Skip to main content Accessibility help
×
  • Cited by 27
Publisher:
Cambridge University Press
Online publication date:
August 2015
Print publication year:
2015
Online ISBN:
9781107323933

Book description

Optical interferometry is a powerful technique to make images on angular scales hundreds of times smaller than is possible with the largest telescopes. This concise guide provides an introduction to the technique for graduate students and researchers who want to make interferometric observations and acts as a reference for technologists building new instruments. Starting from the principles of interference, the author covers the core concepts of interferometry, showing how the effects of the Earth's atmosphere can be overcome using closure phase, and the complete process of making an observation, from planning to image reconstruction. This rigorous approach emphasizes the use of rules-of-thumb for important parameters such as the signal-to-noise ratios, requirements for sampling the Fourier plane and predicting image quality. The handbook is supported by web resources, including the Python source code used to make many of the graphs, as well as an interferometry simulation framework, available at www.cambridge.org/9781107042179.

Reviews

'… a rare gem of clear and rigorous explanation …'

Barry R. Masters Source: Optics and Photonic News

'David Buscher … is among the top tier of interferometrists internationally and has exploited his experience in creating this valuable resource for those who might want to build interferometers themselves or better utilize ones to which they have access. … The writing style is excellent and thoughtful in anticipating questions that would arise in the minds of students who are endeavouring to understand a field that can be obscured by experts either less experienced or less caring about demistifying interferometry. Indeed, this benefits not only from Buscher's technical expertise but also from his years of teaching. Practical Optical Interferometry is a wonderful resource that fulfills a long-standing need for advanced undergraduates, graduate students, and postdocs enticed by the prospects of sub-milliarcsecond spatial resolution.'

Harold A. McAlister Source: The Observatory

'In this slim and very readable book David F. Buscher does a fantastic job of providing a textbook, that covers the theory of using interferometry at optical and near infrared wavelengths that also provides a wealth of practical advice on all aspects of optical interferometry. It is pitched at a level valuable to undergraduate students learning about the subject, but also a useful addition for practising engineers, designers and scientists … It is lovely to see an introduction to the topic that assumes nothing in the way of background other than basic intelligence and an interest in the topic. … many of the ideas described are fully expressed in the interferometry simulation framework provided … I found this to be a very helpful book and would certainly be happy to recommend it either as a good student text, or a useful read for anyone else looking for an introduction to the field.'

Mark Nicol Source: Contemporary Physics

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Angel, J. R. P., J. M., Hill, P. A., Strittmatter, P., Salinari and G., Weigelt. Interferometry with the large binocular telescope. Proc. SPIE, 3350:881–889, 1998.
Armstrong, J. T., D., Mozurkewich, L. J, Rickard et al. The Navy Prototype Optical Interferometer. Astrophys. J., 496:550–572, 1998.
Baldwin, J. E., M. G., Beckett, R. C., Boysen et al. The first images from an optical aperture synthesis array – mapping of Capella with COAST at 2 epochs. Astron. Astrophys., 306:L13–L16, 1996.
Baldwin, J. E., P. J., Warner and C. D., Mackay. The point spread function in lucky imaging and variations in seeing on short timescales. Astron. Astrophys., 480:589–597, 2008.
Baron, F., D., Monnier and B., Kloppenborg. A novel image reconstruction software for optical/infrared interferometry. Proc. SPIE, 7734: doi: 10.1117/12.857364, 2010.
Basden, A. H. and D. F, Buscher. Improvements for group delay fringe tracking.MNRAS, 357:656–668, 2005.
Benisty, M., J.-P., Berger, L., Jocou et al. An integrated optics beam combiner for the second generation VLTI instruments. Astron. Astrophys., 498:601–613, 2009.
Berger, D. H., J. D., Monnier, R., Millan-Gabet et al. CHARA michigan phasetracker (CHAMP): a preliminary performance report.Proc. SPIE., 7013:701319.1–701319.10, 2008.
