Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T22:30:04.270Z Has data issue: false hasContentIssue false

16 - The Sun

from IV - Solar system

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anusha, L. S., Nagendra, K. N., Bianda, M.et al. (2011). Analysis of the forward-scattering Hanle effect in the Ca I 4227 Å Line. The Astrophysical Journal, 737(2), 95.CrossRefGoogle Scholar
Auer, L. H. and Heasley, J. N. (1978). The origin of broad-band circular polarization in sunspots. Astronomy and Astrophysics, 64, 6771.Google Scholar
Belluzzi, L. (2009). On the physical origin of the Second Solar Spectrum of the Sc II line at 4247 Å. Astronomy and Astrophysics, 508, 933940.CrossRefGoogle Scholar
Belluzzi, L., Trujillo Bueno, J., and Landi Degl’Innocenti, E. (2007). The magnetic sensitivity of the Ba II D1 and D2 lines of the Fraunhofer spectrum. The Astrophysical Journal, 666(1), 588.CrossRefGoogle Scholar
Belluzzi, L., Landi Degl’Innocenti, E., and Trujillo Bueno, J. (2009). The physical origin and the diagnostic potential of the scattering polarization in the Li I resonance doublet at 6708 Å. The Astrophysical Journal, 705(1), 218.CrossRefGoogle Scholar
Berdyugina, S. V., Nagendra, K. N., and Ramelli, R., eds. (2009). Solar Polarization 5: In Honor of Jan Olof Stenflo. Astronomical Society of the Pacific Conference Series, Vol. 405. San Francisco CA: Astronomical Society of the Pacific.Google Scholar
Bianda, M., Ramelli, R., Anusha, L. S.et al. (2011). Observations of the forward scattering Hanle effect in the Cal 4227 Å line. Astronomy and Astrophysics, 530, L13 (4pp).CrossRefGoogle Scholar
Bommier, V. (1980). Quantum theory of the Hanle effect. II – Effect of level-crossings and anti-level-crossings on the polarization of the D3 helium line of solar prominences. Astronomy and Astrophysics, 87, 109120.Google Scholar
Bommier, V. (1997a). Master equation theory applied to the redistribution of polarized radiation, in the weak radiation field limit. I – Zero magnetic field case. Astronomy and Astrophysics, 328, 706725.Google Scholar
Bommier, V. (1997b). Master equation theory applied to the redistribution of polarized radiation, in the weak radiation field limit. II – Arbitrary magnetic field case. Astronomy and Astrophysics, 328, 726751.Google Scholar
Bommier, V. and Sahal-Bréchot, S. (1978). Quantum theory of the Hanle effect – Calculations of the Stokes parameters of the D3 helium line for quiescent prominences. Astronomy and Astrophysics, 69, 5764.Google Scholar
Casini, R. and Manso Sainz, R. (2005). Line formation theory for the multiterm atom with hyperfine structure in a magnetic field. The Astrophysical Journal, 624(2), 1025.CrossRefGoogle Scholar
Casini, R., Landi Degl’Innocenti, E., Landolfi, M., and Trujillo Bueno, J. (2002). On the atomic polarization of the ground level of Na I. The Astrophysical Journal, 573(2), 864.CrossRefGoogle Scholar
del Toro Iniesta, J. C. (2003). Introduction to Spectropolarimetry. Cambridge University Press.CrossRefGoogle Scholar
Golub, L., De Moortel, I., and Shimizu, T., eds. (2012). Fifth Hinode Science Meeting. Astronomical Society of the Pacific Conference Series, Vol. 456. San Francisco: Astronomical Society of the Pacific.Google Scholar
Hale, G. E. (1908). On the probable existence of a magnetic field in sun-spots. The Astrophysical Journal, 28, 315343.CrossRefGoogle Scholar
Hanle, W. (1924). Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz. Zeitschrift für Physik, 30(1), 93105.CrossRefGoogle Scholar
Holzreuter, R. and Stenflo, J. (2007). Scattering polarization in strong chromospheric lines. Astronomy and Astrophysics, 472(3), 919928.CrossRefGoogle Scholar
