Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T06:35:43.540Z Has data issue: false hasContentIssue false

2 - Techniques of transcranial magnetic stimulation

Published online by Cambridge University Press:  12 August 2009

John C. Rothwell
Affiliation:
Sobell Department, Institute of Neurology, London, UK
Simon Boniface
Affiliation:
Addenbrooke's Hospital, Cambridge
Ulf Ziemann
Affiliation:
Johann Wolfgang Goethe-Universität Frankfurt
Get access

Summary

In this chapter I discuss the physiology of TMS and describe some of the common techniques that have been applied by those using TMS. I will not describe the details of each method, but outline the general principles and limitations. Most of the work on the basic mechanisms of these techniques has been performed on the motor cortex, where the response to each stimulus is easy to quantify as the amplitude of an MEP response. However, it is thought that the same general principles will apply to stimulation of other areas of cortex, although this may be difficult to prove in practice.

Single pulse transcranial stimulation

Although the majority of studies use TMS to activate the brain, the older method of transcranial electrical stimulation (TES) is still used occasionally. As described below, comparison of the effects of TMS and TES can help distinguish whether an intervention changes cortical excitability at the site of stimulation or at a distant projection target (such as the spinal cord).

Transcranial electrical stimulation of the corticospinal output of the hand area of motor cortex

The corticospinal system forms the largest output of the motor cortex. Experiments in primates have shown that single pulse electrical stimulation of the surface of the exposed cortex activates this output both directly, through depolarization of corticospinal axons in the immediately subcortical white matter, and indirectly via excitatory synaptic input from other cortical neurones (Patton & Amassian, 1954).

Type
Chapter
Information
Plasticity in the Human Nervous System
Investigations with Transcranial Magnetic Stimulation
, pp. 26 - 61
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amassian, V. E., Stewart, M., Quirk, G. J. & Rosenthal, J. L. (1987). Physiological basis of motor effects of a transient stimulus to cerebral cortex. Neurosurgery, 20: 74–93CrossRefGoogle ScholarPubMed
Asanuma, H. & Okuda, O. (1962). Effects of transcallosal volleys on pyramidal tract cell activity of cat. J. Neurophysiol., 25: 198–208CrossRefGoogle ScholarPubMed
Ashby, P., Reynolds, C., Wennberg, R., Lozano, A. M. & Rothwell, J. (1999). On the focal nature of inhibition and facilitation in the human motor cortex. Clin. Neurophysiol., 110: 550–555CrossRefGoogle ScholarPubMed
Barker, A. T., Garnham, C. W. & Freeston, I. L. (1991). Magnetic nerve stimulation: the effect of waveform on efficiency, determination of neural membrane time constants and the measurement of stimulator output. Electroencephalogr. Clin. Neurophysiol. Suppl., 43: 227–237Google ScholarPubMed
Baudewig, J., Siebner, H. R., Bestmann, S.. (2001). Functional MRI of cortical activations induced by transcranial magnetic stimulation (TMS). Neuroreport, 12: 3543–3548CrossRefGoogle Scholar
Berardelli, A., Rona, S., Inghilleri, M. & Manfredi, M. (1996). Cortical inhibition in parkinson's-disease – a study with paired magnetic stimulation. Brain, 119: 71–77CrossRefGoogle ScholarPubMed
Bohning, D. E., Shastri, A., Nahas, Z.. (1998). Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation. Invest. Radiol., 33: 336–340CrossRefGoogle ScholarPubMed
