to sleep in midlife women. Arch Intern Med 2005;165(20):2370–6.
29. WoodsNF, Smith-DijulioK, PercivalDB, et al. Symptoms during the menopausal transition and early postmenopause and their relation to endocrine levels over time: observations from the Seattle Midlife Women’s Health Study. J Womens Health 2007;16(5):667–77.
30. AvisNE, CrawfordS, StellatoR, LongcopeC. Longitudinal study of hormone levels and depression among women transitioning through menopause. Climacteric 2001;4(3):243–9.
31. FreedmanRR, RoehrsTA. Lack of sleep disturbance from menopausal hot flashes. Fertil Steril 2004;82(1):138–44.
32. FreedmanRR, RoehrsTA. Sleep disturbance in menopause. Menopause 2007;14(5):826–9.
33. FreemanEW, SammelMD, LinH, et al. Symptoms associated with menopausal transition and reproductive hormones in midlife women. Obstet Gynecol 2007;110(2 Pt 1):230–40.

References

1. WalkerMP. A refined model of sleep and the time course of memory formation. Behav Brain Sci 2005;28(1):51–64.
2. WalkerMP, StickgoldR. Sleep-dependent learning and memory consolidation. Neuron 2004;44:121–33.
3. StickgoldR, WalkerMP. Memory consolidation and reconsolidation: what is the role of sleep?Trends Neurosci 2005;28(8):408–15.
4. TulvingE. How many memory systems are there?Am Psychol 1985;40:385–98.
5. MullerGE, PilzeckerA. Experimentelle Beitrage zur Lehre von Gedachtnis. Z Psychol 1900;1:1–300.
6. PallerKA, WagnerAD. Observing the transformation of experience into memory. Trends Cogn Sci 2002;6:93–102.
7. WagnerAD, ShannonBJ, KahnI, BucknerRL. Parietal lobe contributions to episodic memory retrieval. Trends Cogn Sci 2005;9(9):445–53.
8. WalkerMP, StickgoldR. Sleep, memory and plasticity. Annu Rev Psychol 2006;10(57):139–66.
9. WagnerAD, SchacterDL, RotteM, et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 1998;281(5380):1188–91.
10. BrewerJB, ZhaoZ, DesmondJE, GloverGH, GabrieliJD. Making memories: brain activity that predicts how well visual experience will be remembered. Science 1998;281(5380):1185–7.
11. SalatDH, TuchDS, HeveloneND, et al. Age-related changes in prefrontal white matter measured by diffusion tensor imaging. Ann N Y Acad Sci 2005;1064:37–49.
12. Van PettenC. Relationship between hippocampal volume and memory ability in healthy individuals across the lifespan: review and meta-analysis. Neuropsychologia 2004;42(10):1394–413.
13. ParkDC, WelshRC, MarshuetzC, et al. Working memory for complex scenes: age differences in frontal and hippocampal activations. J Cogn Neurosci 2003;15(8):1122–34.
14. CabezaR. Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 2002;17(1):85–100.
15. Reuter-LorenzP. New visions of the aging mind and brain. Trends Cogn Sci 2002;6(9):394.
16. CabezaR, AndersonND, LocantoreJK, McIntoshAR. Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage 2002;17(3):1394–402.
17. RosenAC, PrullMW, O’HaraR, et al. Variable effects of aging on frontal lobe contributions to memory. Neuroreport 2002;13(18):2425–8.
18. Reuter-LorenzPA, JonidesJ, SmithEE, et al. Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. J Cogn Neurosci 2000;12(1):174–87.
19. LustigC, SnyderAZ, BhaktaM, et al. Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci USA 2003;100(24):14504–9.
20. LoganJM, SandersAL, SnyderAZ, MorrisJC, BucknerRL. Under-recruitment and nonselective recruitment: dissociable neural mechanisms associated with aging. Neuron 2002;33(5):827–40.
21. GutchessAH, WelshRC, HeddenT, et al. Aging and the neural correlates of successful picture encoding: frontal activations compensate for decreased medial-temporal activity. J Cogn Neurosci 2005;17(1):84–96.
22. YooSS, HuPT, GujarN, JoleszFA, WalkerMP. A deficit in the ability to form new human memories without sleep. Nat Neurosci 2007;10(3):385–92.