Illing, R. M. E., Landman, D. A., and Mickey, D. L. (1975). Broad-band circular polarization of sunspots – Spectral dependence and theory. Astronomy and Astrophysics, 41, 183185.Google Scholar
Ivanov, V. V. (1991). Analytical methods of line formation theory: Are they still alive?. In Crivellari, L., Hubeny, I., and Hummer, D. G., eds., Stellar Atmospheres: Beyond Classical Models. Dordrecht: Springer, pp. 81104.CrossRefGoogle Scholar
Kuhn, J. R., Harrington, D. M., Lin, H.et al., eds. (2011). Solar Polarization 6. Astronomical Society of the Pacific Conference Series, Vol. 437. San Francisco: Astronomical Society of the Pacific.Google Scholar
Landi Degl’innocenti, E. (1982). The determination of vector magnetic fields in prominences from the observations of the Stokes profiles in the D3 line of helium. Solar Physics, 79(2), 291322.CrossRefGoogle Scholar
Landi Degl’Innocenti, E. (1983). Polarization in spectral lines. I – A unifying theoretical approach. Solar Physics, 85(1), 331.CrossRefGoogle Scholar
Landi Degl’Innocenti, E. (1984). Polarization in spectral lines. III – Resonance polarization in the non-magnetic, collisionless regime. Solar Physics, 91(1), 126.Google Scholar
Landi Degl’Innocenti, E. (1998). Evidence against turbulent and canopy-like magnetic fields in the solar chromosphere. Nature, 392(6673), 256258.CrossRefGoogle Scholar
Landi Degl’Innocenti, E. and Landolfi, M. (2004). Polarization in Spectral Lines. Astrophysics and Space Science Library, Vol. 307. Dordrecht: Kluwer.CrossRefGoogle Scholar
Landolfi, M. and Landi Degl’Innocenti, E. (1982). Magneto-optical effects and the determination of vector magnetic fields from Stokes profiles. Solar Physics, 78, 355.CrossRefGoogle Scholar
Leroy, J. L., Ratier, G., and Bommier, V. (1977). The polarization of the D3 emission line in prominences. Astronomy and Astrophysics, 54, 811816.Google Scholar
Lites, B. W., Kubo, M., Socas-Navarro, H.et al. (2008). The horizontal magnetic flux of the quiet-Sun internetwork as observed with the Hinode spectro-polarimeter. The Astrophysical Journal, 672(2), 1237.CrossRefGoogle Scholar
Manso Sainz, R. and Trujillo Bueno, J. (2003). Zero-field dichroism in the solar chromosphere. Physical Review Letters, 91(11), 111102.CrossRefGoogle Scholar
Manso Sainz, R. and Trujillo Bueno, J. (2007). Scattering polarization of the Ca II infrared triplet as diagnostic of the quiet solar chromosphere. In Heinzel, P., Dorotovic, I., and Rutten, R. J., eds., The Physics of Chromospheric Plasmas. Astronomical Society of the Pacific Conference Series, Vol. 368. San Francisco: Astronomical Society of the Pacific, p. 155.Google Scholar
Narukage, N., Tsuneta, S., Bando, T.et al. (2011). Overview of chromospheric Lyman-alpha spectropolarimeter (CLASP). In SPIE Optical Engineering + Applications. Bellingham WA: International Society for Optics and Photonics, p. 81480H.Google Scholar
Omont, A., Smith, E. W., and Cooper, J. (1973). Redistribution of resonance radiation. II – The effect of magnetic fields. The Astrophysical Journal, 182, 283300.CrossRefGoogle Scholar
Povel, H. P. (2001). Ground-based instrumentation for solar magnetic field studies, with special emphasis on the Zurich Imaging Polarimeters ZIMPOL-I and II. In Mathys, G., Solanki, S. K., and Wickramasinghe, D. T., eds., Magnetic Fields Across the Hertzsprung-Russell Diagram. Astronomical Society of the Pacific Conference Series, Vol. 248. San Francisco: Astronomical Society of the Pacific, p. 543.Google Scholar
Rachkovsky, D. N. (1962a). Magneto-optical effects in spectral lines of sunspots. Crimean Astrophysical Observatory, 27, 148161.Google Scholar