Bohning, D. E., Shastri, A., McGavin, L.. (2000a). Motor cortex brain activity induced by 1-Hz transcranial magnetic stimulation is similar in location and level to that for volitional movement. Invest. Radiol., 35: 676–683CrossRefGoogle Scholar
Bohning, D. E., Shastri, A., Wassermann, E. M.. (2000b). BOLD-f MRI response to single-pulse transcranial magnetic stimulation (TMS). J. Magn. Reson. Imaging, 11: 569–5743.0.CO;2-3>CrossRefGoogle Scholar
Boroojerdi, B., Diefenbach, K. & Ferbert, A. (1996). Transcallosal inhibition in cortical and subcortical cerebral vascular lesions. J. Neurol. Sci., 144: 160–170CrossRefGoogle ScholarPubMed
Boroojerdi, B., Prager, A., Muellbacher, W. & Cohen, L. G. (2000). Reduction of human visual cortex excitability using 1-Hz transcranial magnetic stimulation. Neurology, 54: 1529–1531CrossRefGoogle Scholar
Brasil, N. J., Cohen, L. G., Pascual, L. A., Jabir, F. K., Wall, R. T. & Hallett, M. (1992). Rapid reversible modulation of human motor outputs after transient deafferentation of the forearm: a study with transcranial magnetic stimulation. Neurology, 42: 1302–1306CrossRefGoogle Scholar
Burke, D., Hicks, R. G. & Stephen, J. P. (1990). Corticospinal volleys evoked by anodal and cathodal stimulation of the human motor cortex. J. Physiol., 425: 283–299CrossRefGoogle ScholarPubMed
Butefisch, C. M., Davis, B. C., Wise, S. P.. (2000). Mechanisms of use-dependent plasticity in the human motor cortex. Proc. Natl Acad. Sci., USA, 97: 3661–3665CrossRefGoogle ScholarPubMed
Byrnes, M. L., Thickbroom, G. W., Wilson, S. A.. (1998). The corticomotor representation of upper limb muscles in writer's cramp and changes following botulinum toxin injection. Brain, 121: 977–988CrossRefGoogle Scholar
Chen, R., Classen, J., Gerloff, C.. (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48: 1398–1403CrossRefGoogle ScholarPubMed
Christensen, L. O., Petersen, N., Andersen, J. B., Sinkjaer, T. & Nielsen, J. B. (2000). Evidence for transcortical reflex pathways in the lower limb of man. Prog. Neurobiol., 62: 251–272CrossRefGoogle Scholar
Civardi, C., Cantello, R., Asselman, P. & Rothwell, J. C. (2001). Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans. Neuroimage, 14: 1444–1453CrossRefGoogle ScholarPubMed
Classen, J., Liepert, J., Wise, S. P., Hallett, M. & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. J. Neurophysiol., 79: 1117–1123CrossRefGoogle ScholarPubMed
Cohen, L. G., Bandinelli, S., Findley, T. W. & Hallett, M. (1991). Motor reorganization after upper limb amputation in man. A study with focal magnetic stimulation. Brain, 114: 615–627CrossRefGoogle Scholar
Cohen, L. G., Brasil, N. J., Pascual, L. A. & Hallett, M. (1993). Plasticity of cortical motor output organization following deafferentation, cerebral lesions, and skill acquisition. Adv. Neurol., 63: 187–200Google ScholarPubMed
Conforto, A. B., Kaelin-Lang, A. & Cohen, L. G. (2002). Increase in hand muscle strength of stroke patients after somatosensory stimulation. Ann. Neurol., 51: 122–125CrossRefGoogle ScholarPubMed
Cracco, R. Q., Amassian, V. E., Maccabee, P. J. & Cracco, J. B. (1990). Excitatory and inhibitory effects of magnetic coil stimulation of human cortex. Electroencephalogr. Clin. Neurophysiol. Suppl., 41: 134–139Google ScholarPubMed
Day, B. L., Dressler, D., Maertens-de, N. A.. (1989a). Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses [published erratum appears in J. Physiol. Lond. 1990; 430:617]. J. Physiol. Lond., 412: 449–473CrossRefGoogle Scholar
Day, B. L., Rothwell, J. C., Thompson, P. D.. (1989b). Delay in the execution of voluntary movement by electrical or magnetic brain stimulation in intact man. Evidence for the storage of motor programs in the brain. Brain, 112: 649–663CrossRefGoogle Scholar
