Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T08:46:34.265Z Has data issue: false hasContentIssue false

9 - Interstellar polarization

from III - Stars and their environment

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, B-G and Potter, S. B. (2005). A high sampling-density polarization study of the Southern Coalsack. Monthly Notices of the Royal Astronomical Society, 356, 10881098.CrossRefGoogle Scholar
Andersson, B-G and Potter, S. B. (2007). Observational constraints on interstellar grain alignment. The Astrophysical Journal, 665, 369389.CrossRefGoogle Scholar
Andersson, B-G and Potter, S. B. (2010). Observational constraints on interstellar grain alignment. The Astrophysical Journal, 720, 10451054.CrossRefGoogle Scholar
Andersson, B. and Potter, S. (2011 ). Observational evidence for radiative interstellar grain alignment. In Astronomical Society of the Pacific Conference Series, 449. San Francisco CA: Astronomical Society of the Pacific, pp. 134138.Google Scholar
Andersson, B-G, Pintado, O., Potter, S. B., Straižys, V., and Charcos-Llorens, M. (2011). Angle-dependent radiative grain alignment. Confirmation of a magnetic field – radiation anisotropy angle dependence on the efficiency of interstellar grain alignment. Astronomy and Astrophysics, 534, 1927.CrossRefGoogle Scholar
Beck, R. (2001). Galactic and extragalactic magnetic fields. Space Science Reviews, 99, 243253.CrossRefGoogle Scholar
Bohren, C. F. and Huffman, D. R. (1983). Absorption and Scattering of Light by Small Particles. New York: Wiley.Google Scholar
Chandrasekhar, S. and Fermi, E. (1953). Magnetic fields in spiral arms. The Astrophysical Journal, 118, 116134.CrossRefGoogle Scholar
Chiar, J. E., Adamson, A. J., Whittet, D. C. B.et al. (2006). Spectropolarimetry of the 3.4 µm feature in the diffuse ISM toward the galactic center quintuplet cluster. The Astrophysical Journal, 651, 268271.CrossRefGoogle Scholar
Clayton, G. C. and Cardelli, J. A. (1988). Polarization and the ratio of total-to-selective extinction. The Astronomical Journal, 96, 695700.CrossRefGoogle Scholar
Clayton, G. C. and Mathis, J. S. (1988). The determination of ultraviolet extinction from the optical and near-infrared. The Astrophysical Journal, 327, 911919.CrossRefGoogle Scholar
Clayton, G. C., Martin, P. G., and Thompson, I. (1983). The wavelength dependence of interstellar polarization in the Large Magellanic Cloud. The Astrophysical Journal, 265, 194201.CrossRefGoogle Scholar
Clayton, G. C., Anderson, C. M., Magalhaes, A. M.et al. (1992). The first spectropolarimetric study of the wavelength dependence of interstellar polarization in the ultraviolet. The Astrophysical Journal Letters, 385, L5357.CrossRefGoogle Scholar
Clayton, G. C., Wolff, M. J., Allen, R. G., and Lupie, O. L. (1995). Ultraviolet interstellar linear polarization. 2: The wavelength dependence. The Astrophysical Journal, 445, 947957.CrossRefGoogle Scholar
Clayton, G. C., Wolff, M. J., Sofia, U. J., Gordon, K. D., and Misselt, K. A. (2003). Dust grain size distributions from MRN to MEM. The Astrophysical Journal, 588. 871880.CrossRefGoogle Scholar
Clayton, G. C., Wolff, M. J., Gordon, K. D.et al. (2004). Interstellar polarization in M31. The Astronomical Journal, 127, 33823387.CrossRefGoogle Scholar
Clemens, D. P., Pinnick, A. F., Pavel, M. D., and Taylor, B. W. (2012). The Galactic Plane Infrared Polarization Survey (GPIPS). The Astrophysical Journal Supplement, 200, 119.Google Scholar
Coyne, G., Gehrels, T., and Serkowski, K. (1974). Wavelength dependence of polarization. XXVI. The wavelength of maximum polarization as a characteristic parameter of interstellar grains. The Astronomical Journal, 79, 581589.CrossRefGoogle Scholar
Crutcher, R. M. (2004). What drives star formation?Astrophysics and Space Science, 292, 225237.CrossRefGoogle Scholar
Davis, L. J. and Greenstein, J. L. (1951). The polarization of starlight by aligned dust grains. The Astrophysical Journal, 114, 206213.CrossRefGoogle Scholar
