Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T21:01:07.533Z Has data issue: false hasContentIssue false

20 - Icy moons of the outer planets

from IV - Solar system

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afanasiev, V. L. and Amirkhanyan, V. R. (2012). Technique of polarimetric observations of faint objects at the 6-m BTA telescope. Astrophysical Bulletin, 67, 438452.CrossRefGoogle Scholar
Afanasiev, V. L. and Moiseev, A. V. (2011). Scorpio on the 6 m telescope: Current state and perspectives for spectroscopy of galactic and extragalactic objects. Baltic Astronomy, 20, 363370.Google Scholar
Afanasiev, V. L., Rosenbush, V. K., and Kiselev, N. N. (2014). Polarimetry of Uranian satellites at the 6-m BTA telescope. Astrophysical Bulletin, 69(2), 121133.CrossRefGoogle Scholar
Albers, S. (2008). Index of /albers/sos/saturn/Iapetus. Available online at: http://laps.noaa.gov/albers/sos/saturn/iapetus/ (accessed January 12, 2015).Google Scholar
Avramchuk, V. V. and Shavlovskij, V. I. (1998). Microstructure and properties of particles on the surface of Callisto. Analysis of phase variations in brightness. Kinematics and Physics of Celestial Bodies, 14, 111.Google Scholar
Avramchuk, V. V., Rosenbush, V. K., and Bul’ba, T. P. (2007). Photometric study of the major satellites of Uranus. Solar System Research, 41, 186202.CrossRefGoogle Scholar
Bagenal, F., Dowling, T. E., and McKinnon, W. B., eds. (2004). Jupiter. The planet, satellites and magnetosphere. Cambridge University Press.Google Scholar
Bagnulo, S., Belskaya, I., Muinonen, K.et al. (2008). Discovery of two distinct polarimetric behaviours of trans-Neptunian objects. Astronomy and Astrophysics, 491, L33L36.CrossRefGoogle Scholar
Bagnulo, S., Belskaya, I., Boehnhardt, H.et al. (2011). Polarimetry of small bodies of the solar system with large telescopes. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 20592067.CrossRefGoogle Scholar
Belskaya, I. N., Bagnulo, S., Barucci, M. A.et al. (2010). Polarimetry of Centaurs (2060) Chiron, (5145) Pholus and (10199) Chariklo. Icarus, 210, 472479.CrossRefGoogle Scholar
Belskaya, I. N., Bagnulo, S., Stinson, A.et al. (2012). Polarimetry of trans-Neptunian objects (136472) Makemake and (90482) Orcus. Astronomy and Astrophysics, 547, 5pp.CrossRefGoogle Scholar
Bergstralh, J. T., Miner, E. D., and Matthews, M. S., eds. (1991). Uranus. Tucson: University of Arizona Press.CrossRefGoogle Scholar
Blackburn, D. G., Buratti, B. J., Ulrich, R., and Mosher, J. A. (2010). Solar phase curves and phase integrals for the leading and trailing hemispheres of Iapetus from the Cassini Visual Infrared Mapping Spectrometer. Icarus, 209, 738744.CrossRefGoogle Scholar
Blackburn, D. G., Buratti, B. J., and Rivera-Valentin, E. G. (2012). Exploring the impact of thermal segregation on Dione through a bolometric bond albedo map. In Proceedings of the 43rd Lunar and Planetary Science Conference. Houston TX: LPI, LPI Contribution, No. 1659, id. 1536.Google Scholar
Botvinova, V. V. and Kucherov, V. A. (1980). Multicolour polarimetry of Galilean satellites of Jupiter. Astrometriia i Astrofizika, 41, 5963 [in Russian].Google Scholar
Buratti, B. J. (1991). Ganymede and Callisto: Surface textural dichotomies and photometric analysis. Icarus, 92, 312323.CrossRefGoogle Scholar
Buratti, B. J. and Mosher, J. A. (1995). The dark side of Iapetus: Additional evidence for an exogenous origin. Icarus, 115, 219227.CrossRefGoogle Scholar
Buratti, B. J. and Thomas, P. C. (2007). Planetary satellites. In McFadden, L.-A., Weissman, P., and Johnson, T., eds., Encyclopedia of the Solar System. Academic Press, pp. 365382.CrossRefGoogle Scholar