Bernat, D., A. H., Bouchez, M., Ireland et al. A close companion search around l dwarfs using aperture masking interferometry and Palomar laser guide star adaptive optics.Astrophys. J., 715:724, 2010.
Bessell, M. S., F., Castelli and B., Plez. Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for o-m stars. Astron. Astrophys, 333:231–250, 1998.
Birks, T. A., J. C., Knight and P. S., Russell. Endlessly single-mode photonic crystal fiber. Opt. Lett., 22:961–963, 1997.
Boden, A. F., G. T., van Belle, M. M., Colavita et al. An interferometric search for bright companions to 51 pegasi. Astrophys. J. Lett., 504:L39, 1998.
Bohec, S. Le and J., Holder. Optical intensity interferometry with atmospheric Cherenkov telescope arrays. Astrophys. J., 649(1):399, 2006.
Bracewell, R. N.Fourier Transform and its Applications. McGraw Hill, Boston, MA, 3rd edition, 2000.
Breckinridge, J. B.Measurement of the amplitude of phase excursions in the Earth' atmosphere. J. Opt. Soc. Am., 66:143–144, 1976.
Buscher, D. F.Optimising a ground–based optical interferometer for sensitivity at low light levels. MNRAS, 235:1203–1226, 1988a.
Buscher, D. F.Getting the most out of COAST. PhD thesis, Cambridge University, 1988b.
Buscher, D. F.Direct Maximum-Entropy image reconstruction from the bispectrum. In J. G., Robertson and W. J. Tango, editors, Very High Angular Resolution Imaging (IAU Symposium 158), pages 91–93, Sydney, 1993.
Buscher, D. F.A thousand and one nights of seeing measurements on MtWilson. Proc. SPIE., 2200:260–271, 1994.
Buscher, D. F., C. A., Haniff, J. E., Baldwin and P. J., Warner. Detection of a bright feature on the surface of Betelgeuse. MNRAS, 245:7–11P, 1990.
Buscher, D. F., J. T., Armstrong, C. A., Hummel et al. Interferometric seeing measurements on Mt. Wilson – power spectra and outer scales. Appl. Opt., 34:1081–1096, 1995.
Buscher, D. F., J. S., Young, F., Baron, and C. A., Haniff. Fringe tracking and spatial filtering: phase jumps and dropouts. Proc. SPIE., 7013:10.1117/12.789869, 2008.
Buscher, D. F., M., Creech-Eakman, A., Farris, C. A., Haniff and J. S., Young. The conceptual design of the Magdalena Ridge Observatory Interferometer. J. Astron. Instrum., 02(02):1340001, 2013.
Caves, C. M.Quantum limits on noise in linear amplifiers. Phys. Rev. D, 26:1817–1839, 1982.
Ceus, D., L., Delage, L., Grossard et al. Contrast and phase closure acquisitions in photon counting regimes using a frequency upconversion interferometer for high angular resolution imaging. MNRAS, 430:1529–1537, 2013.
Chiavassa, A., B., Freytag, T., Masseron and B., Plez. Radiative hydrodynamics simulations of red supergiant stars: IV. Gray versus non-gray opacities. Astron. Astrophys., 535:A22, 2011.
Colavita, M. M., J. K., Wallace, B. E., Hines et al. The Palomar Testbed Interferometer. Astrophys. J., 510:505–521, 1999.
Colavita, M. M., M. R., Swain, R. L., Akeson, C. D., Koresko and R. J., Hill. Effects of atmospheric water vapor on infrared interferometry. PASP, 116(823):876–885, 2004.
Connes, P. and G., Michel. Astronomical Fourier spectrometer. Appl. Opt., 14:2067–2084, 1975.
Coudé du Foresto, V., P. J., Bordé, A., Mérand et al. FLUOR fibered beam combiner at the CHARA array. Proc. SPIE, 4838:280–285, 2003.