23. MorrisGO, WilliamsHL, LubinA. Misperception and disorientation during sleep. Arch Gen Psychiatry 1960;2:247–54.
24. HarrisonY, HorneJA. Sleep loss and temporal memory. Q J Exp Psychol 2000;53(1):271–9.
25. DrummondSP, BrownGG, GillinJC, et al. Altered brain response to verbal learning following sleep deprivation. Nature 2000;403(6770):655–7.
26. DrummondSP, BrownGG. The effects of total sleep deprivation on cerebral responses to cognitive performance. Neuropsychopharmacology 2001;25(Suppl. 5):S68–73.
27. BuzsakiG. Memory consolidation during sleep: a neurophysiological perspective. J Sleep Res 1998;7(Suppl. 1):17–23.
28. GaisS, MolleM, HelmsK, BornJ. Learning-dependent increases in sleep spindle density. J Neurosci 2002;22(15):6830–4.
29. Meier-KollA, BussmannB, SchmidtC, NeuschwanderD. Walking through a maze alters the architecture of sleep. Percept Mot Skills 1999;88(3 Pt 2):1141–59.
30. ClemensZ, FaboD, HalaszP. Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience 2005;132(2):529–35.
31. MolleM, MarshallL, GaisS, BornJ. Learning increases human electroencephalographic coherence during subsequent slow sleep oscillations. Proc Natl Acad Sci USA 2004;10(38):13963–8.
32. MolleM, MarshallL, GaisS, BornJ. Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J Neurosci 2002;22(24):10941–7.
33. SteriadeM. The Intact and Sliced Brain. Cambridge, MA: MIT Press; 2001.
34. MarshallL, HelgadottirH, MolleM, BornJ. Boosting slow oscillations during sleep potentiates memory. Nature 2006;444(7119):610–3.
35. BuzsakiG. The hippocampo-neocortical dialogue. Cereb Cortex 1996;6(2):81–92.
36. TononiG, CirelliC. Sleep function and synaptic homeostasis. Sleep Med Rev 2006;10(1):49–62.
37. HuberR, GhilardiMF, MassiminiM, TononiG. Local sleep and learning. Nature 2004;430(6995):78–81.
38. HuberR, GhilardiMF, MassiminiM, et al. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat Neurosci 2006;9(9):1169–76.
39. PrullMW, DawesLL, MartinAM, 3rd, RosenbergHF, LightLL. Recollection and familiarity in recognition memory: adult age differences and neuropsychological test correlates. Psychol Aging 2006;21(1):107–18.
40. DijkDJ, DuffyJF, CzeislerCA. Contribution of circadian physiology and sleep homeostasis to age-related changes in human sleep. Chronobiol Int 2000;17(3):285–311.
41. FeinbergI, CampbellIG. Kinetics of non-rapid eye movement delta production across sleep and waking in young and elderly normal subjects: theoretical implications. Sleep 2003;26(2):192–200.
42. De GennaroL, FerraraM. Sleep spindles: an overview. Sleep Med Rev 2003;7(5):423–40.
43. McClellandJL, McNaughtonBL, O’ReillyRC. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 1995;102:419–57.

References

1. HartleyD. Observations on Man, his Frame, his Duty, and his Expectations. Delmar, New York: Scholars’ Facsimiles & Reprints; 1749/1976.
2. HeineR. Über Wiedererkennen und rückwirkende Hemmung. Z Psychol 1914;68:161–236.
3. JenkinsJG, DallenbachKM. Obliviscence during sleep and waking. Am J Psychol 1924;35:605–12.
4. WalkerMP, StickgoldR. Sleep, memory, and plasticity. Annu Rev Psychol 2006;57:139–66.
5. AserinskyE, KleitmanN. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 1953;118:273–4.
6. SquireLR, ZolaSM. Structure and function of declarative and nondeclarative memory systems. Proc Natl Acad Sci USA 1996;93:13515–22.
7. TulvingE. How many memory systems are there?Am Psychol 1985;40:385–98.
8. Gesundheitsberichterstattung des Bundes. Heft 27: Schlafstörungen, Heft 28: Altersdemenz. Robert Koch Institut und Statistisches Bundesamt; 2005.
9. RechtschaffenA, KalesA. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. Los Angeles, CA: UCLA Brain Information Service, Brain Research Institute; 1968.
10. CarskadonMA, DementWC. Normal human sleep: an overview. In KrygerM, RothT, DementW, eds. Principles and Practice of Sleep Medicine. Philadelphia: W.B. Saunders Company; 2000: pp. 15–25.