Rachkovsky, D. N. (1962b). Magnetic rotation effects in spectral lines. Crimean Astrophysical Observatory, 28, 259270.Google Scholar
Sahal-Bréchot, S., Bommier, V., and Leroy, J. L. (1977). The Hanle effect and the determination of magnetic fields in solar prominences. Astronomy and Astrophysics, 59, 223231.Google Scholar
Solanki, S. K. (1993). Small-scale solar magnetic fields: An overview. Space Science Reviews, 63(1–2), 1188.CrossRefGoogle Scholar
Stenflo, J. O. (1973). Magnetic-field structure of the photospheric network. Solar Physics, 32(1), 4163.CrossRefGoogle Scholar
Stenflo, J. O. (1980). Resonance-line polarization. V. Quantum-mechanical interference between states of different total angular momentum. Astronomy and Astrophysics, 84, 6874.Google Scholar
Stenflo, J. O. (1982). The Hanle effect and the diagnostics of turbulent magnetic fields in the solar atmosphere. Solar Physics, 80(2), 209226.CrossRefGoogle Scholar
Stenflo, J. O. (1987). Observational constraints on a “hidden,” turbulent magnetic field of the sun. Solar Physics, 114(1), 119.Google Scholar
Stenflo, J. O. (1994). Solar Magnetic Fields: Polarized Radiation Diagnostics. Astrophysics and Space Science Library, Vol. 189. Dordrecht: Kluwer.CrossRefGoogle Scholar
Stenflo, J. O. (1997). Quantum interferences, hyperfine structure, and Raman scattering on the Sun. Astronomy and Astrophysics, 324, 344356.Google Scholar
Stenflo, J. O. (1998). Hanle-Zeeman scattering matrix. Astronomy and Astrophysics, 338, 301310.Google Scholar
Stenflo, J. O. (2003). Scattering polarization in magnetic fields: Anomalies, surprises and enigmas. In Trujillo Bueno, J. and Sanchez Almeida, J., eds., Solar Polarization 3. Astronomical Society of the Pacific Conference Series, Vol. 307. San Francisco: Astronomical Society of the Pacific, pp. 385398.Google Scholar
Stenflo, J. O. (2005). Polarization of the Sun’s continuous spectrum. Astronomy and Astrophysics, 429(2), 713730.CrossRefGoogle Scholar
Stenflo, J. O. (2006). Second Solar Spectrum: A brief overview. In Casini, R. and Lites, B. W., eds., Solar Polarization 4. Astronomical Society of the Pacific Conference Series, Vol. 358. San Francisco: Astronomical Society of the Pacific, pp. 215224.Google Scholar
Stenflo, J. O. (2009). The Sun as a Rosetta stone for polarization physics. In Berdyugina, S., Nagendra, K. N., and Ramelli, R., eds., Solar Polarization 5: In Honor of Jan Olof Stenflo. Astronomical Society of the Pacific Conference Series, Vol. 405. San Francisco: Astronomical Society of the Pacific, pp. 316.Google Scholar
Stenflo, J. O. (2011). Unsolved problems in solar polarization. In Kuhn, J. R., Harrington, D. M., Lin, H.et al., eds., Solar Polarization 6. Astronomical Society of the Pacific Conference Series, Vol. 437. San Francisco: Astronomical Society of the Pacific, pp. 317.Google Scholar
Stenflo, J. O. (2012). Scaling laws for magnetic fields on the quiet Sun. Astronomy and Astrophysics, 541, A17 (12pp).CrossRefGoogle Scholar
Stenflo, J. O. (2013a). Horizontal or vertical magnetic fields on the quiet Sun. Angular distributions and their height variations. Astronomy and Astrophysics, 555, A132 (12pp).CrossRefGoogle Scholar
Stenflo, J. O. (2013b). Solar magnetic fields as revealed by Stokes polarimetry. The Astronomy and Astrophysics Review, 21(1), 158.CrossRefGoogle Scholar
Stenflo, J. O. and Keller, C. U. (1997). The Second Solar Spectrum. A new window for diagnostics of the Sun. Astronomy and Astrophysics, 321, 927934.Google Scholar
Stenflo, J. O., Dravins, D., Wihlborg, N.et al. (1980). Search for spectral line polarization in the solar vacuum ultraviolet. Solar Physics, 66(1), 1319.CrossRefGoogle Scholar