Dainty, J. C. and A. H., Greenaway. Estimation of spatial power spectra in speckle interferometry. J. Opt. Soc. Am., 69:786–790, 1979.
Dali Ali, W., A., Ziad, A., Berdja et al. Multi-instrument measurement campaign at paranal in 2007: characterization of the outer scale and the seeing of the surface layer. Astron. Astrophys., 524:A73, 2010.
Davis, J., P. R., Lawson, A. J., Booth, W. J. Tangoand E. D., Thorvaldson. Atmospheric path variations for baselines up to 80 m measured with the Sydney University Stellar Interferometer. MNRAS, 273:L53–58, 1995.
Davis, J., W. J., Tango and E. D., Thorvaldson. Dispersion in stellar interferometry: simultaneous optimization for delay tracking and visibility measurements. Appl. Opt., 37:5132–5136, 1998.
Davis, J., W. J., Tango, A. J., Booth et al. The Sydney University Stellar Interferometer – I. The instrument. MNRAS, 303:773–782, 1999.
Faucherre, M., B., Delabre, P., Dierickx and F., Merkle. Michelson- versus Fizeau-type beam combination: is there a difference?Proc. SPIE, 1237:206–217, 1990.
Ferrari, M., G. R., Lemaitre, S. P., Mazzanti et al. VLTI pupil transfer: variable curvature mirrors: I. final results and performances and interferometric laboratory optical layout. Proc. SPIE, 4006:104–115, 2000.
Finger, G., I., Baker, D., Alvarez et al. Evaluation and optimization of NIR HgCdTe avalanche photodiode arrays for adaptive optics and interferometry. Proc. SPIE, 84530:84530T–84530T, 2012.
Fisher, M., R. C., Boysen, D. F., Buscher et al. Design of the MROI delay line optical path compensator. Proc. SPIE., 7734: doi: 10.1117/12.857168, 2010.
Fried, D. L.Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J. Opt. Soc. Am., 56:1372–1379, 1966.
Fried, D. L.The nature of atmospheric turbulence effects on imaging and pseudoimaging systems, and its quantification. In J., Davis and W. J, Tango, editors, High Angular Resolution Stellar Interferometry, IAUC 50, American Physical Society, College Park, MD, pages 4–1–4–44, 1978.
Gaskill, J. D.Linear Systems, Fourier Transforms, and Optics.Wiley, New York, 1978.
Giffin, A.Maximum entropy: the universal method for inference. PhD, State University of New York at Albany, 2008.
Gordon, J. A. and D. F., Buscher. Detection noise bias and variance in the power spectrum and bispectrum in optical interferometry. Astron. Astrophys., 541:A46, May 2012. doi: 10.1051/0004-6361/201117335.
Greco, V. G. Molesini and F., Quercioli. Telescopes of Galileo. Applied Optics, 32 (31):6219, November 1993. ISSN 0003-6935. doi: 10.1364/AO.32.006219.
Gull, S. F. and J., Skilling. Quantified maximum entropy: MemSys5 users' manual, 1999.
Hale, D. D. S., M., Bester, W. C., Danchi, W., Fitelson, S., Hoss, E. A., Lipman, J. D., Monnier, P. G., Tuthill, and C. H., Townes. The Berkeley Infrared Spatial Interferometer: A heterodyne stellar interferometer for the mid-infrared. Astrophys. J., 537:998–1012, 2000.
Hanbury-Brown, R. and R. Q., Twiss. Correlation between photons in two coherent beams of light. Nature, 177:27–29, 1956.
Hanbury-Brown, R., J., Davis and L. R., Allen. The stellar interferometer at Narrabri Observatory-I: a description of the instrument and the observational procedure. MNRAS, 137:375–392, 1967.
Hanbury-Brown, R., J., Davis, D., Herbison-Evans and L. R., Allen. A study of Gamma 2 Velorum with a stellar intensity interferometer. MNRAS, 148:103–117, 1970.