11. NofzingerEA. Neuroimaging and sleep medicine. Sleep Med Rev 2005;9:157–72.
12. Pace-SchottEF, HobsonJA. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 2002;3:591–605.
13. HobsonJA, Pace-SchottE, StickgoldR. Dreaming and the brain: toward a cognitive neuroscience of conscious states. Behav Brain Sci 2000;23:793–842.
14. SquireLR. Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem 2004;82:171–7.
15. TulvingE. Organization of memory: quo vadis? In: GazzanigaMS, ed. The Cognitive Neuroscience. Cambridge, MA: MIT Press; 1995: pp. 839–47.
16. RauchsG, DesgrangesB, ForetJ, EustacheF. The relationships between memory systems and sleep stages. J Sleep Res 2005;14:123–40.
17. McGaughJL. Memory – a century of consolidation. Science 2000;287:248–51.
18. WalkerMP. A refined model of sleep and the time course of memory formation. Behav Brain Sci 2005;28:51–64.
19. BuzsákiG. Memory consolidation during sleep: a neurophysiological perspective. J Sleep Res 1998;7:17–23.
20. PowerAE. Slow-wave sleep, acetylcholine, and memory consolidation. Proc Natl Acad Sci USA 2004;101:1795–6.
21. NaderK. Memory traces unbound. Trends Neurosci 2003;26:65–72.
22. PetersenRC. Mild cognitive impairment as a diagnostic entity. J Intern Med 2004;256:183–94.
23. HeddenT, GabrieliJD. Healthy and pathological processes in adult development: new evidence from neuroimaging of the aging brain. Curr Opin Neurol 2005;18:740–7.
24. TerryAV, BuccafuscoJJ. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 2003;306:821–7.
25. Reuter-LorenzPA, LustigC. Brain aging: reorganizing discoveries about the aging mind. Curr Opin Neurobiol 2005;15:245–51.
26. CabezaR, AndersonND, LocantoreJK, McIntoshAR. Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage 2002;17:1394–402.
27. BaltesPB, SmithJ. New frontiers in the future of aging: from successful aging of the young old to the dilemmas of the fourth age. Gerontology 2003;49:123–35.
28. HelmchenH, BaltesMM, GeiselmannB, et al. In BaltesPB, MayerKU, eds. The Berlin Aging Study: Aging from 70 to 100. New York: Cambridge University Press; 2001: pp. 167–96.
29. PerlsT. Centenarians who avoid dementia. Trends Neurosci 2004;27:633–6.
30. HornungOP, Danker-HopfeH, HeuserI. Age-related changes in sleep and memory: commonalities and interrelationships. Exp Gerontol 2005;40:279–85.
31. PlihalW, BornJ. Effects of early and late nocturnal sleep on declarative and procedural memory. J Cogn Neurosci 1997;9:534–47.
32. StickgoldR, WhidbeeD, SchirmerB, PatelV, HobsonJA. Visual discrimination task improvement: a multi-step process occurring during sleep. J Cogn Neurosci 2000;12:246–54.
33. MarshallL, HelgadóttirH, MolleM, BornJ. Boosting slow oscillations during sleep potentiates memory. Nature 2006;444:610–3.
34. GaisS, MölleM, HelmsK, BornJ. Learning-dependent increases in sleep spindle density. J Neurosci 2002;22:6830–4.
35. FogelSM, SmithCT. Learning-dependent changes in sleep spindles and Stage 2 sleep. J Sleep Res 2006;15:250–5.
36. WagnerU, GaisS, BornJ. Emotional Memory Formation is enhanced across sleep intervals with high amounts of rapid eye movement sleep. Learn Mem 2001;8:112–9.
37. CabezaR. Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 2002;17:85–100.
38. LandoltHP, BorbélyAA. Age-dependent changes in sleep EEG topography. Clin Neurophysiol 2001;112:369–77.
39. RazN, WilliamsonA, Gunning-DixonF, HeadD, AckerJD. Neuroanatomical and cognitive correlates of adult age differences in acquisition of a perceptual-motor skill. Microsc Res Tech 2000;51:85–93.
40. MednickS, NakayamaK, StickgoldR. Sleep-dependent learning: a nap is as good as a night. Nat Neurosci 2003;6:697–8.
41. SpencerRM, GouwAM, IvryRB. Age-related decline of sleep-dependent consolidation. Learn Mem 2007;14:480–4.
42. HornungOP, RegenF, Danker-HopfeH, SchredlM, HeuserI. The relationship between REM sleep and memory consolidation in old age and effects of cholinergic medication. Biol Psychiatry 2007;61:750–7.