Day, B. L., Riescher, H., Struppler, A., Rothwell, J. C. & Marsden, C. D. (1991). Changes in the response to magnetic and electrical stimulation of the motor cortex following muscle stretch in man. J. Physiol. Lond., 433: 41–57CrossRefGoogle Scholar
Di Lazzaro, V., Oliviero, A., Profice, P.. (1998a). Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Electroencephalogr. Clin. Neurophysiol., 109: 397–401CrossRefGoogle Scholar
Di Lazzaro, V., Restuccia, D., Oliviero, A.. (1998b). Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans. J. Physiol. Lond., 508: 625–634CrossRefGoogle Scholar
Di Lazzaro, V., Restuccia, D., Oliviero, A.. (1998c). Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp. Brain Res., 119: 265–268CrossRefGoogle Scholar
Di Lazzaro, V., Oliviero, A., Profice, P.. (1999a). Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. Exp. Brain Res., 124: 520–524CrossRefGoogle Scholar
Di Lazzaro, V., Oliviero, A., Profice, P.. (1999b). Effects of voluntary contraction on descending volleys evoked by transcranial electrical stimulation over the motor cortex hand area in conscious humans. Exp. Brain Res., 124: 525–528CrossRefGoogle Scholar
Di Lazzaro, V., Rothwell, J. C., Oliviero, A.. (1999c). Intracortical origin of the short latency facilitation produced by pairs of threshold magnetic stimuli applied to human motor cortex. Exp. Brain Res., 129: 494–499CrossRefGoogle Scholar
Di Lazzaro, V., Oliviero, A., Profice, P.. (2000). Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp. Brain Res., 135: 455–461CrossRefGoogle ScholarPubMed
Di Lazzaro, V., Oliviero, A., Profice, P.. (2001a). Descending spinal cord volleys evoked by transcranial magnetic and electrical stimulation of the motor cortex leg area in conscious humans. J. Physiol., 537: 1047–1058CrossRefGoogle Scholar
Di Lazzaro, V., Oliviero, A., Saturno, E.. (2001b). The effect on corticospinal volleys of reversing the direction of current induced in the motor cortex by transcranial magnetic stimulation. Exp. Brain Res., 138: 268–273CrossRefGoogle Scholar
Di Lazzaro, V., Oliviero, A., Pilato, F.. (2002). Descending volleys evoked by transcranial magnetic stimulation of the brain in conscious humans: effects of coil shape. Clin. Neurophysiol., 113: 114–119CrossRefGoogle Scholar
Enomoto, H., Ugawa, Y., Hanajima, R.. (2001). Decreased sensory cortical excitability after 1 Hz rTMS over the ipsilateral primary motor cortex. Clin. Neurophysiol., 112: 2154–2158CrossRefGoogle Scholar
Ferbert, A., Priori, A., Rothwell, J. C., Day, B. L., Colebatch, J. G. & Marsden, C. D. (1992). Interhemispheric inhibition of the human motor cortex. J. Physiol. Lond., 453: 525–546CrossRefGoogle ScholarPubMed
Fisher, R. J., Nakamura, Y., Bestmann, S., Rothwell, J. C. & Bostock, H. (2002). Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Exp. Brain Res., 143: 240–248CrossRefGoogle Scholar
Fuhr, P., Agostino, R. & Hallett, M. (1991). Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr. Clin. Neurophysiol., 81: 257–262CrossRefGoogle Scholar
George, M. S., Wassermann, E. M., Williams, W. A.. (1995). Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport, 6: 1853–1856CrossRefGoogle Scholar
George, M. S., Lisanby, S. H. & Sackeim, H. A. (1999). Transcranial magnetic stimulation: applications in neuropsychiatry. Arch. Gen. Psychiatry, 56: 300–311CrossRefGoogle ScholarPubMed
Gerloff, C., Cohen, L. G., Floeter, M. K., Chen, R., Corwell, B. & Hallet, M. (1998). Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract. J. Physiol. Lond., 510: 249–259CrossRefGoogle ScholarPubMed