Chigladze, R. A. (1989). Investigation of the polarimetric properties of the Galilean satellites of Jupiter and planet Uranus. Ph.D. thesis. Abastumany Astrophys. Obs. [in Russian].Google Scholar
Clark, R. N., Cruikshank, D. P., Jaumann, R.et al. (2012). The surface composition of Iapetus: Mapping results from Cassini VIMS. Icarus, 218, 831860.CrossRefGoogle Scholar
Collins, G. and Johnson, T. (2007). Ganymede and Callisto. In McFadden, L.-A., Weissman, P., and Johnson, T., eds., Encyclopedia of the Solar System. Academic Press, pp. 449466.CrossRefGoogle Scholar
Cruikshank, D. P., Brown, R. H., and Calvin, W. (1998). Ices on the satellites of Jupiter, Saturn, and Uranus, In Schmitt, B., Bergh, C., and Festou, M., eds., Solar System Ices. Dordrecht: Kluwer Academic Publishers, pp. 579606.CrossRefGoogle Scholar
Denk, T., Neukum, G., Roatsch, T. et al. (2010). Iapetus: Unique surface properties and a global color dichotomy from Cassini Imaging. Science, 327, 435439.CrossRefGoogle Scholar
Dollfus, A. (1975). Optical polarimetry of the Galilean satellites of Jupiter. Icarus, 25, 416431.CrossRefGoogle Scholar
Dollfus, A. (1984). The Saturn ring particles from optical reflectance polarimetry. In CNES Planetary Rings (SEE N85-26473 15–91). CNES, pp. 121143.Google Scholar
Dollfus, A. and Zellner, B. (1979). Optical polarimetry of asteroids and laboratory samples. In Gehrels, T., ed., Asteroids. Tucson: University of Arizona Press, pp. 170183.Google Scholar
Ejeta, C., Boehnhardt, H., Bagnulo, S., and Tozzi, G. P. (2012). Spectro-polarimetry of the bright side of Saturn’s moon Iapetus. Astronomy and Astrophysics, 537, A23.CrossRefGoogle Scholar
Ejeta, C., Boehnhardt, H., Bagnulo, S.et al. (2013a). Polarization of Saturn’s moon Iapetus. II. Comparison of the dark and the bright sides. Astronomy and Astrophysics, 549, A61.CrossRefGoogle Scholar
Ejeta, C., Muinonen, K., Boehnhardt, H.et al. (2013b). Polarization of Saturn’s moon Iapetus. III. Models of the bright and the dark sides. Astronomy and Astrophysics, 554, A117.CrossRefGoogle Scholar
Franklin, F. A. and Cook, A. F. (1974). Photometry of Saturn’s satellites: The opposition effect of Iapetus at maximum light and the variability of Titan. Icarus, 23, 355362.CrossRefGoogle Scholar
Geake, J. E. and Geake, M. (1990). A remote sensing method for sub-wavelength grains on planetary surfaces by optical polarimetry. Monthly Notices of the Royal Astronomical Society, 245, 4655.CrossRefGoogle Scholar
Gradie, J. and Zellner, B. (1973). A polarimetric survey of the Galilean satellites. Bulletin of the American Astronomical Society, 5, 404405.Google Scholar
Gudipati, M. S. and Castillo-Rogez, J., eds. (2012). The Science of Solar System Ices. New York: Springer.Google Scholar
Hapke, B. (1986). Bidirectional reflectance spectroscopy: VI. The extinction coefficient and opposition effect. Icarus, 67, 264280.CrossRefGoogle Scholar
Hapke, B. W. (2002). Bidirectional reflectance spectroscopy. 5. The coherent backscatter opposition effect and anisotropic scattering. Icarus, 157, 523534.CrossRefGoogle Scholar
Harris, A. W., Young, J. W., Contreiras, L.et al. (1989). Phase relations of high-albedo asteroids: The unusual opposition brightening of 44 Nysa and 64 Angelina. Icarus, 81, 365374.CrossRefGoogle Scholar
Heiles, C. (2000). 9286 stars: An agglomeration of stellar polarization catalogs. The Astronomical Journal, 119, 923927.CrossRefGoogle Scholar
Helfenstein, P., Currier, N., Clark, B.et al. (1998). Galileo observations of Europa’s opposition effect. Icarus, 135, 4163.CrossRefGoogle Scholar
Hough, J. (2011). High sensitivity polarimetry: Techniques and applications. In Mishchenko, M. I., Yatskiv, Ya. S., Rosenbush, V. K., and Videen, G., eds., Polarimetric Detection, Characterization, and Remote Sensing. Dordrecht, the Netherlands: Springer, pp. 177204.CrossRefGoogle Scholar