43. BackhausJ, BornJ, HoeckesfeldR, et al. Midlife decline in declarative memory consolidation is correlated with a decline in slow wave sleep. Learn Mem 2007;14:336–41.
44. BuckleyTM, SchatzbergAF. Aging and the role of the HPA axis and rhythm in sleep and memory-consolidation. Am J Geriatr Psychiatry 2005;13:344–52.
45. PetersKR, RayL, SmithV, SmithC. Changes in the density of stage 2 sleep spindles following motor learning in young and older adults. J Sleep Res 2008;17:23–33.
46. DarchiaN, CampbellIG, FeinbergI. Rapid eye movement density is reduced in the normal elderly. Sleep 2003;26:973–7.
47. DattaS, MavanjiV, UlloorJ, PattersonEH. Activation of phasic pontine-wave generator prevents rapid eye movement sleep deprivation-induced learning impairment in the rat: a mechanism for sleep-dependent plasticity. J Neurosci 2004;24:1416–27.
48. HeddenT, GabrieliJD. Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 2004;5:87–96.
49. HaslerG, DrevetsWC, ManjiHK, CharneyDS. Discovering endophenotypes for major depression. Neuropsychopharmacology 2004;29:1765–81.
50. SchredlM, WeberB, LeinsML, HeuserI. Donepezil-induced REM sleep augmentation enhances memory performance in elderly, healthy persons. Exp Gerontol 2001;36:353–61.

References

1. CoccagnaG, MantovaniM, BrignaniF, ParchiC, LugaresiE. Continuous recording of the pulmonary and systemic arterial pressure during sleep in syndromes of hypersomnia with periodic breathing. Bulletin de Physio-Pathologie Respiratoire 1972;8(5):1159–72.
2. LugaresiE, CoccagnaG, MantovaniM, et al. Hypersomnia with periodic breathing: periodic apneas and alveolar hypoventilation during sleep. Bulletin de Physio-Pathologie Respiratoire 1972;8(5):1103–13.
3. LugaresiE, CoccagnaG, MantovaniM, LebrunR. Some periodic phenomena arising during drowsiness and sleep in man. Electroencephalogr Clin Neurophysiol 1972;32:701–5.
4. ConwayJ, BoonN, JonesJV, SleightP. Involvement of the baroreceptor reflexes in the changes in blood pressure with sleep and mental arousal. Hypertension 1983;5(5):746–8.
5. ManciaG. Autonomic modulation of the cardiovascular system during sleep. N Engl J Med 1993;328(5):347–9.
6. LugaresiE, ProviniF, CortelliP. Sleep embodies maximum and minimum levels of autonomic integration. Clin Auton Res 2001;11:5–10.
7. BraunAR, BalkinTJ, WesensteinNJ, et al. Regional cerebral blood flow throughout the sleep-wake cycle. An H20 150 PET study. Brain 1997;120:1173–97.
8. ParmeggianiPL, FranziniC. Changes in the activity of hypothalamic units during sleep at different environmental temperatures. Brain Res 1971;29(2):347–50.
9. BuguetAC, LivingstoneSD, ReedLD, LimmerRE. EEG patterns and body temperatures in man during sleep in arctic winter nights. Int J Biometeorol 1976;20(1):61–9.
10. CarskadonMA, DementWC. Normal human sleep: an overview. In KrygerMH, RothT, DementWC, eds. Principles and Practice of Sleep Medicine, 4th ed. Philadelphia: Elsevier Saunders; 2005: pp. 13–23.
11. Vaz FragosoCA, GillTM. Sleep complaints in community-living older persons: a multifactorial geriatric syndrome. J Am Geriatr Soc 2007;55:1853–66.
12. Pandi-PerumalSR, SeilsLK, KayumovL, et al. Senescence, sleep and circadian rhythms. Ageing Res Rev 2002;1:559–604.
13. BliwiseDL. Normal aging. In KrygerMH, RothT, DementWC, eds. Principles and Practice of Sleep Medicine, 4th ed. Philadelphia: Elsevier Saunders; 2005: pp. 24–38.
14. Pandi-PerumalSR, ZisapelN, SrinivasanV, CardinaliDP. Melatonin and sleep in aging population. Exp Gerontol 2005;40:911–25.
15. SchmidtRE. Age-related sympathetic ganglionic neuropathology: human pathology and animal models. Auton Neurosci 2002;96:63–72.