Gerschlager, W., Siebner, H. R. & Rothwell, J. C. (2001). Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor cortex. Neurology, 57: 449–455CrossRefGoogle ScholarPubMed
Hamdy, S., Rothwell, J. C., Aziz, Q., Singh, K. D. & Thompson, D. G. (1998). Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nat. Neurosci., 1: 64–68CrossRefGoogle ScholarPubMed
Hanajima, R., Ugawa, Y., Machii, K.. (2001). Interhemispheric facilitation of the hand motor area in humans. J. Physiol., 531: 849–859CrossRefGoogle ScholarPubMed
Hess, G., Aizenman, C. D. & Donoghue, J. P. (1996). Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J. Neurophysiol., 75: 1765–1778CrossRefGoogle ScholarPubMed
Houlden, D. A., Schwartz, M. L., Tator, C. H., Ashby, P. & MacKay, W. A. (1999). Spinal cord-evoked potentials and muscle responses evoked by transcranial magnetic stimulation in 10 awake human subjects. J. Neurosci., 19: 1855–1862CrossRefGoogle ScholarPubMed
Jahanshahi, M., Profice, P., Brown, R. G., Ridding, M. C., Dirnberger, G. & Rothwell, J. C. (1998). The effects of transcranial magnetic stimulation over the dorsolateral prefrontal cortex on suppression of habitual counting during random number generation. Brain, 121: 1533–1544CrossRefGoogle ScholarPubMed
Jing, H. & Takigawa, M. (2000). Observation of EEG coherence after repetitive transcranial magnetic stimulation. Clin. Neurophysiol., 111: 1620–1631CrossRefGoogle ScholarPubMed
Jing, H., Takigawa, M., Hamada, K.. (2001). Effects of high frequency repetitive transcranial magnetic stimulation on P(300) event-related potentials. Clin. Neurophysiol., 112: 304–313CrossRefGoogle Scholar
Kammer, T., Beck, S., Thielscher, A., Laubis-Herrmann, U. & Topka, H. (2001). Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clin. Neurophysiol., 112: 250–258CrossRefGoogle ScholarPubMed
Kujirai, T., Caramia, M. D., Rothwell, J. C.. (1993). Corticocortical inhibition in human motor cortex. J. Physiol. Lond., 471: 501–519CrossRefGoogle Scholar
Maccabee, P. J., Amassian, V. E., Cracco, R. Q.. (1991). Magnetic coil stimulation of human visual cortex: studies of perception. Electroencephalogr. Clin. Neurophysiol. Suppl., 43: 111–120Google Scholar
Maccabee, P. J., Amassian, V. E., Eberle, L. P. & Cracco, R. Q. (1993). Magnetic coil stimulation of straight and bent amphibian and mammalian peripheral nerve in vitro: locus of excitation. J. Physiol. Lond., 460: 201–219CrossRefGoogle Scholar
Maccabee, P. J., Nagarajan, S. S., Amassian, V. E.. (1998). Influence of pulse sequence, polarity and amplitude on magnetic stimulation of human and porcine peripheral nerve. J. Physiol., 513: 571–585CrossRefGoogle ScholarPubMed
Macefield, V. G., Rothwell, J. C. & Day, B. L. (1996). The contribution of transcortical pathways to long-latency stretch and tactile reflexes in human hand muscles. Exp. Brain Res., 108: 147–154CrossRefGoogle ScholarPubMed
Maeda, F., Keenan, J. P., Tormos, J. M., Topka, H. & Pascual-Leone, A. (2000a). Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp. Brain Res., 133: 425–430CrossRefGoogle Scholar
Maeda, F., Keenan, J. P., Tormos, J. M., Topka, H. & Pascual-Leone, A. (2000b). Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin. Neurophysiol., 111: 800–805CrossRefGoogle Scholar
Noordhout, Maertens A., Rothwell, J. C., Day, B. L.. (1992). Effect of digital nerve stimuli on responses to electrical or magnetic stimulation of the human brain. J. Physiol. Lond., 447: 535–548CrossRefGoogle Scholar
Meyer, B. U. & Roricht, S. (1995). Scalp potentials recorded over the sensorimotor region following magnetic stimulation over the cerebellum in man: considerations about the activated structures and their potential diagnostic use [letter] [see comments]. J. Neurol., 242: 109–112CrossRefGoogle Scholar