Johnson, P. E., Kemp, J. C., King, R., Parker, T. E., and Barbour, M. S. (1980). New results from optical polarimetry of Saturn rings. Nature, 283, 146149.CrossRefGoogle Scholar
Johnston, W. R. (2013). TNO and centaur diameters, albedos, and densities, V1.0, EAR-A-COMPIL-5-TNOCENALB-V1.0, NASA Planetary Data System. Available online at: www.johnstonsarchive.net/astro/tnodiam.html (accessed January 15, 2015).Google Scholar
Kiselev, N., Rosenbush, V., Velichko, F., and Zaitsev, S. (2009). Polarimetry of the Galilean satellites and Jupiter near opposition. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 17131718.CrossRefGoogle Scholar
Kulyk, I. (2012). Brightness and polarization opposition effects at low phase angles of the Saturnian satellites Tethys, Dione, and Rhea. Planetary and Space Science, 73, 407424.CrossRefGoogle Scholar
Lockwood, G. W. (1983). Photometry of planets and satellites. In Genet, R. M., ed., Solar System Photometry Handbook. Richmond: Willmann-Bell, Inc.Google Scholar
Lumme, K. and Muinonen, K. O. (1993). A two-parameter system for linear polarization of some solar system objects. In IAU Symposium 160: Asteroids, Comets, Meteors, LPI Contribution 810. Houston: LPI, pp. 194197.Google Scholar
Lyot, B. (1929). Recherches sur la polarisation de la lumière des planètes et de quelques substances terrestres. Annales de l'Observatoire de Paris, section de Meudon, 8(1). English translation: Research on the polarization of light from planets and from some terrestrial substances, NASA Tech. Transl. NASA TT F−187, 1964, Washington, DC, 144pp.Google Scholar
Mackowski, D. W. and Mishchenko, M. I. (2011). A multiple sphere T-matrix Fortran code for use on parallel computer clusters. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 21822192.CrossRefGoogle Scholar
Martin, T. Z., Goguen, J. D., Travis, L. D.et al. (2000). Galileo PPR polarimetric phase curves for the Galilean satellites. Bulletin of the American Astronomical Society, 32, 1069.Google Scholar
McCarthy, M. F. (1980). New techniques in stellar photometry and polarimetry. Ricerche Astronomiche Specola Vaticana, 10.Google Scholar
Miner, E. D. (1998). Uranus: The Planet, Rings, and Satellites. Chichester: Wiley.Google Scholar
Mishchenko, M. I. (1993). On the nature of the polarization opposition effect exhibited by Saturn’s rings. The Astrophysical Journal, 411, 351361.CrossRefGoogle Scholar
Mishchenko, M. I., Luck, J. -M., and Nieuwenhuizen, Th. M. (2000). Full angular profile of the coherent polarization opposition effect. Journal of the Optical Society of America A, 17, 888891.CrossRefGoogle ScholarPubMed
Mishchenko, M., Tishkovets, V., and Litvinov, P. (2002). Exact results of the vector theory of coherent backscattering from discrete random media: An overview. In Videen, G. and Kocifaj, M., eds., Optics of Cosmic Dust. Dordrecht: Kluwer Academic Publishers, pp. 239260.CrossRefGoogle Scholar
Mishchenko, M. I., Rosenbush, V. K., and Kiselev, N. N. (2006). Weak localization of electromagnetic waves and opposition phenomena exhibited by high-albedo atmosphereless solar system objects. Applied Optics, 45, 44594463.CrossRefGoogle ScholarPubMed
Mishchenko, M. I., Dlugach, J. M., Liu, L.et al. (2009). Direct solutions of the Maxwell equations explain opposition phenomena observed for high-albedo Solar system objects. The Astrophysical Journal, 705, L118L122.CrossRefGoogle Scholar
Mishchenko, M. I., Rosenbush, V. K., Kiselev, N. N.et al. (2010). Polarimetric Remote Sensing of Solar System Objects. Kyiv: Akademperiodika.CrossRefGoogle Scholar
Mishchenko, M. I., Tishkovets, V. P., Travis, L. D.et al. (2011). Electromagnetic scattering by a morphologically complex object: Fundamental concepts and common misconceptions. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 671692.CrossRefGoogle Scholar
