Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-27T05:13:16.349Z Has data issue: false hasContentIssue false

6 - The primary transition region

Published online by Cambridge University Press:  10 November 2009

Richard Boyd
Affiliation:
University of Utah
Grant Smith
Affiliation:
University of Utah
Get access

Summary

Mechanical relaxation

Scope of relaxation

Although the primary transition temperature in a given polymer tends to be similar whether studied mechanically or dielectrically the characteristics in detail are quite different. The mechanical modulus eventually falls to zero with time at higher temperatures. If the molecular weight is above the entanglement length, the rubbery plateau region intervenes before the viscous flow region and the ensuing complete decay toward zero. However, the modulus in the plateau region is orders of magnitude less than the glassy modulus. Thus the mechanical relaxation is characterized by a large modulus change that is best represented by a logarithmic scale for modulus (as in Figure 1.9 for example). Because of the large range over which the modulus decay may be measured the time scale is also extremely wide. It is actually far too wide to be captured directly experimentally. In fact, in a single apparatus, mechanical measurements are usually restricted to a few decades of time or frequency. However, by measuring time or frequency responses at a number of temperatures various parts of the overall relaxation from the glassy to the rubbery state may be captured. Figure 6.1 shows a particularly elegant set of such data [1] in which the storage compliance of poly(n-octyl methacrylate) is plotted against log frequency at a number of temperatures. The complete transition region may then be described in alternative ways.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ferry, J. D., Viscoelastic Properties of Polymers, second edn (New York: Wiley, 1970). Tabulated data in Append. D-2.Google Scholar
Plazek, D. J., J. Phys. Chem., 69, 3480 (1965).CrossRef
Plazek, D. J., Chay, I.-C., Ngai, K. L., and Roland, C. M., Macromolecules, 28, 6432 (1996).CrossRef
Palade, L. I., Verney, V., and Attane, P., Macromolecules, 28, 7051 (1995).CrossRef
Vogel, H., Physik Z., 22, 645 (1921).
Fulcher, G. S., J. Am. Ceram. Soc., 8, 339 (1925).CrossRef
Tammen, G. and Hesse, G., Z. Anorg. Allg. Chem., 156, 245 (1926).CrossRef
Stickel, F., Fischer, E. W., and Richert, R., J. Chem. Phys., 102, 6251 (1995).CrossRef
Stickel, F., Fischer, E. W., and Richert, R., J. Chem. Phys., 104, 2043 (1996).CrossRef
Hansen, C., Stickel, F., Berger, T., Richert, R., and Fischer, E. W., J. Chem. Phys., 107, 1086 (1997).CrossRef
Hansen, C., Stickel, F., Richert, R., and Fischer, E. W., J. Chem. Phys., 108, 6408 (1998).CrossRef
Williams, M. L., Landel, R. F., and Ferry, J. D., J. Am. Chem. Soc., 77, 3701 (1955).CrossRef
R. H. Boyd and F. Liu in Dielectric Spectroscopy of Polymeric Materials, edited by Runt, J. P. and Fitzgerald, J. J. (Washington, DC: American Chemical Society, 1997), Chapter 4.Google Scholar
O. Johansson and T. Falk, Master of Science Thesis, Royal Institute of Technology, Stockholm (1993).
Starkweather, H. W. and Avakian, P., J. Polym. Sci., Part B: Polym. Phys., 30, 637 (1992).CrossRef
Mohomed, K., Gerasimov, T. G., Moussy, F., and Harmon, J. P., Polymer, 46, 3847 (2005).CrossRef
Ferry, J. D., Viscoelastic Properties of Polymers, second edn (New York: Wiley, 1970), Chapter 9.Google Scholar
Tadokoro, H., Structure of Crystalline Polymers (New York: Wiley, 1979).Google Scholar
Boyd, R. H. and Breitling, S. M., Macromolecules, 5, 1 (1972).CrossRef
McCrum, N. G., Read, B. E., and Williams, G., Anelastic and Dielectric Effects in Polymeric Solids (New York: Wiley, 1967; Dover, 1991).Google Scholar
Stoll, B., Pechhold, W., and Blasenbrey, S., Kolloid Z., 250, 111 (1972).
Richter, D., Arbe, A., Colmenero, J., Monkenbusch, M., Farago, B., and Faust, R., Macromolecules, 31, 1133 (1998).CrossRef
R. H. Boyd and F. Liu previously unpublished work.
Illers, K. H. and Breuer, H., J. Colloid Sci., 18, 1 (1963).CrossRef
Coburn, J. C. and Boyd, R. H., Macromolecules, 19, 2238 (1986).CrossRef
H. Takayanagi, from data in McCrum, Read and Williams [Ref. 20].
He, Y., Lutz, T., Ediger, M. D., Ayyagari, C., Bedrov, D., and Smith, G. D., Macromolecules, 37, 5032 (2004).CrossRef
Kaufmann, S., Wefing, S., Schaefer, D., and Spiess, H. W., J. Chem. Phys., 93, 197 (1990).CrossRef
Smith, G. D., Borodin, O., Bedrov, D., Paul, W., Qiu, X. H., and Ediger, M. D., Macromolecules, 34, 5192 (2001).CrossRef
Smith, G. D., Paul, W., Monkenbusch, M., Willner, L., Richter, D., Qiu, X. H., and Ediger, M. D., Macromolecules, 32, 8857 (1999).CrossRef
Paul, W., Yoon, D. Y., and Smith, G. D., J. Chem. Phys., 103, 1702 (1995).CrossRef
Paul, W., Smith, G. D., and Yoon, D. Y., Macromolecules, 30, 7772 (1997).CrossRef
Qiu, X. H. and Ediger, M. D., Macromolecules, 33, 490 (2000).CrossRef
Paul, W. and Smith, G. D., Rep. Prog. Phys., 67, 1117 (2004).CrossRef
Smith, G. D., Paul, W., Yoon, D. Y., et al., J. Chem. Phys., 107, 4751 (1997).CrossRef
McQuarrie, D. A., Statistical Mechanics (New York: Harper and Row, 1976).Google Scholar
Arbe, A., Richter, D., Colmenero, J., and Farago, B., Phys. Rev. E, 54, 3853 (1996).CrossRef
Smith, G. D., Paul, W., Monkenbusch, M., and Richter, D., Chem. Phys., 261, 61 (2000).CrossRef
Winkler, R. G., Harnau, L., and Reineker, P., Macromol. Symp., 81, 91 (1994).CrossRef
Smith, G. D., Paul, W., Monkenbusch, M., and Richter, D., J. Chem. Phys., 114, 4285 (2001).CrossRef
Harmandaris, V. A., Mavrantzas, V. G., Theodorou, D. N., et al., Macromolecules, 36, 1376 (2003).CrossRef
Richter, D., Monkenbusch, M., Allgeier, J., et al., J. Chem. Phys., 111, 6107 (1999).CrossRef
Allegra, G. and Ganazzoli, F. J., J. Chem. Phys., 74, 1310 (1981).CrossRef
Arbe, A., Monkenbusch, M., Stellbrink, J., et al., Macromolecules, 34, 1281 (2001).CrossRef
Paul, W., Krushev, S., and Smith, G. D., Macromolecules, 35, 4198 (2002).
Guenza, M., J. Chem. Phys., 119, 7568 (2003).CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×