Meyer, B. U., Roricht, S. & Machetanz, J. (1994). Reduction of corticospinal excitability by magnetic stimulation over the cerebellum in patients with large defects of one cerebellar hemisphere. Electroencephalogr. Clin. Neurophysiol., 93: 372–379CrossRefGoogle ScholarPubMed
Meyer, B. U., Roricht, S., Grafin-von, E. H., Kruggel, F. & Weindl, A. (1995). Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain, 118: 429–440CrossRefGoogle ScholarPubMed
Mills, K. R., Boniface, S. J. & Schubert, M. (1992). Magnetic brain stimulation with a double coil: the importance of coil orientation. Electroencephalogr. Clin. Neurophysiol., 85: 17–21CrossRefGoogle ScholarPubMed
Modugno, N., Nakamura, Y., MacKinnon, C. D.. (2001). Motor cortex excitability following short trains of repetitive magnetic stimuli. Exp. Brain Res., 140: 453–459CrossRefGoogle ScholarPubMed
Morita, H., Baumgarten, J., Petersen, N., Christensen, L. O. & Nielsen, J. (1999). Recruitment of extensor-carpi-radialis motor units by transcranial magnetic stimulation and radial-nerve stimulation in human subjects. Exp. Brain Res., 128: 557–562CrossRefGoogle ScholarPubMed
Muellbacher, W., Ziemann, U., Boroojerdi, B. & Hallett, M. (2000). Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior. Clin. Neurophysiol., 111: 1002–1007CrossRefGoogle ScholarPubMed
Muellbacher, W., Ziemann, U., Boroojerdi, B., Cohen, L. & Hallett, M. (2001). Role of the human motor cortex in rapid motor learning. Exp. Brain Res., 136: 431–438CrossRefGoogle Scholar
Muellbacher, W., Ziemann, U., Wissel, J.. (2002). Early consolidation in human primary motor cortex. Nature, 415: 640–644CrossRefGoogle Scholar
Munchau, A., Bloem, B. R., Irlbacher, K., Trimble, M. R. & Rothwell, J. C. (2002). Functional connectivity of human premotor and motor cortex explored with repetitive transcranial magnetic stimulation. J. Neurosci., 22: 554–561CrossRefGoogle ScholarPubMed
Nielsen, J., Petersen, N. & Ballegaard, M. (1995). Latency of effects evoked by electrical and magnetic brain stimulation in lower limb motoneurones in man. J. Physiol., 484: 791–802CrossRefGoogle ScholarPubMed
Okamura, H., Jing, H. & Takigawa, M. (2001). EEG modification induced by repetitive transcranial magnetic stimulation. J. Clin. Neurophysiol., 18: 318–325CrossRefGoogle ScholarPubMed
Oliveri, M., Rossini, P. M., Traversa, R.. (1999). Left frontal transcranial magnetic stimulation reduces contralesional extinction in patients with unilateral right brain damage. Brain, 122: 1731–1739CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Gates, J. R. & Dhuna, A. (1991). Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation [see comments]. Neurology, 41: 697–702CrossRefGoogle Scholar
Pascual-Leone, A., Cammarota, A., Wassermann, E. M., Brasil, N. J., Cohen, L. G. & Hallett, M. (1993). Modulation of motor cortical outputs to the reading hand of braille readers. Ann. Neurol., 34: 33–37CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Grafman, J. & Hallett, M. (1994a). Modulation of cortical motor output maps during development of implicit and explicit knowledge [see comments]. Science, 263: 1287–1289CrossRefGoogle Scholar
Pascual-Leone, A., Valls, S. J., Wassermann, E. M. & Hallett, M. (1994b). Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain, 117: 847–858CrossRefGoogle Scholar
Pascual-Leone, A., Rubio, B., Pallardo, F. & Catala, M. D. (1996). Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet, 348: 233–237CrossRefGoogle ScholarPubMed