16. LowPA. The effect of aging on the autonomic nervous system. In LowPA, ed. Clinical Autonomic Disorders, 2nd ed. Philadelphia: Lippincott-Raven Publishers; 1997: pp. 161–75.
17. MonahanKD. Effect of aging on baroreflex function in humans. Am J Physiol Regul Integr Comp Physiol 2007;293:3–12.
18. FauvelJP, CeruttiC, MpioI, DucherM. Aging process on spectrally determined spontaneous baroreflex sensitivity: a 5-year prospective study. Hypertension 2007;50:543–6.
19. JonesPP, ChristouDD, JordanJ, SealsDR. Baroreflex buffering is reduced with age in healthy men. Circulation 2003;107:1770–4.
20. FisherAA, DavisMW, SrikusalanukulW, BudgeMM. Post-prandial hypotension predicts all-cause mortality in older, low-level care residents. J Am Geriatr Soc 2005;53:1313–20.
21. SchatzIJ, BannisterR, FreemanRL, et al. Consensus statement on the definition of orthostatic hypotension, pure autonomic failure and multiple system atrophy. Clin Autonom Res 1996;6:125–6.
22. GuptaV, LipsitzLA. Orthostatic hypotension in the elderly: diagnosis and treatment. Am J Med 2007;120:841–7.
23. ShibaoC, GamboaA, DiedrichA, et al. Acarbose, an α-glucosidase inhibitor, attenuates postprandial hypotension in autonomic failure. Hypertension 2007;50:54–61.
24. BonnemeierH, WiegandUKH, BrandesA, et al. Circadian profile of cardiac autonomic nervous modulation in healthy subjects: differing effects of aging and gender on heart rate variability. J Cardiovasc Electrophysiol 2003;14:791–9.
25. De MeersmanRE, SteinPK. Vagal modulation and aging. Biol Psychol 2007;74:165–73.
26. AntelmiI, De PaulaRS, ShinzatoAR, et al. Influence of age, gender, body mass index and functional capacity on heart rate variability in a cohort of subjects without heart disease. Am J Cardiol 2004;93:381–5.
27. KenneyWL, MunceTA. Aging and human temperature regulation. J Appl Physiol 2003;95:2598–603.
28. FrankSM, RajaSN, BulcaoC, GoldsteinDS. Age-related thermoregulatory difference during core cooling in humans. Am J Physiol Regul Integr Comp Physiol 2000;279:R349–54.
29. RichardsonD, TyraJ, McCrayA. Attenuation of the cutaneous vasoconstrictor response to cold in elderly men. J Gerontol 1992;47(6):M211–14.
30. ScreminG, KenneyWL. Aging and the skin blood flow response to the unloading of baroreceptors during heat and cold stress. J Appl Physiol 2004;96:1019–25.
31. GrassiG, SeravalleG, TurriC, et al. Impairment of thermoregulatory control of skin sympathetic nerve traffic in the elderly. Circulation 2003;108:729–35.
32. ThompsonCS, HolowatzLA, KenneyWL. Cutaneous vasoconstrictor response to norepinephrine are attenuated in older humans. Am J Physiol Regul Integr Comp Physiol 2005;288:R1108–13.
33. Van SomerenEJW. Thermoregulation and aging. Am J Physiol Regul Integr Comp Physiol 2007;292:99–102.
34. De GrootDW, KenneyWL. Impaired defense of core temperature in aged humans during mild cold stress. Am J Physiol Regul Integr Comp Physiol 2007;292:103–8.
35. PhillipsRJ, PowleyTL. Innervation of the gastrointestinal tract: patterns of aging. Auton Neurosci 2007;136:1–19.
36. HoltPR. Gastrointestinal diseases in the elderly. Curr Opin Clin Nutr Metab Care 2003;6:41–8.
37. MorleyJE. The aging gut: physiology. Clin Geriatr Med 2007;23:757–67.
38. SirokyMB. The aging bladder. Rev Urol 2004;6(S1):S3–S7.
39. MizunoMS, PompeuE, CastellucciP, LibertoEA. Age-related changes in urinary bladder intramural neurons. Int J Devl Neurosci 2007;25:141–8.
40. ShahD, BadlaniG. Treatment of overactive bladder and incontinence in the elderly. Rev Urol 2002;4(S4):S38–S43.
41. DuBeauCE. The aging lower urinary tract. J Urol 2006;175:S11–S15.
42. PfistererMH-D, GriffithsDJ, SchaeferW, ResnickNM. The effect of age on lower urinary tract function: a study in women. J Am Geriatr Soc 2006;54:405–12.