Delabrouille, J., Betoule, M., Melin, J. B. et al. (2013). The polarized radiation imaging and spectroscopy mission. Astronomy and Astrophysics, 553(A96), 135.Google Scholar
Dolginov, A. Z. and Mytrophanov, I. G. (1976). Orientation of cosmic dust grains. Astrophysics and Space Science, 43, 291317.CrossRefGoogle Scholar
Draine, B.T. and Flatau, P. J. (1994). Discrete-dipole approximation for scattering calculations. Journal of the Optical Society of America A, 11(4), 14911499.CrossRefGoogle Scholar
Draine, B. T. and Flatau, P. J. (2008). Discrete-dipole approximation for periodic targets: Theory and tests. Journal of the Optical Society of America A, 25, 26932703.CrossRefGoogle ScholarPubMed
Draine, B. T. and Fraisse, A. A. (2009). Polarized far-infrared and submillimeter emission from interstellar dust. The Astrophysical Journal, 696, 111.CrossRefGoogle Scholar
Draine, B. T. and Weingartner, J. C. (1996). Radiative torques on interstellar grains. I. Superthermal spin-up. The Astrophysical Journal, 470, 551565.CrossRefGoogle Scholar
Draine, B. T. and Weingartner, J. C. (1997). Radiative torques on interstellar grains. II. Grain alignment. The Astrophysical Journal, 480, 633646.CrossRefGoogle Scholar
Efimov, Y. S. (2009). Interstellar polarization: New approximation. Bulletin Crimean Astrophysical Observatory, 105, 82114.CrossRefGoogle Scholar
Falceta-Goncalves, D., Lazarian, A., and Kowal, G. (2009). Studying ISM magnetic fields and turbulent regimes from polarimetric maps. Revista Mexicana de Astronomia y Astrofisica Conference Series, 36, 3744.Google Scholar
Fosalba, P., Lazarian, A., Prunet, S., and Tauber, J. A. (2002). Statistical properties of galactic starlight polarization. The Astrophysical Journal, 564, 762775.CrossRefGoogle Scholar
Gerakines, P. A., Whittet, D. C. B., and Lazarian, A. (1995). Grain alignment in the Taurus dark cloud. The Astrophysical Journal, 455, L171L175.CrossRefGoogle Scholar
Gold, T. (1952). The alignment of galactic dust. Monthly Notices of the Royal Astronomical Society, 112, 215219.CrossRefGoogle Scholar
Goodman, A. A. and Whittet, D. C. B. (1995). A point in favor of the superparamagnetic grain hypothesis. The Astrophysical Journal, 455, L181184.CrossRefGoogle Scholar
Goodman, A. A., Jones, T. J., Lada, E. A., and Myers, P. C. (1992). The structure of magnetic fields in dark clouds – Infrared polarimetry in B216-217. The Astrophysical Journal, 339, 108113.CrossRefGoogle Scholar
Greenberg, J. M. (1968). Interstellar grains. In B. M. Middlehurst and L. H. Aller, eds., Nebulae and Interstellar Matter. University of Chicago Press, pp. 221364.Google Scholar
Hall, J. S. (1949). Observations of the polarized light from stars. Science, 109, 166167.CrossRefGoogle ScholarPubMed
Henning, T., Launhardt, R., Stecklum, B., and Wolf, S. (2002). Continuum polarization as a tool. In J. Alves and M McCaughrean, eds., The Origin of Stars and Planets: The VLT View. Amsterdam: Springer, pp. 7984.CrossRefGoogle Scholar
Hildebrand, R. H., Davidson, J. A., Dotson, J. L.et al. (2000). A primer on far-infrared polarimetry. Publications of the Astronomical Society of the Pacific, 112, 12151235.CrossRefGoogle Scholar
Hildebrand, R. H., Kirby, L., Dotson, J. L., Houde, M., and Vaillancourt, J. E. (2009). Dispersion of magnetic fields in molecular clouds. I. The Astrophysical Journal, 696, 567573.CrossRefGoogle Scholar
Hiltner, W. A. (1949). On the presence of polarization in the continuous radiation of stars. II. The Astrophysical Journal, 109, 471481.CrossRefGoogle Scholar
Hoang, T. and Lazarian, A. (2008). Radiative torque alignment: Essential physical processes. Monthly Notices of the Royal Astronomical Society, 388, 117143.CrossRefGoogle Scholar
Hoang, T. and Lazarian, A. (2009a). Radiative torques alignment in the presence of pinwheel torques. The Astrophysical Journal, 695, 14571476.CrossRefGoogle Scholar