Patton, H. D. & Amassian, V. E. (1954). Single and multiple unit analysis of the cortical stage of pyramidal tract activation. J. Neurophysiol., 17: 345–363CrossRefGoogle ScholarPubMed
Paus, T. (1999). Imaging the brain before, during, and after transcranial magnetic stimulation. Neuropsychologia, 37: 219–224CrossRefGoogle Scholar
Paus, T., Jech, R., Thompson, C. J., Comeau, R., Peters, T. & Evans, A. C. (1997). Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J. Neurosci., 17: 3178–3184CrossRefGoogle Scholar
Paus, T., Jech, R., Thompson, C. J., Comeau, R., Peters, T. & Evans, A. C. (1998). Dose-dependent reduction of cerebral blood flow during rapid-rate transcranial magnetic stimulation of the human sensorimotor cortex. J. Neurophysiol., 79: 1102–1107CrossRefGoogle ScholarPubMed
Paus, T., Castro-Alamancos, M. A. & Petrides, M. (2001). Cortico-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation. Eur. J. Neurosci., 14: 1405–1411CrossRefGoogle ScholarPubMed
Peinemann, A., Lehner, C., Mentschel, C., Munchau, A., Conrad, B. & Siebner, H. R. (2000). Subthreshold 5-Hz repetitive transcranial magnetic stimulation of the human primary motor cortex reduces intracortical paired-pulse inhibition. Neurosci. Lett., 296: 21–24CrossRefGoogle ScholarPubMed
Porter, R. & Lemon, R. N. (1993). Corticospinal Function and Voluntary Movement. Oxford: Oxford University Press
Priori, A., Bertolasi, L., Dressler, D.. (1993). Transcranial electric and magnetic stimulation of the leg area of the human motor cortex: single motor unit and surface EMG responses in the tibialis anterior muscle. Electroencephalogr. Clin. Neurophysiol., 89: 131–137CrossRefGoogle Scholar
Reynolds, C. & Ashby, P. (1999). Inhibition in the human motor cortex is reduced just before a voluntary contraction. Neurology, 53: 730–735CrossRefGoogle ScholarPubMed
Ridding, M. C. & Rothwell, J. C. (1995). Reorganisation in human motor cortex. Can. J. Physiol. Pharmacol., 73: 218–222CrossRefGoogle Scholar
Ridding, M. C. & Rothwell, J. C. (1997). Stimulus/response curves as a method of measuring motor cortical excitability in man. Electroencephalogr. Clin. Neurophysiol., 105: 340–344CrossRefGoogle ScholarPubMed
Ridding, M. C. & Taylor, J. L. (2001). Mechanisms of motor-evoked potential facilitation following prolonged dual peripheral and central stimulation in humans. J. Physiol., 537: 623–631CrossRefGoogle ScholarPubMed
Ridding, M. C., Taylor, J. L. & Rothwell, J. C. (1995). The effect of voluntary contraction on cortico-cortical inhibition in human motor cortex. J. Physiol. Lond., 487: 541–548CrossRefGoogle ScholarPubMed
Ridding, M. C., Brouwer, B., Miles, T. S., Pitcher, J. B. & Thompson, P. D. (2000). Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp. Brain Res., 131: 135–143CrossRefGoogle ScholarPubMed
Rijntjes, M., Tegenthoff, M., Liepert, J.. (1997). Cortical reorganization in patients with facial palsy. Ann. Neurol., 41: 621–630CrossRefGoogle ScholarPubMed
Rossi, S., Pasqualetti, P., Rossini, P. M.. (2000). Effects of repetitive transcranial magnetic stimulation on movement-related cortical activity in humans. Cereb. Cortex, 10: 802–808CrossRefGoogle ScholarPubMed
Rothwell, J. C., Day, B. L. & Amassian, V. E. (1992). Near threshold electrical and magnetic transcranial stimuli activate overlapping sets of cortical-neurons in humans. J. Physiol. Lond., 452: 109Google Scholar
Rothwell, J. C., Werhahn, K. J. & Amassian, V. E. (1995). Additional source of potentials recorded from the scalp following magnetic stimulation over the lower occiput and adjoining neck. J. Neurol., 242: 713–714CrossRefGoogle ScholarPubMed