43. AraujoAB, MohrBA, McKinlayJB. Changes in sexual function in middle-aged and older men: longitudinal data from the Massachusetts male aging study. J Am Geriatr Soc 2004;52:1502–9.
44. KaiserFE. Sexuality in the elderly. Urol Clin North Am 1996;23(1):99–109.
45. MastersWH, JohnsonV. Human Sexual Response. Boston: Little Brown; 1966.
46. WessellsH, JoyceGF, WiseM, WiltTJ. Erectile dysfunction. J Urol 2007;177:1675–81.
47. FeldmanHA, GoldsteinI, HatzichristouDG, KraneRJ, McKinlayJB. Impotence and its medical and psychosocial correlates: results of the Massachusetts Male Aging Study. J Urol 1994;151(1):54–61.
48. McVaryK. Lower urinary tract symptoms and sexual dysfunction: epidemiology and pathophysiology. BJU 2006;97(S2):23–8.
49. AppenzellerO. Aging and the autonomic nervous system. In AppenzellerO, ed. The Autonomic Nervous System. Amsterdam, New York, Oxford: Elsevier; 1990: pp. 557–71.

References

1. MalhotraA, HuangY, FogelR, et al. Aging influences on pharyngeal anatomy and physiology: the predisposition to pharyngeal collapse. Am J Med 2006;119(1):72.e9–14.
2. VillaneuvaAT, BuchananPR, YeeBJ, GrunsteinRR. Ethnicity and obstructive sleep apnoea. Sleep Med Rev 2005;9:419–36.
3. GottliebDJ, WhitneyCW, BonekatWH, et al. Relation of sleepiness to respiratory disturbance index: the Sleep Heart Health Study. Am J Respir Crit Care Med 1999;159(2):502–7.
4. KapurV, StrohlKP, RedlineS, et al. Underdiagnosis of sleep apnea syndrome in U.S. communities. Sleep Breath 2002;6(2):49–54.
5. GuilleminaultC, PelayoR. Sleep-disordered breathing in children. Ann Med 1998;30(4):350–6.
6. FormigueraX, CantonA. Obesity: epidemiology and clinical aspects. Best Pract Res Clin Gastroenterol 2004;18(6):1125–46.
7. GamiAS, CaplesSM, SomersVK. Obesity and obstructive sleep apnea. Endocrinol Metab Clin North Am 2003;32(4):869–94.
8. RestaO, Foschino-BarbaroMP, LegariG, et al. Sleep-related breathing disorders, loud snoring and excessive daytime sleepiness in obese subjects. Int J Obes Relat Metab Disord 2001;25(5):669–75.
9. Valencia-FloresM, OreaA, CastanoVA, et al. Prevalence of sleep apnea and electrocardiographic disturbances in morbidly obese patients. Obes Res 2000;8(3):262–9.
10. PhillipsB, CookY, SchmittF, BerryD. Sleep apnea: prevalence of risk factors in a general population. South Med J 1989;82(9):1090–2.
11. Ancoli-IsraelS, KripkeDF, MasonW. Characteristics of obstructive and central sleep apnea in the elderly: an interim report. Biol Psychiatry 1987;22(6):741–50.
12. UdwadiaZF, DoshiAV, LonkarSG, SinghCI. Prevalence of sleep-disordered breathing and sleep apnea in middle-aged urban Indian men. Am J Respir Crit Care Med 2004;169(2):168–73.
13. KripkeDF, Ancoli-IsraelS, KlauberMR, et al. Prevalence of sleep-disordered breathing in ages 40–64 years: a population-based survey. Sleep 1997;20(1):65–76.
14. Ancoli-IsraelS, KripkeDF, KlauberMR, et al. Sleep-disordered breathing in community-dwelling elderly. Sleep 1991;14(6):486–95.
15. PendleburyST, PepinJL, VealeD, LevyP. Natural evolution of moderate sleep apnoea syndrome: significant progression over a mean of 17 months. Thorax 1997;52(10):872–8.
16. RedlineS, YoungT. Epidemiology and natural history of obstructive sleep apnea. Ear Nose Throat J 1993;72(1):20–1, 24–6.
17. LavieP, LavieL, HererP. All-cause mortality in males with sleep apnoea syndrome: declining mortality rates with age. Eur Respir J 2005;25(3):514–20.
18. EikermannM, JordanAS, ChamberlinNL, et al. The influence of aging on pharyngeal collapsibility during sleep. Chest 2007;131(6):1702–9.
