Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T03:48:24.158Z Has data issue: false hasContentIssue false

3 - Basic processes

Published online by Cambridge University Press:  10 October 2009

Get access

Summary

Evaporation

In the preceding chapter it was shown how the discovery by Robert Brown in 1827 of the continuous vibration of very small particles, now known as Brownian movement (or motion), led to the kinetic theory of gases. This is central to the process of evaporation. The molecules of liquid water are much closer together than those of a gas and are separated from each other by just slightly more than the diameter of one molecule. In such close proximity, the atomic particles strongly attract each other by Van der Vaals forces (electrical attractions between molecules), but this force reduces rapidly as their separation is increased. In water vapour, the spacing between molecules is ten diameters or more, depending on their concentration (or vapour pressure, VP – that fraction of the total pressure due to the water vapour alone – measured in any of the usual units of pressure, such as millibars or hectopascals) and the attractive force is then extremely small. To produce water vapour from liquid water, the distance between the molecules has to be increased, and to achieve this, work has to be done against the binding Van der Vaals attraction.

During evaporation (at any temperature) water molecules ‘boil off’, due to Brownian movement, at a rate proportional to the absolute temperature. Some, however, by chance, due to their random motion in the air, find their way back to the water surface, the numbers doing so depending on their concentration in the air which is directly related to the VP.

Type
Chapter
Information
Precipitation
Theory, Measurement and Distribution
, pp. 57 - 69
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Meteorological Branch, Department of Transport, Canada (1962). Manual of Radiation Instruments and Observations. Circular 3812 INS 117, Manual 84
Monteith, J. L. (1975). Principles of Environmental Physics. London: Edward ArnoldGoogle Scholar
Shuttleworth, W. J. (1979). Evaporation. Institute of Hydrology Report 56. Wallingford: Institute of HydrologyGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×