Sakai, K., Ugawa, Y., Terao, Y., Hanajima, R., Furubayashi, T. & Kanazawa, I. (1997). Preferential activation of different I waves by transcranial magnetic stimulation with a figure-of-eight-shaped coil. Exp. Brain Res., 113: 24–32CrossRefGoogle ScholarPubMed
Sanes, J. N. & Donoghue, J. P. (1997). Static and dynamic organization of motor cortex. Adv. Neurol., 73: 277–296Google ScholarPubMed
Sanger, T. D., Garg, R. R. & Chen, R. (2001). Interactions between two different inhibitory systems in the human motor cortex. J. Physiol., 530: 307–317CrossRefGoogle Scholar
Siebner, H. R., Mentschel, C., Auer, C. & Conrad, B. (1999a). Repetitive transcranial magnetic stimulation has a beneficial effect on bradykinesia in Parkinson's disease. Neuroreport, 10: 589–594CrossRefGoogle Scholar
Siebner, H. R., Tormos, J. M., Ceballos, B. A.. (1999b). Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer's cramp. Neurology, 52: 529–537CrossRefGoogle Scholar
Siebner, H. R., Mentschel, C., Auer, C., Lehner, C. & Conrad, B. (2000a). Repetitive transcranial magnetic stimulation causes a short-term increase in the duration of the cortical silent period in patients with Parkinson's disease. Neurosci. Lett., 284: 147–150CrossRefGoogle Scholar
Siebner, H. R., Peller, M., Willoch, F.. (2000b). Lasting cortical activation after repetitive TMS of the motor cortex: a glucose metabolic study. Neurology, 54: 956–963CrossRefGoogle Scholar
Stefan, K., Kunesch, E., Cohen, L. G., Benecke, R. & Classen, J. (2000). Induction of plasticity in the human motor cortex by paired associative stimulation. Brain, 123: 572–584CrossRefGoogle ScholarPubMed
Stewart, L., Meyer, B., Frith, U. & Rothwell, J. (2001). Left posterior BA 37 is involved in object recognition: a TMS study. Neuropsychologia, 39: 1–6CrossRefGoogle Scholar
Strafella, A. P., Paus, T., Barrett, J. & Dagher, A. (2001). Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J. Neurosci., 21: RC157CrossRefGoogle ScholarPubMed
Terao, Y., Ugawa, Y., Sakai, K., Uesaka, Y., Kohara, N. & Kanazawa, I. (1994). Transcranial stimulation of the leg area of the motor cortex in humans. Acta Neurol. Scand., 89: 378–383CrossRefGoogle ScholarPubMed
Thickbroom, G. W., Sammut, R. & Mastaglia, F. L. (1998). Magnetic stimulation mapping of motor cortex: factors contributing to map area. Electroencephalogr. Clin. Neurophysiol., 109: 79–84CrossRefGoogle Scholar
Tofts, P. S. (1990). The distribution of induced currents in magnetic stimulation of the nervous system. Phys. Med. Biol., 35: 1119–1128CrossRefGoogle Scholar
Tokimura, H., Di, L., V, Tokimura, Y.. (2000). Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J. Physiol., 523: 503–513CrossRefGoogle Scholar
Tokimura, H., Ridding, M. C., Tokimura, Y., Amassian, V. E. & Rothwell, J. C. (1996). Short latency facilitation between pairs of threshold magnetic stimuli applied to human motor cortex. Electroencephalogr. Clin. Neurophysiol., 101: 263–272CrossRefGoogle ScholarPubMed
Topka, H., Cohen, L. G., Cole, R. A. & Hallett, M. (1991). Reorganization of corticospinal pathways following spinal cord injury. Neurology, 41: 1276–1283CrossRefGoogle ScholarPubMed
Touge, T., Gerschlager, W., Brown, P. & Rothwell, J. C. (2001). Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses?Clin. Neurophysiol., 112: 2138–2145CrossRefGoogle ScholarPubMed
Tsuji, T. & Rothwell, J. C. (2002). Long lasting effects of rTMS and associated peripheral sensory input on MEPs, SEPs and transcortical reflex excitability in humans. J. Physiol., 540: 367–376CrossRefGoogle ScholarPubMed
Ugawa, Y., Day, B. L., Rothwell, J. C., Thompson, P. D., Merton, P. A. & Marsden, C. D. (1991a). Modulation of motor cortical excitability by electrical stimulation over the cerebellum in man. J. Physiol. Lond., 441: 57–72CrossRefGoogle Scholar