Hoang, T. and Lazarian, A. (2009b). Grain alignment induced by radiative torques: Effects of internal relaxation of energy and complex radiation field. The Astrophysical Journal, 697, 13161333.CrossRefGoogle Scholar
Holloway, R. P., Chrysostomou, A., Aitken, D. K., Hough, J. H., and McCall, A. (2002). Spectropolarimetry of the 3-µm water-ice feature towards young stellar objects. Monthly Notices of the Royal Astronomical Society, 336, 425435.CrossRefGoogle Scholar
Houde, M., Vaillancourt, J. E., Hildebrand, R. H., Chitsazzadeh, S., and Kirby, L. (2009). Dispersion of magnetic fields in molecular clouds. II. The Astrophysical Journal, 706, 15041516.CrossRefGoogle Scholar
Hough, J. H., Bailey, J. A., Rouse, M. F., and Whittet, D. C. B. (1987). Interstellar polarization in the dust lane of Centaurus A (NGC 5128). Monthly Notices of the Royal Astronomical Society, 227, 1P5P.CrossRefGoogle Scholar
Hough, J. H., Sato, S., Tamura, M.et al. (1988). Spectropolarimetry FO the 3-micron ice band in Elias 16 (Taurus Dark Cloud). Monthly Notices of the Royal Astronomical Society, 230, 107115.CrossRefGoogle Scholar
Hough, J. H., Aitken, D. K., Whittet, D. C. B., Adamson, A. J., and Chrysostomou, A. (2008). Grain alignment in dense interstellar environments: Spectropolarimetry of the 4.67-µm CO-ice feature in the field star Elias 16 (Taurus dark cloud). Monthly Notices of the Royal Astronomical Society, 387, 797802.CrossRefGoogle Scholar
Itoh, Y., Chrysostomou, A., Burton, M., Hough, J. H., and Tamura, M. (1999). The magnetic field structure of the DR21 region. Monthly Notices of the Royal Astronomical Society, 304, 406416.CrossRefGoogle Scholar
Jaffe, T. R., Ferrière, K. M., Banday, A. J.et al. (2013). Comparing polarized synchrotron and thermal dust emission in the Galactic plane. Monthly Notices of the Royal Astronomical Society, 431, 683694.CrossRefGoogle Scholar
Jones, T. J. (1989a). Infrared polarimetry and the interstellar magnetic field. The Astrophysical Journal, 346, 728734.CrossRefGoogle Scholar
Jones, T. J. (1989b). Infrared polarimetry of galaxies. II – NGC 4565. The Astronomical Journal, 98, 2062265.CrossRefGoogle Scholar
Jones, T. J. (1990). Interstellar polarization at 3.6 microns. The Astronomical Journal, 99, 18941896.CrossRefGoogle Scholar
Jones, T. J. (1996). Observational constraints on grain alignment mechanisms. In Astronomical Society of the Pacific Conference Series, Vol. 97. San Francisco CA: Astronomical Society of the Pacific, pp. 381395.Google Scholar
Jones, T. J. (2003). Polarimetry in the visible and infrared: Application to CMB polarimetry. New Astronomy Reviews, 47, 11231126.CrossRefGoogle Scholar
Jones, T. W. and O’Dell, S. L. (1977). Transfer of polarized radiation in self-absorbed synchrotron sources. I. Results for a homogeneous source. The Astrophysical Journal, 214, 522539.CrossRefGoogle Scholar
Jones, T. J., Klebe, D., and Dickey, J. M. (1992). Infrared polarimetry and the Galactic magnetic field. II – Improved models. The Astrophysical Journal, 389, 602615.CrossRefGoogle Scholar
Jones, T. J., Krejny, M., Andersson, B-G. and Bastien, P. (2011). Grain alignment in starless cores. Bulletin of the American Astronomical Society, 217, 251.22.Google Scholar
Kim, S.-H. and Martin, P. G. (1995). The size distribution of interstellar dust particles as determined from polarization: spheroids. The Astrophysical Journal, 444, 293305.CrossRefGoogle Scholar
Kobulnicky, H. A., Molnar, L. A., and Jones, T. J. (1994). R band polarimetry of Cygnus OB2: Implications for the magnetic field geometry and polarization models. The Astronomical Journal, 107, 14331443.CrossRefGoogle Scholar
Lazarian, A. and Draine, B. T. (1999a). Nuclear spin relaxation within interstellar grains. The Astrophysical Journal Letters, 520, L67L70.CrossRefGoogle Scholar
Lazarian, A. and Draine, B. T. (1999b). Thermal flipping and thermal trapping: New elements in grain dynamics. The Astrophysical Journal Letters, 516, L37L40.CrossRefGoogle Scholar