Haniff, C. A. and D. F., Buscher. Speckle imaging with partially redundant masks: preliminary results. In J. M., Beckers and F., Merkle, editors, Proceedings of High Resolution Imaging by Interferometry II, ESO, Garching bei München, 1992.
Haniff, C. A., C. D., Mackay, D. J., Titterington et al. The first images from optical aperture synthesis. Nature, 328:694–696, 1987.
Hofmann, K.-H., G., Weigelt and D., Schertl. An image reconstruction method (IRBis) for optical/infrared interferometry. Astron. Astrophys., 565:A48, 2014.
Hogbom, J.Aperture synthesis with a non-regular distribution of interferometer baselines. Ap. J. Suppl. Ser., 15:417–426, 1974.
Horton, A. J., D. F, Buscher and C. A, Haniff. Diffraction losses in ground-based optical interferometers. MNRAS, 327:217–226, 2001.
Hummel, C. A., D., Mozurkewich, N. M., Elias et al. Four years of astrometric measurements with the Mark III optical interferometer. Astron. J., 108:326–336,1994.
Ireland, M. J. and J. D., Monnier. A dispersed heterodyne design for the Planet Formation Imager. Proc. SPIE, 9146:914612–914612, 2014.
Ireland, M. J., J. D., Monnier and N., Thureau. Monte-Carlo imaging for optical interferometry. Proc. SPIE, 6268:doi: 10.1117/12.670940, 2006.
Jennison, R. C.A phase sensitive interferometer technique for the measurement of the Fourier transforms of spatial brightness distribution of small angular extent. MNRAS, 118:276–284, 1958.
Jorgensen, A. M., H. R., Schmitt, J. T., Armstrong et al. Coherent integration results from the NPOI. Proc. SPIE, 7734:77342Q–77342Q–13, 2010.
Jovanovic, N., P. G., Tuthill, B., Norris et al. Starlight demonstration of the dragonfly instrument: an integrated photonic pupil-remapping interferometer for highcontrast imaging. MNRAS, 427:806–815, 2012.
Kellerer, A. and A., Tokovinin. Atmospheric coherence times in interferometry: definition and measurement. Astron. Astrophys., 461:775–781, 2007.
Koechlin, L.The i2t interferometer. In F., Merkle, editor, Proceedings of NOAO-ESO Conference on High Resolution Imaging by Interferometry, Garching bei München, ESO, 1988.
Kolmogorov, A. N.The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. In Dokl. Akad. Nauk SSSR, 30:301–305, 1941.
Korff, D.Analysis of a method for obtaining near-diffraction-limited information in the presence of atmospheric turbulence. J. Opt. Soc. Am., 63:971–980, 1973.
Launhardt, R., T., Henning, D., Queloz et al. The ESPRI project: narrow-angle astrometry with VLTI-PRIMA. Proc. IAU, 3 (Symposium S248):417–420, 2007.
Lawson, P., editor. Principles of Long-Baseline Stellar Interferometry. Jet Propulsion Laboratory, Pasadena, CA, 1999.
Le Bouquin, J.-B. and O., Absil. On the sensitivity of closure phases to faint companions in optical long baseline interferometry. Astron. Astrophys., 541:A89, 2012.
Le Bouquin, J.-B., J.-P., Berger, B., Lazareff, PIONIER: a 4-telescope visitor instrument at VLTI. Astron. Astrophys., 535:A67, 2011.
Lévêque, S., B., Koehler and O., Lühe. Longitudinal dispersion compensation for the very large telescope interferometer. Astrophys. Space Sci., 239:305–314, 1996.
Ma, C., E. F., Arias, T. M., Eubanks et al. The international celestial reference frame as realized by very long baseline interferometry. Astron. J., 116:516–546, 1998.
Mahajan, V. N.Strehl ratio for primary aberrations in terms of their aberration variance. J. Opt. Soc. Am., 73:860–861, 1983.