19. SchwabRJ, PasirsteinM, PiersonR, et al. Identification of upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging. Am J Respir Crit Care Med 2003;168(5):522–30.
20. IsonoS, RemmersJE, TanakaA, et al. Anatomy of pharynx in patients with obstructive sleep apnea and in normal subjects. J Appl Physiol 1997;82(4):1319–26.
21. HoffsteinV, ZamelN, PhillipsonEA. Lung volume dependence of pharyngeal cross-sectional area in patients with obstructive sleep apnea. Am Rev Respir Dis 1984;130(2):175–8.
22. HeinzerRC, StanchinaML, MalhotraA, et al. Effect of increased lung volume on sleep disordered breathing in patients with sleep apnoea. Thorax 2006;61(5):435–9.
23. SchwabRJ. Genetic determinants of upper airway structures that predispose to obstructive sleep apnea. Respir Physiol Neurobiol 2005;147(2–3):289–98.
24. SchwabRJ, GefterWB, HoffmanEA, GuptaKB, PackAI. Dynamic upper airway imaging during awake respiration in normal subjects and patients with sleep disordered breathing. Am Rev Respir Dis 1993;148(5):1385–400.
25. MartinSE, MathurR, MarshallI, DouglasNJ. The effect of age, sex, obesity and posture on upper airway size. Eur Respir J 1997;10(9):2087–90.
26. MayerP, PepinJL, BettegaG, et al. Relationship between body mass index, age and upper airway measurements in snorers and sleep apnoea patients. Eur Respir J 1996;9(9):1801–9.
27. BurgerCD, StansonAW, SheedyPF, 2nd, DanielsBK, ShepardJW, Jr. Fast-computed tomography evaluation of age-related changes in upper airway structure and function in normal men. Am Rev Respir Dis 1992;145(4 Pt 1):846–52.
28. JohnstonCD, RichardsonA. Cephalometric changes in adult pharyngeal morphology. Eur J Orthod 1999;21(4):357–62.
29. PillarG, MalhotraA, FogelR, et al. Airway mechanics and ventilation in response to resistive loading during sleep: influence of gender. Am J Respir Crit Care Med 2000;162(5):1627–32.
30. MalhotraA, HuangY, FogelRB, et al. The male predisposition to pharyngeal collapse: importance of airway length. Am J Respir Crit Care Med 2002;166(10):1388–95.
31. RonenO, MalhotraA, PillarG. Influence of gender and age on upper-airway length during development. Pediatrics 2007;120(4):e1028–34.
32. van LunterenE, StrohlKP. The muscles of the upper airways. Clin Chest Med 1986;7(2):171–88.
33. TangelDJ, MezzanotteWS, WhiteDP. Influence of sleep on tensor palatini EMG and upper airway resistance in normal men. J Appl Physiol 1991;70(6):2574–81.
34. OnalE, LopataM, O’ConnorTD. Diaphragmatic and genioglossal electromyogram responses to CO2 rebreathing in humans. J Appl Physiol 1981;50(5):1052–5.
35. BerryRB, WhiteDP, RoperJ, et al. Awake negative pressure reflex response of the genioglossus in OSA patients and normal subjects. J Appl Physiol 2003;94(5):1875–82.
36. MalhotraA, FogelRB, EdwardsJK, SheaSA, WhiteDP. Local mechanisms drive genioglossus activation in obstructive sleep apnea. Am J Respir Crit Care Med 2000;161(5):1746–9.
37. MalhotraA, PillarG, FogelRB, et al. Pharyngeal pressure and flow effects on genioglossus activation in normal subjects. Am J Respir Crit Care Med 2002;165(1):71–7.
38. MezzanotteWS, TangelDJ, WhiteDP. Mechanisms of control of alae nasi muscle activity. J Appl Physiol 1992;72(3):925–33.
39. TangelDJ, MezzanotteWS, SandbergEJ, WhiteDP. Influences of NREM sleep on the activity of tonic vs. inspiratory phasic muscles in normal men. J Appl Physiol 1992;73(3):1058–66.
40. WheatleyJR, TangelDJ, MezzanotteWS, WhiteDP. Influence of sleep on response to negative airway pressure of tensor palatini muscle and retropalatal airway. J Appl Physiol 1993;75(5):2117–24.
41. WheatleyJR, MezzanotteWS, TangelDJ, WhiteDP. Influence of sleep on genioglossus muscle activation by negative pressure in normal men. Am Rev Respir Dis 1993;148(3):597–605.