Lazarian, A. and Hoang, T. (2007). Radiative torques: Analytical model and basic properties. Monthly Notices of the Royal Astronomical Society, 378, 910946.CrossRefGoogle Scholar
Marchwinski, R. C., Pavel, M. D., and Clemens, D. P. (2012). Resolved magnetic field mapping of a molecular cloud using GPIPS. The Astrophysical Journal, 755, 130140.CrossRefGoogle Scholar
Martin, P. G. and Whittet, D. C. B. (1990). Interstellar extinction and polarization in the infrared. The Astrophysical Journal, 357, 113124.CrossRefGoogle Scholar
Martin, P. G., Adamson, A. J., Whittet, D. C. B.et al. (1992). Interstellar polarization from 3 to 5 microns in reddened stars. The Astrophysical Journal, 392, 691701.CrossRefGoogle Scholar
Martin, P. G., Clayton, G. C., and Wolff, M. J. (1999). Ultraviolet interstellar linear polarization. V. Analysis of the final data set. The Astrophysical Journal, 510, 905914.CrossRefGoogle Scholar
Mathis, J. S. (1986). The alignment of interstellar grains. The Astrophysical Journal, 308, 281287.CrossRefGoogle Scholar
Mathis, J. S., Rumpl, W., and Nordsieck, K. H. (1977). The size distribution of interstellar grains. The Astrophysical Journal, 217, 425433.CrossRefGoogle Scholar
Matthews, B. C., McPhee, C. A., Fissel, L. M., and Curran, R. L. (2009). The legacy of SCUPOL: 850 µm imaging polarimetry from 1997 to 2005. The Astrophysical Journal Supplements, 182, 143204.CrossRefGoogle Scholar
Mishchenko, M. I., Travis, L. D., and Mackowski, D. W. (1996). T-matrix computations of light scattering by nonspherical particles: A review. Journal of Quantitative Spectroscopy, 55, 535575.CrossRefGoogle Scholar
Miville-Deschênes, M.-A., Ysard, N., Lavabre, A.et al. (2008). Separation of anomalous and synchrotron emissions using WMAP polarization data. Astronomy and Astrophysics, 490, 10931102.CrossRefGoogle Scholar
Morris, M., Davidson, J. A., Werner, M.et al. (1992). Polarization of the far-infrared emission from the thermal filaments of the Galactic center arc. The Astrophysical Journal Letters, 399, L63L66.CrossRefGoogle Scholar
Myers, P. C. and Goodman, A. A. (1991). On the dispersion in direction of interstellar polarization. The Astrophysical Journal, 373, 509524.CrossRefGoogle Scholar
Nagata, T. (1990). Observation of interstellar polarization at 2.2 and 3.8 microns. The Astrophysical Journal Letters, 348, L13L16.CrossRefGoogle Scholar
Ostriker, E. C., Stone, J. M., and Gammie, C. F. (2001). Density, velocity, and magnetic field structure in turbulent molecular cloud models. The Astrophysical Journal, 546, 9801005.CrossRefGoogle Scholar
Pascale, E. (2013). The balloon-borne large aperture submillimetre telescope (BLAST) and BLASTPol. International Astronomical Union Symposium, 288, 154160.Google Scholar
Purcell, E. M. (1975). Interstellar grains as pinwheels. In The Dusty Universe. (A76-15076 04-90) New York: Neale Watson Academic Publications, Inc., pp. 155167.Google Scholar
Purcell, E. M. (1979). Suprathermal rotation of interstellar grains. The Astrophysical Journal, 231, 404416.CrossRefGoogle Scholar
Purcell, E. M. and Pennypacker, C. R. (1973). Scattering and absorption of light by nonspherical dielectric grains. The Astrophysical Journal, 186, 705714.CrossRefGoogle Scholar
Rao, R. (2008). Recent results and future prospects for SMA observations of dust polarization. In Cosmic Agitator: Magnetic Fields in the Galaxy. Available online at thunder.pa.uky.edu/magnetic (accessed January 26, 2015).Google Scholar
Roberge, W. G. (1996). Grain alignment in molecular clouds. In W. G. Roberge and D. C. B. Whittet, eds., Polarimetry of the Interstellar Medium. Astronomical Society of the Pacific Conference Series, Vol. 97. San Francisco CA: Astronomical Society of the Pacific, pp. 401418.Google Scholar
Serkowski, K. (1973). Interstellar Polarization (review). In IAU Symposium, Vol. 52, pp. 145152.Google Scholar