Malvimat, V., O., Wucknitz and P., Saha. Intensity interferometry with more than two detectors?MNRAS, 437:798–803, 2014.
Mandel, L.Photon degeneracy in light from optical maser and other sources. J. Opt. Soc. Am., 51:797–798, 1961.
Mandel, L., E C G Sudarshan and E Wolf. Theory of photoelectric detection of light fluctuations. Proc. Phys. Soc., 84:435–444, 1964.
Mariotti, J. M. and S. T., Ridgway. Double Fourier spatio-spectral interferometry: combining high spectral and high spatial resolution in the near infrared. Astron. Astrophys., 195:350–363, 1988.
Martin, F., A., Tokovinin, A., Ziad et al. First statistical data on wavefront outer scale at La Silla observatory from the GSM instrument. Astron. Astrophys., 336:L49–52, 1998.
McGlamery, B. L.Computer simulation studies of compensation of turbulence degraded images. Proc. SPIE, 74:225–233, 1976.
Meimon, S. C., L. M., Mugnier and G., Le Besnerais. Reconstruction method for weakphase optical interferometry. Opt. Lett., 30:1809–1811, 2005.
Mérand, A., P., Bordé and V., Coudé du Foresto. A catalog of bright calibrator stars for 200-m baseline near-infrared stellar interferometry. Astron. Astrophys., 433:1155–1162, 2005.
Michelson, A. A.On the application of interference methods to astronomical measurements. Astrophys.|J., 51:257–262, 1920.
Michelson, A. A. and F. G., Pease. Measurement of the diameter of Alpha Orionis with the interferometer. Astrophys. J., 53:249–259, 1921.
Millour, F., O., Chesneau, M., Borges Fernandes et al. A binary engine fuelling HD 87643' complex circumstellar environment, determined using AMBER/VLTI imaging. Astron. Astrophys., 507:317–326, 2009.
Monnier, J. D., F., Baron, M., Anderson et al. Tracking faint fringes with the CHARAMichigan phasetracker (CHAMP). Proc. SPIE., 8445:84451I–1–84451I–9, 2012.
Monnier, J. D.J.-P., Berger, J.-B., Le Bouquin et al. The 2014 interferometric imaging beauty contest. Proc. SPIE, 9146:91461Q–91461Q–20, 2014.
Mourard, D., J. M., Clausse, A., Marcotto et al. VEGA: Visible spEctroGraph and polArimeter for the CHARA array: principle and performance. Astron. Astrophys., 508:1073–1083, 2009.
Mozurkewich, D., J. T, Armstrong, R. B, Hindsley et al. Angular diameters of stars from the Mark III optical interferometer. Astron. J., 126:2502–2520, 2003.
Nightingale, N.S., and D. F., Buscher. Interferometric seeing measurements at the La Palma Observatory. MNRAS, 251:155, 1991.
Noll, R. J.Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am., 66:207–211, 1976.
Pauls, T. A., J. S., Young, W. D., Cotton and J. D., Monnier. A data exchange standard for optical (visible/IR) interferometry. PASP, 117:1255–1262, 2005.
Pearson, T. J. and A. C. S., Readhead. Image formation by self-calibration in radio astronomy. Ann. Rev. Astron. Astrophys, 22:97–130, 1984.
Perrin, G.S., Lacour, J., Woillez and E., Thiébaut. High dynamic range imaging by pupil single-mode filtering and remapping. MNRAS, 373:747–751, 2006a.
Perrin, G., J., Woillez, O., Lai et al. Interferometric coupling of the Keck telescopes with single-mode fibers. Science, 311:194–194, 2006b.
Petrov, R. G., F., Millour, S., Lagarde et al. VLTI/AMBER differential interferometry of the broad-line region of the quasar 3C 273. Proc. SPIE, 8445:doi:10.1117/12.926595, 2012.