Moore, J. M., Chapman, C. R., Bierhaus, E. B.et al. (2004). Callisto. In Bagenal, F., Dowling, T. E., and McKinnon, W. B., eds., Jupiter. The Planet, Satellites and Magnetosphere. Cambridge University Press, pp. 397426.Google Scholar
Morrison, D. and Morrison, N. D. (1977). Photometry of the Galilean satellites. In Burns, J. A., ed., Planetary Satellites. Tucson: University of Arizona Press, pp. 363378.Google Scholar
Muinonen, K. and Videen, G. (2012). A phenomenological single scatterer for studies of complex particulate media. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 23852390.CrossRefGoogle Scholar
Muinonen, K., Videen, G., Zubko, E., and Shkuratov, Yu. (2002). Numerical techniques for backscattering by random media. In Videen, G. and Kocifaj, M., eds., Optics of Cosmic Dust. Dordrecht: Kluwer Academic Publishers, pp. 261282.CrossRefGoogle Scholar
Muinonen, K., Tyynelä, J., Zubko, E., and Videen, G. (2010). Scattering parameterization for interpreting asteroid polarimetric and photometric phase effects. Earth, Planets and Space, 62, 4752.CrossRefGoogle Scholar
Muinonen, K., Mishchenko, M. I., Dlugach, J. M.et al. (2012). Coherent backscattering verified numerically for a finite volume of spherical particles. The Astrophysical Journal, 760, 118128.CrossRefGoogle Scholar
Naghizadeh-Khouei, J. and Clarke, D. (1993). On the statistical behaviour of the position angle of linear polarization. Astronomy and Astrophysics, 274, 968–974.Google Scholar
Nelson, M. L., Britt, D. T., and Lebofsky, L. F. (1993). Review of asteroid compositions. In Lewis, J. S., Matthews, M. S., and Guerrieri, M. L., eds., Resources of Near-Earth Space. Tucson: The University of Arizona Press, pp. 493522.Google Scholar
Nelson, R. M., Smythe, W. D., Hapke, B. W., and Hale, A. S. (2002). Low phase angle laboratory studies of the opposition effect: Search for wavelength dependence. Planetary Space Science, 50, 849856.CrossRefGoogle Scholar
Noland, M., Veverka, J., Morrison, D.et al. (1974). Six-color photometry of Iapetus, Titan, Rhea, Dione and Tethys. Icarus, 23, 334354.CrossRefGoogle Scholar
Patat, F. and Romaniello, M. (2006). Error analysis for dual-beam optical linear polarimetry. Publications of the Astronomical Society of the Pacific, 118, 146161.CrossRefGoogle Scholar
Petrova, E. V. and Tishkovets, V. P. (2011a). Light scattering by morphologically complex objects and opposition effects (a review). Solar System Research, 45, 304322.CrossRefGoogle Scholar
Petrova, E. V. and Tishkovets, V. P. (2011b). Light scattering by aggregates of varying porosity and the opposition phenomena observed in the low-albedo particulate media. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 22262233.CrossRefGoogle Scholar
Petrova, E. V., Tishkovets, V. P., and Jockers, K. (2007). Modeling of opposition effects with ensembles of clusters: Interplay of various scattering mechanisms. Icarus, 188, 233245.CrossRefGoogle Scholar
Rathbun, J. A., Rodriguez, N. J., and Spencer, J. R. (2010). Galileo PPR observations of Europa: Hotspot detection limits and surface thermal properties. Icarus, 210, 763769.CrossRefGoogle Scholar
Rosenbush, V. K. (2002). The phase-angle and longitude dependence of polarization for Callisto. Icarus, 159, 145155.CrossRefGoogle Scholar
Rosenbush, V. K. (2006). The scattered light properties of small Solar System bodies. Habilitation dissertation, Main Astronomical Observatory of National Academy of Sciences of Ukraine, Kyiv.Google Scholar
Rosenbush, V. (2012). Polarimetry of atmosphereless Solar System bodies. Available online at: www.polarisation.eu/projectdir/Warsaw-Rosenbush.pdf (accessed January 29, 2015).Google Scholar