Ugawa, Y., Rothwell, J. C., Day, B. L., Thompson, P. D. & Marsden, C. D. (1991b). Percutaneous electrical stimulation of corticospinal pathways at the level of the pyramidal decussation in humans. Ann. Neurol., 29: 418–427CrossRefGoogle Scholar
Ugawa, Y., Uesaka, Y., Terao, Y., Hanajima, R. & Kanazawa, I. (1994). Magnetic stimulation of corticospinal pathways at the foramen magnum level in humans. Ann. Neurol., 36: 618–624CrossRefGoogle Scholar
Ugawa, Y., Uesaka, Y., Terao, Y., Hanajima, R. & Kanazawa, I. (1995). Magnetic stimulation over the cerebellum in humans. Ann. Neurol., 37: 703–713CrossRefGoogle Scholar
Ugawa, Y., Uesaka, Y., Terao, Y.. (1996). Clinical utility of magnetic corticospinal tract stimulation at the foramen magnum level. Electroencephalogr. Clin. Neurophysiol., 101: 247–254CrossRefGoogle ScholarPubMed
Ugawa, Y., Uesaka, Y., Terao, Y., Hanajima, R. & Kanazawa, I. (1997). Magnetic stimulation of the descending and ascending tracts at the foramen magnum level. Electromyogr. Motor Contr. Electroencephalogr. Clin. Neurophysiol., 105: 128–131CrossRefGoogle ScholarPubMed
Walsh, V. & Rushworth, M. (1999). A primer of magnetic stimulation as a tool for neuropsychology. Neuropsychologia, 37: 125–135Google ScholarPubMed
Walsh, V., Ellison, A., Battelli, L. & Cowey, A. (1998). Task-specific impairments and enhancements induced by magnetic stimulation of human visual area V5. Proc. Roy Soc. Lond. B Biol. Sci., 265: 537–543CrossRefGoogle ScholarPubMed
Wassermann, E. M. (1998). Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr. Clin. Neurophysiol., 108: 1–16CrossRefGoogle ScholarPubMed
Wassermann, E. M., McShane, L. M., Hallett, M. & Cohen, L. G. (1992). Noninvasive mapping of muscle representations in human motor cortex. Electroencephalogr. Clin. Neurophysiol., 85: 1–8CrossRefGoogle Scholar
Wassermann, E. M., Pascual-Leone, A., Valls-Sole, J., Toro, C., Cohen, L. G. & Hallett, M. (1993). Topography of the inhibitory and excitatory responses to transcranial magnetic stimulation in a hand muscle. Electroencephalogr. Clin. Neurophysiol., 89: 424–433CrossRefGoogle Scholar
Wassermann, E. M., Wang, B., Zeffiro, T. A.. (1996). Locating the motor cortex on the MRI with transcranial magnetic stimulation and PET. Neuroimage, 3: 1–9CrossRefGoogle ScholarPubMed
Werhahn, K. J., Kunesch, E., Noachtar, S., Benecke, R. & Classen, J. (1999). Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J. Physiol. Lond., 517: 591–597CrossRefGoogle Scholar
Werhahn, K. J., Taylor, J., Ridding, M., Meyer, B. U. & Rothwell, J. C. (1996). Effect of transcranial magnetic stimulation over the cerebellum on the excitability of human motor cortex. Electroencephalogr. Clin. Neurophysiol., 101: 58–66CrossRefGoogle ScholarPubMed
Ziemann, U., Lonnecker, S., Steinhoff, B. J. & Paulus, W. (1996a). Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study [see comments]. Ann. Neurol., 40: 367–378CrossRefGoogle Scholar
Ziemann, U., Rothwell, J. C. & Ridding, M. C. (1996b). Interaction between intracortical inhibition and facilitation in human motor cortex. J. Physiol. Lond., 496: 873–881CrossRefGoogle Scholar
Ziemann, U., Corwell, B. & Cohen, L. G. (1998a). Modulation of plasticity in human motor cortex after forearm ischemic nerve block. J. Neurosci., 18: 1115–1123CrossRefGoogle Scholar
Ziemann, U., Tergau, F., Wassermann, E. M., Wischer, S., Hildebrandt, J. & Paulus, W. (1998b). Demonstration of facilitatory I wave interaction in the human motor cortex by paired transcranial magnetic stimulation. J. Physiol. Lond., 511: 181–190CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×