42. MalhotraA, PillarG, FogelRB, et al. Genioglossal but not palatal muscle activity relates closely to pharyngeal pressure. Am J Respir Crit Care Med 2001;162(3 Pt 1):1058–62.
43. PillarG, MalhotraA, FogelRB, et al. Upper airway muscle responsiveness to rising PCO2 during NREM sleep. J Appl Physiol 2001;89(4):1275–82.
44. MalhotraA, PillarG, FogelR, et al. Upper-airway collapsibility: measurements and sleep effects. Chest 2001;120(1):156–61.
45. OlivenA, CarmiN, ColemanR, OdehM, SilbermannM. Age-related changes in upper airway muscles: morphological and oxidative properties. Exp Gerontol 2001;36(10):1673–86.
46. WhiteDP, LombardRM, CadieuxRJ, ZwillichCW. Pharyngeal resistance in normal humans: influence of gender, age, and obesity. J Appl Physiol 1985;58(2):365–71.
47. ThurnheerR, WraithPK, DouglasNJ. Influence of age and gender on upper airway resistance in NREM and REM sleep. J Appl Physiol 2001;90(3):981–8.
48. KriegerJ, SforzaE, BoudewijnsA, ZamagniM, PetiauC. Respiratory effort during obstructive sleep apnea: role of age and sleep state. Chest 1997;112(4):875–84.
49. KlaweJJ, Tafil-KlaweM. Age-related response of the genioglossus muscle EMG-activity to hypoxia in humans. J Physiol Pharmacol 2003;54 (Suppl. 1):14–9.
50. VeldiM, VasarV, HionT, KullM, VainA. Ageing, soft-palate tone and sleep-related breathing disorders. Clin Physiol 2001;21(3):358–64.
51. OnalE, BurrowsDL, HartRH, LopataM. Induction of periodic breathing during sleep causes upper airway obstruction in humans. J Appl Physiol 1986;61(4):1438–43.
52. YounesM, OstrowskiM, ThompsonW, LeslieC, ShewchukW. Chemical control stability in patients with obstructive sleep apnea. Am J Respir Crit Care Med 2001;163(5):1181–90.
53. AsyaliMH, BerryRB, KhooMC. Assessment of closed-loop ventilatory stability in obstructive sleep apnea. IEEE Trans Biomed Eng 2002;49(3):206–16.
54. WhiteDP. Pathogenesis of obstructive and central sleep apnea. Am J Respir Crit Care Med 2005;172(11):1363–70.
55. WellmanA, JordanAS, MalhotraA, et al. Ventilatory control and airway anatomy in obstructive sleep apnea. Am J Respir Crit Care Med 2004;170(11):1225–32.
56. WellmanA, MalhotraA, FogelRB, et al. Respiratory system loop gain in normal men and women measured with proportional-assist ventilation. J Appl Physiol 2003;94(1):205–12.
57. BrowneHA, AdamsL, SimondsAK, MorrellMJ. Ageing does not influence the sleep-related decrease in the hypercapnic ventilatory response. Eur Respir J 2003;21(3):523–9.
58. JordanAS, WellmanA, EdwardsJK, et al. Respiratory control stability and upper airway collapsibility in men and women with obstructive sleep apnea. J Appl Physiol 2005;99(5):2020–7.
59. WellmanA, MalhotraA, JordanAS, et al. Chemical control stability in the elderly. J Physiol 2007;581(Pt 1):291–8.
60. SinDD, JonesRL, ManGC. Hypercapnic ventilatory response in patients with and without obstructive sleep apnea: do age, gender, obesity, and daytime PaCO2 matter?Chest 2000;117(2):454–9.
61. GleesonK, ZwillichCW, WhiteDP. Chemosensitivity and the ventilatory response to airflow obstruction during sleep. J Appl Physiol 1989;67(4):1630–7.
62. GleesonK, ZwillichCW, WhiteDP. The influence of increasing ventilatory effort on arousal from sleep. Am Rev Respir Dis 1990;142(2):295–300.
63. YounesM. Role of arousals in the pathogenesis of obstructive sleep apnea. Am J Respir Crit Care Med 2004;169(5):623–33.
64. BixlerEO, VgontzasAN, LinHM, et al. Excessive daytime sleepiness in a general population sample: the role of sleep apnea, age, obesity, diabetes, and depression. J Clin Endocrinol Metab 2005;90(8):4510–5.