Rosenbush, V. K. and Avramchuk, V. V. (1999). New polarimetric effects observed for the Galilean satellites of Jupiter. Solar System Research, 33, 267277.Google Scholar
Rosenbush, V. K. and Kiselev, N. N. (2005). Polarization opposition effect for the Galilean satellites of Jupiter. Icarus, 179, 490496.CrossRefGoogle Scholar
Rosenbush, V. K. and Mishchenko, M. I. (2011). Opposition optical phenomena in planetary astrophysics: Observational results. In Mishchenko, M. I., Yatskiv, Ya. S., Rosenbush, V. K., and Videen, G., eds., Polarimetric Detection, Characterization, and Remote Sensing. Dordrecht, the Netherlands: Springer, pp. 409436.CrossRefGoogle Scholar
Rosenbush, V. K., Avramchuk, V. V., Rosenbush, A. E., and Mishchenko, M. I. (1997). Polarization properties of the Galilean satellites of Jupiter: Observations and preliminary analysis. The Astrophysical Journal, 487, 402414.CrossRefGoogle Scholar
Rosenbush, V. K., Kiselev, N. N., Jockers, K.et al. (2000). Optical polarimetry of the Galilean satellites, Iapetus, and 64 Angelina near opposition. Kinematics and Physics of Celestial Bodies, Supplement Series, 3, 227230.Google Scholar
Rosenbush, V., Kiselev, N., Avramchuk, V., and Mishchenko, M. (2002). Photometric and polarimetric opposition phenomena exhibited by solar system bodies. In Videen, G. and Kocifaj, M., eds., Optics of Cosmic Dust. Dordrecht: Kluwer Academic Publishers, pp. 191224.CrossRefGoogle Scholar
Rosenbush, V. K., Kiselev, N. N., Shevchenko, V. G.et al. (2005). Polarization and brightness opposition effects for the E-type asteroid 64 Angelina. Icarus, 178, 222234.CrossRefGoogle Scholar
Rosenbush, V. K., Shevchenko, V. G., Kiselev, N. N.et al. (2009). Polarization and brightness opposition effects for the E-type asteroid 44 Nysa. Icarus, 201, 655665.CrossRefGoogle Scholar
Rosenbush, V. K., Kiselev, N. N., Zaitsev, S. V.et al. (2012). Opposition optical phenomena in Solar System bodies: Observational results. In Asteroids, Comets, Meteors. Houston: LPI. LPI Contribution No. 1667, id. 6130.Google Scholar
Russell, E. E., Brown, F. G., Chandos, R. A.et al. (1992). Galileo Photopolarimeter/Radiometer experiment. Space Science Reviews, 60, 531563.CrossRefGoogle Scholar
Schmitt, B., De Bergh, C., and Festou, M., eds. (1998). Ices in the Solar System, Dordrecht, the Netherlands: Kluwer.CrossRefGoogle Scholar
Serkowsky, K. (1974). Polarimeters for optical astronomy. In Gehrels, T., ed., Planets, Stars and Nebulae Studied with Photopolarimetry. Tucson: University of Arizona Press, pp. 135174.Google Scholar
Shakhovskoj, N. M. (1994). Methods for analysis of polarization observations. Bulletin of the Crimean Astrophysical Observatory, 91, 106123 [in Russian].Google Scholar
Shakhovskoy, N. M. and Efimov, Yu. S. (1972). Polarization observations of nonstable stars and extragalactic objects. I: Equipment, method of observation and reduction. Bulletin of the Crimean Astrophysical Observatory, 45, 90110 [in Russian].Google Scholar
Shakhovskoy, N. M. and Efimov, Yu. S. (1976). Observations of linear polarization of optical emission from X-ray sources. Bulletin of the Crimean Astrophysical Observatory, 54, 99119 [in Russian].Google Scholar
Shevchenko, V. G., Belskaya, I. N., and Tereschenko, I. A. (2010). The diversity of the opposition effect of dark asteroids. In Proceedings of the 41st Lunar and Planetary Science Conference. Houston: LPI. LPI Contribution No. 1533, 1131.Google Scholar
Shkuratov, Yu. G. (1987). Interpretation of spectral dependence of negative polarization parameters of light scattered by solid surfaces of celestial bodies. Pis’ma Astronomicheskii Zhurnal, 13, 444448 [in Russian].Google Scholar