Porro, I. L., W. A., Traub and N. P., Carleton. Effect of telescope alignment on a stellar interferometer. Appl. Opt., 38:6055–6067, 1999.
Prasad, S.Implications of light amplification for astronomical imaging. J. Opt. Soc. Am. A, 11:2799–2803, 1994.
Readhead, A. C. S., T. S., Nakajima, T. J., Pearson et al. Diffraction-limited imaging with ground-based optical telescopes. Astron. J., 95:1278–1296, 1988.
Richichi, A. and I., Percheron. First results from the ESO VLTI calibrators program. Astron. Astrophys., 434:1201–1209, 2005.
Roddier, F.The effects of atmospheric turbulence in optical astronomy. In E, Wolf, editor, Progress in Optics, Elsevier, Amsterdam, 1981, volume 19, pages 281–376.
Sandler, D. G., S., Stahl, J. R. P., Angel, M., Lloyd-Hart and D., McCarthy. Adaptive optics for diffraction-limited infrared imaging with 8-m telescopes. J. Opt. Soc. Am. A, 11:925–945, 1994.
Schöller, M.The Very Large Telescope Interferometer: current facility and prospects. New Astron. Rev., 51:628–638, 2007.
Ségransan, D., P., Kervella, T., Forveille and D., Queloz. First radius measurements of very low mass stars with the VLTI. Astron. Astrophys., 397:L5–8, 2003.
Shaklan, S. and F., Roddier. Coupling starlight into single-mode fiber optics. Appl. Opt., 27:2334–2338, 1988.
Shao, M., M. M., Colavita, B. E., Hines et al. TheMark III stellar interferometer. Astron. Astrophys., 193:357–371, 1988.
Shao, M.SIM: the space interferometry mission. Proc. SPIE, 3350:536–540, 1998.
Simohamed, L. M. and F., Reynaud. A 2 m stroke optical fibre delay line. Pure Appl. Opt.: J. Eur. Opt. Soc. A, 6:L37, 1997.
Sivia, D. S. and J., Skilling. Data Analysis: A Bayesian Tutorial. Oxford University Press, Oxford, 2nd edition, 2006.
Sivia, D. S.Phase extension methods. PhD thesis, Cambridge University, 1987.
Skilling, J.The axioms of maximum entropy. In Maximum-Entropy and Bayesian Methods in Science and Engineering, Springer, Dordrecht, 1988a, pages 173–187.
Skilling, J.Classic maximum entropy. In J., Skilling, editor, Maximum Entropy and Bayesian Methods, 45–52. Springer, Dordrecht, 1988b.
Stephan, E.Sur l'extreme petitesse du diametre apparent des etoiles fixes. C. R. Acad. Sc. (Paris), 78:1008–1112, 1874.
Strano, G.Galileo' telescope: history, scientific analysis, and replicated observations. Exp. Astron., 25:17–31, 2009.
Stürmer, J. and A., Quirrenbach. Simulating aperture masking at the Large Binocular Telescope. Proc. SPIE., 8445:84452H–1–84452H–8, 2012.
Tallon-Bosc, I., M., Tallon, E., Thiébaut et al. LITpro: a model-fitting software for optical interferometry. Proc. SPIE, 7013:70131–70131J, 2008.
Tango, R. J.Dispersion in stellar interferometry. Appl. Opt., 29:516–521, 1990.
Tango, R. J. and R. Q., Twiss. Diffraction effects in long path interferometers. Appl. Opt., 13:1814–1819, 1974.
Tango, R. J. and R. Q., Twiss. Michelson stellar interferometry. Progr. Opt., XVII:239–277, 1980.
Tatarski, V. I.Wave Propagation in a Turbulent Medium.McGraw-Hill Book Company, Inc, New York 1961.
Tatulli, E. and G., Duvert. AMBER data reduction. New Astron. Rev., 51:682–696, 2007.