Serkowski, K., Mathewson, D. S., and Ford, V. L. (1975). Wavelength dependence of interstellar polarization and ratio of total to selective extinction. The Astrophysical Journal, 196, 261290.CrossRefGoogle Scholar
Simpson, J. P., Burton, M. G., Colgan, S. W. J.et al. (2009). Hubble Space Telescope NICMOS polarization observations of three edge-on massive young stellar objects. The Astrophysical Journal, 700, 14881501.CrossRefGoogle Scholar
Sukumar, S. and Allen, R. J. (1991). Polarized radio emission from the edge-on spiral galaxies NGC 891 and NGC 4565. The Astrophysical Journal, 382, 100107.CrossRefGoogle Scholar
Tauber, J. A. (2004). Prospects for polarimetry of the interstellar medium with the Planck satellite. In Proceedings of the Magnetized Interstellar Medium Conference, pp. 191199.Google Scholar
Vaillancourt, J. E. (2002). Analysis of the far-infrared/submillimeter polarization spectrum based on temperature maps of Orion. The Astrophysical Journal Supplements, 142, 5369.CrossRefGoogle Scholar
Van de Hulst, H. C. (1957). Light Scattering by Small Particles. New York: Wiley.CrossRefGoogle Scholar
Voshchinnikov, N. V. (2012). Interstellar extinction and interstellar polarization: Old and new models. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 23342350.CrossRefGoogle Scholar
Voshchinnikov, N. V. and Farafonov, V. G. (1993). Optical properties of spheroidal particles. Astrophysics and Space Science, 204, 1968.CrossRefGoogle Scholar
Whittet, D. C. B. (2003). Dust in the Galactic Environment. Bristol: IoP Pub.Google Scholar
Whittet, D. C. B. (2004). Polarization of starlight. In Astrophysics of Dust. ASP Conference Series, 309, San Francisco CA: Astronomical Society of the Pacific, p. 65.Google Scholar
Whittet, D. C. B. and van Breda, I. G. (1978). The correlation of the interstellar extinction law with the wavelength of maximum polarization. Astronomy and Astrophysics, 66, 5763.Google Scholar
Whittet, D. C. B., Martin, P. G., Hough, J. H.et al. (1992). Systematic variations in the wavelength dependence of interstellar linear polarization. The Astrophysical Journal, 386, 562577.CrossRefGoogle Scholar
Whittet, D. C. B., Gerakines, P. A., Hough, J. H., and Shenoy, S. S. (2001). Interstellar extinction and polarization in the Taurus dark clouds: The optical properties of dust near the diffuse/dense cloud interface. The Astrophysical Journal, 547, 872884.CrossRefGoogle Scholar
Whittet, D. C. B., Hough, J. H., Lazarian, A., and Hoang, T. (2008). The efficiency of grain alignment in dense interstellar clouds: A reassessment of constraints from near-infrared polarization. The Astrophysical Journal, 674, 304315.CrossRefGoogle Scholar
Wilking, B. A., Lebofsky, M. J., Kemp, J. C., Martin, P. G., and Rieke, G. H. (1980). The wavelength dependence of interstellar linear polarization. The Astrophysical Journal, 235, 905910.CrossRefGoogle Scholar
Wilking, B. A., Lebofsky, M. J., and Rieke, G. H. (1982). The wavelength dependence of interstellar linear polarization – Stars with extreme values of lambda/max. The Astronomical Journal, 87, 695697.CrossRefGoogle Scholar
Wolff, M. J., Clayton, G. C., Martin, P. G., and Schulte-Ladbeck, R. E. (1994). Modeling composite and fluffy grains: The effects of porosity. The Astrophysical Journal, 423, 412425.CrossRefGoogle Scholar
Wolff, M. J., Clayton, G. C., Kim, S.-H., Martin, P. G., and Anderson, C. M. (1997). Ultraviolet interstellar linear polarization. III. Features. The Astrophysical Journal, 478, 395402.CrossRefGoogle Scholar
Zweibel, E. G. (1990). Magnetic field-line tangling and polarization measurements in clumpy molecular gas. The Astrophysical Journal, 362, 545550.CrossRefGoogle Scholar
Zweibel, E. G. (1996). Polarimetry and the theory of the galactic magnetic field. Astronomical Society of the Pacific Conference Series, 97, 486503.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×