Shkuratov, Yu. G., Muinonen, K., Bowell, E.et al. (1994). A critical review of theoretical models of negatively polarized light scattered by atmosphereless solar system bodies. Earth, Moon, and Planets, 65, 201246.CrossRefGoogle Scholar
Shkuratov, Yu., Ovcharenko, A., Zubko, E.et al. (2002). The opposition effect and negative polarization of structural analogs of planetary regoliths. Icarus, 159, 396416.CrossRefGoogle Scholar
Spencer, J. R. and Denk, T. (2010). Formation of Iapetus’ extreme albedo dichotomy by exogenically triggered thermal ice migration. Science, 327, 432435.CrossRefGoogle ScholarPubMed
Thompson, D. T. and Lockwood, G. W. (1992). Photoelectric photometry of Europa and Callisto 1976−1991. Journal of Geophysical Research, 97, 1476114772.CrossRefGoogle Scholar
Tishkovets, V. (2007). Incoherent and coherent backscattering of light by a layer of densely packed random medium. Journal of Quantitative Spectroscopy and Radiative Transfer, 108, 454463.CrossRefGoogle Scholar
Tishkovets, V. P. (2008). Light scattering by closely packed clusters: Shielding of particles by each other in the near field. Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 26652672.CrossRefGoogle Scholar
Tishkovets, V. P. and Jockers, K. (2006). Multiple scattering of light by densely packed random media. Dense media vector radiative transfer equation. Journal of Quantitative Spectroscopy and Radiative Transfer, 101, 5472.CrossRefGoogle Scholar
Tishkovets, V. P. and Petrova, E. V. (2013). Coherent backscattering by discrete random media composed of clusters of spherical particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 127, 192206.CrossRefGoogle Scholar
Tishkovets, V., Litvinov, P., Petrova, E., Jockers, K., and Mishchenko, M. (2004). Backscattering effects for discrete random media. In Videen, G., Yatskiv, Y., and Mishchenko, M., eds., Photopolarimetry in Remote Sensing. Dordrecht: Kluwer Academic Publishers, pp. 221242.Google Scholar
Tishkovets, V. P., Petrova, E. V., and Mishchenko, M. I. (2011). Scattering of electromagnetic waves by ensembles of particles and discrete random media. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 20952127.CrossRefGoogle Scholar
Tosi, F., Turrini, D., Coradini, A., Filacchione, G., and the VIMS Team (2010). Probing the origin of the dark material on Iapetus. Monthly Notices of the Royal Astronomical Society, 403, 11131130.CrossRefGoogle Scholar
Travis, L. D., Martin, T. Z., Orton, G. S. (2002). Galileo orbiter PPR reduced data record (RDV) V1.0, GO-J-PPR-3RDV-V1.0, NASA Planetary Data System.Google Scholar
Umov, N. A. (1905). Chromatische depolarisation durch lichtzerstreung. Zeitschrift fur Physik, 6, 674676.Google Scholar
Verbiscer, A. J., French, R. G., and McGhee, C. A. (2005). The opposition surge of Enceladus: HST observations 338–1022 nm. Icarus, 173, 6683.CrossRefGoogle Scholar
Verbiscer, A., French, R., Showalter, M., and Helfenstein, P. (2007). Enceladus: Cosmic graffiti artist caught in the act. Science, 315, 815.CrossRefGoogle Scholar
Veverka, J. (1971). Polarization measurements of the Galilean satellites of Jupiter. Icarus, 14, 355359.CrossRefGoogle Scholar
Veverka, J. (1977) Polarimetry of satellite surfaces. In Burns, J. A., ed., Planetary Satellites. Tucson: University of Arizona Press, pp. 210230.Google Scholar
Zaitsev, S. V., Kiselev, N. N., Rosenbush, V. K.et al. (2012a). Polarimetric observations of the Galilean satellites near opposition in 2011. Advances in Astronomy and Space Physics, 2, 177179.Google Scholar
Zaitsev, S., Rosenbush, V., and Kiselev, N., eds. (2012b). Polarimetry of Planetary Satellites V1.0. EAR-SA-COMPIL-3- SATPOL-V1.0. NASA Planetary Data System.Google Scholar
Zellner, B. H. (1972). On the nature of Iapetus. The Astrophysical Journal, 174, L107L109.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×