Stenflo, J. O., Twerenbold, D., and Harvey, J. W. (1983a). Coherent scattering in the solar spectrum – Survey of linear polarization in the range 3165–4230 Å. Astronomy and Astrophysics Supplement Series, 52, 161180.Google Scholar
Stenflo, J. O., Twerenbold, D., Harvey, J. W., and Brault, J. W. (1983b). Coherent scattering in the solar spectrum – Survey of linear polarization in the range 4200–9950 Å. Astronomy and Astrophysics Supplement Series, 54(3), 505514.Google Scholar
Stenflo, J. O., Harvey, J. W., Brault, J. W., and Solanki, S. (1984). Diagnostics of solar magnetic fluxtubes using a Fourier transform spectrometer. Astronomy and Astrophysics, 131(2), 333346.Google Scholar
Stenflo, J. O., Keller, C. U., and Gandorfer, A. (2000). Anomalous polarization effects due to coherent scattering on the Sun. Astronomy and Astrophysics, 355, 789803.Google Scholar
Stepanov, V. E. (1958). The absorption coefficient of atoms in the case of reverse Zeeman effect for arbitrary directed magnetic fields. Crimean Astrophysical Observatory, 18, 136150.Google Scholar
Stepanov, V. E. and Severny, A. B. (1962). A photoelectric method for measurements of the magnitude and direction of the solar magnetic field. Crimean Astrophysical Observatory, 28, 166193.Google Scholar
Thalmann, C., Stenflo, J. O., Feller, A., and Cacciani, A. (2009). Magnetic field dependence of polarized scattering on potassium. In Berdyugina, S., Nagendra, K. N., and Ramelli, R., eds., Solar Polarization 5: In Honor of Jan Olof Stenflo. Astronomical Society of the Pacific Conference Series, Vol. 405. San Francisco: Astronomical Society of the Pacific, pp. 113118.Google Scholar
Trujillo Bueno, J. (2001). Atomic polarization and the Hanle effect. In Sigwarth, M., ed., Advanced Solar Polarimetry – Theory, Observation, and Instrumentation. Astronomical Society of the Pacific Conference Series, Vol. 236. San Francisco: Astronomical Society of the Pacific, pp. 161195.Google Scholar
Trujillo Bueno, J. T. and Landi Degl’Innocenti, E. (1997). Linear polarization due to lower level depopulation pumping in stellar atmospheres. The Astrophysical Journal Letters, 482(2), L183L186.CrossRefGoogle Scholar
Trujillo Bueno, J., Casini, R., Landolfi, M., and Landi Degl’Innocenti, E. (2002a). The physical origin of the scattering polarization of the Na I D lines in the presence of weak magnetic fields. The Astrophysical Journal Letters, 566(1), L53L57.CrossRefGoogle Scholar
Trujillo Bueno, J., Landi Degl’Innocenti, E., Collados, M., Merenda, L., and Manso Sainz, R. (2002b). Selective absorption processes as the origin of puzzling spectral line polarization from the Sun. Nature, 415(6870), 403406.CrossRefGoogle ScholarPubMed
Trujillo Bueno, J., Shchukina, N., and Asensio-Ramos, A. (2004). A substantial amount of hidden magnetic energy in the quiet Sun. Nature, 430(6997), 326329.CrossRefGoogle Scholar
Trujillo Bueno, J., Štěpán, J., and Casini, R. (2011). The Hanle effect of the hydrogen Lyα line for probing the magnetism of the solar transition region. The Astrophysical Journal Letters, 738(1), L11 (5pp).CrossRefGoogle Scholar
Trujillo Bueno, J., Štěpán, J., and Belluzzi, L. (2012). The Lyα lines of H I and He II: A differential Hanle effect for exploring the magnetism of the solar transition region. The Astrophysical Journal Letters, 746(1), L9 (5pp).CrossRefGoogle Scholar
Unno, W. (1956). Line formation of a normal Zeeman triplet. Publications of the Astronomical Society of Japan, 8, 108.Google Scholar
Watanabe, H., Narukage, N., Kubo, M.et al. (2011). Ly-alpha polarimeter design for CLASP rocket experiment. In SPIE Optical Engineering + Applications. Bellingham WA: International Society for Optics and Photonics, p. 81480T.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×