Tatulli, E., F., Millour and A., Chelli, Interferometric data reduction with AMBER/VLTI. Principle, estimators, and illustration. Astron. Astrophys., 464:29–42, 2007.
ten Brummelaar, T. A.Differential path considerations in optical stellar interferometry. App. Opt., 34:2214–2219, 1995.
ten Brummelaar, T. A., H. A., McAlister, S. T., Ridgway et al. First results from the CHARA array. II. A description of the instrument. Astrophys.|J., 628:453–465, 2005.
Thiébaut, E.MIRA: an effective imaging algorithm for optical interferometry. Proc. SPIE, 7013, doi: 10.1117/12.788822, 2008.
Thompson, A. R., Moran, I. M. and G. W., Swenson Jr. Interferometry and Synthesis in Radio Astronomy, 2nd edition, John Wiley & Sons, New York, 2008.
Thureau, N. Compensation of longitudinal dispersion for the GI2T-REGAIN optical interferometer. J. Op. A: Pure Appl. Opt., 3:440, 2001.
Thureau, N. D., R. C., Boysen, D. F., Buscher et al. Fringe envelope tracking at COAST. Proc. SPIE., 4838:956–963, 2003.
Traub, W. A.Polarization effects in stellar interferometers. In NOAO-ESO Conference on High-Resolution Imaging by Interferometry: Ground-based Interferometry at Visible and Infrared Wavelenghts, ESD, Gerching bei München, volume 29, pages 1029–1038, 1988.
Tubbs, R.Effect of wavefront corrugations on fringe motion in an astronomical interferometer with spatial filters. Appl. Opt., 44:6253–6257, 2005.
Tuthill, P. G.The unlikely rise of masking interferometry: leading the way with 19th century technology. Proc. SPIE., 8445:844502–1–844502–11, 2012.
Tuthill, P. G., J. D., Monnier, W. C., Danchi and B., Lopez. Smoke signals from IRC+10216. I. Milliarcsecond proper motions of the dust. Astrophys. J., 543:284, 2000a.
Tuthill, P. G., J. D., Monnier,W. C., Danchi, E. H., Wishnow and C. A., Haniff. Michelson interferometry with the Keck I telescope. PASP, 112:555–565, 2000b.
van Cittert, P. H.Die wahrscheinliche Schwingungsverteilung in einer von einer lichtquelle direkt oder mittels einer Linse beleuchteten Ebene. Physica, 1:201–210, 1934.
van Dam, M., E., Johansson, P., Stomski et al. Performance of the Keck II AO system. Technical Report 489, W. M. Keck Observatory, 2007.
Wagner, R. E. and W. J., Tomlinson. Coupling efficiency of optics in single-mode fiber components. Appl. Opt., 21:2671–2688, 1982.
Wang, J. Y. and J. K., Markey. Modal compensation of atmospheric turbulence phase distortion. J. Opt. Soc. Am., 68:78–87, 1978.
Wheelon, A. D.Electromagnetic Scintillation. I. Geometrical Optics. Cambridge University Press, Cambridge, 2001.
Wilson, R. W. and C. R., Jenkins. Adaptive optics for astronomy: theoretical performance and limitations. MNRAS, 278:39–61, 1996.
Wilson, R. W., V. S., Dhillon and C. A., Haniff. The changing face of Betelgeuse. MNRAS, 291:819+, 1997.
Woan, G. and P. J., Duffett-Smith. Determination of closure phase in noisy conditions. Astron. Astrophys., 198:375, 1988.
Young, J. S., J. E., Baldwin, R. C., Boysen et al. New views of Betelgeuse: multi-wavelength surface imaging and implications for models of hotspot generation. MNRAS, 315:635–645, 2000.
Zernike, F.The concept of degree of coherence and its application to optical problems. Physica, 5:785–795, 1938.
Zhao, M., J. D., Monnier, E., Pedretti et al. Imaging and modeling rapidly rotating stars: α Cephei and α Ophiuchi. Astrophys. J., 701:209–224, 2009.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.