Skip to main content Accessibility help
  • Print publication year: 2014
  • Online publication date: March 2014

7 - Plasmonic biosensing devices and systems


To detect an analyte, surface plasmons whose characteristics are sensitive to the refractive-index variations close to the sensor's surface are excited and measured. Binding of the target analyte onto the sensor's surface will cause changes in refractive index and hence in the measured plasmonic characteristics. Depending on what type of surface plasmon is excited (e.g. surface plasmon polariton (SPP), Fano resonance), which plasmonic characteristic is measured/modulated (e.g. resonance wavelength, transmitted light intensity), and in what manner the bio-functionalization (i.e. binding of the target analyte) is performed, there are many different configurations for plasmonic biosensors, which will be reviewed in this chapter. The ultimate goal is to increase the sensor's sensitivity and the figure of merit. To achieve this goal, one must first understand the physics of the resonances, and then implement a smart structural design. In this chapter, two design methods will be introduced: an N-layer model and a finite-element-method (FEM) model, which are further elaborated by presentation of three biosensor design examples.


A biosensor is a device for detecting an analyte, which typically combines a biological component with a physiochemical detector. For instance, a blood-glucose biosensor uses the enzyme glucose oxidase to break blood glucose down. In doing so it first oxidizes glucose and uses two electrons to reduce the FAD (a component of the enzyme) to FADH2. Then the FADH2 is oxidized by accepting two electrons from the electrode.

[1] S. A., Maier, Plasmonics: Fundamentals and Applications. Berlin: Springer, 2007.
[2] J., Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem., vol. 377, pp. 528–539, 2003.
[3] I., Abdulhalim, M., Zourob, and A., Lakhtakia, “Surface plasmon resonance for biosensing: A mini-review,” Electromagnetics, vol. 28, pp. 214–242, 2008.
[4] J. N., Anker, W. P., Hall, O., Lyanderset al., “Biosensing with plasmonic nanosensors,” Nature Mater., vol. 7, pp. 442–453, 2008.
[5] M. E., Stewart, C. R., Anderton, L. B., Thompsonet al., “Nanostructured plasmonic sensors,” Chem. Rev., vol. 108, pp. 494–521, 2008.
[6] B., Sepúlveda, P. C., Angelomé, L. M., Lechuga, and L. M., Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today, vol. 4, pp. 244–251, 2009.
[7] T. W., Ebbesen, H. J., Lezec, H. F., Ghaemi, T., Thio, and P. A., Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, vol. 391, pp. 667–669, 1998.
[8] H. F., Ghaemi, T., Thio, D. E., Grupp, T. W., Ebbesen, and H. J., Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B, vol. 58, pp. 6779–6782, 1998.
[9] A., Degiron, H. J., Lezec, W. L., Barnes, and T. W., Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett., vol. 81, pp. 4327–4329, 2002.
[10] W. L., Barnes, W. A., Murray, J., Dintinger, E., Devaux, and T. W., Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett., vol. 92, 107401, 2004.
[11] J., Prikulis, P., Hanarp, L., Olofsson, D., Sutherland, and M., Kall, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett., vol. 4, pp. 1003–1007, 2004.
[12] H. J., Lezec and T., Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express, vol. 12, pp. 3629–3651, 2004.
[13] A., DegironandT. W., Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A: PureAppl. Opt., vol. 7, pp. S90–S96, 2005.
[14] C., Genet and T. W., Ebbesen, “Light in tiny holes,” Nature, vol. 445, pp. 39–46, 2007.
[15] F. J., Garcia-Vidal, L., Martin-Moreno, T. W., Ebbesen, and L., Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys., vol. 82, pp. 729–787, 2010.
[16] T., Sannomiya, O., Scholder, K., Jefimovs, C., Hafner, and A. B., Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small, vol. 7, pp. 1653–1663, 2011.
[17] K.-L., Lee, C.-W., Lee, W.-S., Wang, and P.-K., Wei, “Sensitive biosensor array using surface plasmon resonance on metallic nanoslits,” J. Biomed. Opt., vol. 12, 044023, 2007.
[18] N., Liu, T., Weiss, M., Meschet al., “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett., vol. 10, pp. 1103–1107, 2010.
[19] P., Offermans, M. C., Schaafsma, S. R. K., Rodriguezet al., “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano, vol. 5, pp. 5151–5157, 2011.
[20] Z., Fang, J., Cai, Z., Yanet al., “Removing a wedge from a metallic nanodisk reveals a Fano resonance,” Nano Lett., vol. 11, pp. 4475–4479, 2011.
[21] W.-S., Chang, J. B., Lassiter, P., Swanglapet al., “A plasmonic Fano switch,” Nano Lett., vol. 12, pp. 4977–4982, 2012.
[22] Y., Wang, A., Brunsen, U., Jonas, J., Dostlek, and W., Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem., vol. 81, pp. 9625–9632, 2009.
[23] X. F., Li and S. F., Yu, “Extremely high sensitive plasmonic refractive index sensors based on metallic grating,” Plasmonics, vol. 5, pp. 389–394, 2010.
[24] M. J., Levene, J., Korlach, S. W., Turneret al., “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science, vol. 299, pp. 682–686, 2003.
[25] F., Eftekhari, C., Escobedo, J., Ferreiraet al., “Nanoholes as nanochannels: Flow-through plasmonic sensing,” Anal. Chem., vol. 81, pp. 4308–4311, 2009.
[26] A. A., Yanik, M., Huang, A., Artar, T. Y., Chang, and H., Altug, “Integrated nanoplasmonic–nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett., vol. 96, 021101, 2010.
[27] M., Yamamoto, “Surface plasmon resonance (SPR) theory: Tutorial,” Rev. Polarography, vol. 48, pp. 209–237, 2002.
[28] L., Wu, P., Bai, and E. P., Li, “Designing surface plasmon resonance of subwavelength hole arrays by studying absorption,” J. Opt. Soc. Am. B, vol. 29, pp. 521–528, 2012.
[29] E. D., Palik, Ed., Handbook of Optical Constants of Solids. San Diego, CA: Academic Press, 1991.
[30] L., Wu, H. S., Chu, W. S., Koh, and E. P., Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express, vol. 18, pp. 14395–14400, 2010.
[31] B., Song, D., Li, W. P., Qiet al., “Graphene on Au(111): A highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification,” ChemPhysChem, vol. 11, pp. 585–589, 2010.
[32] G. B., McGaughey, M., Gagné, and A. K., Rappé, “π-Stacking interactions alive and well in proteins,” J. Biol. Chem., vol. 273, pp. 15458–15463, 1998.
[33] Z., Tang, H., Wu, J. R., Cortet al., “Constraint of DNA on functionalized graphene improves its biostability and specificity,” Small, vol. 6, pp. 1205–1209, 2010.
[34] M., Bruna and S., Borinia, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett., vol. 94, 031901, 2009.
[35] L., Wu, P., Bai, X., Zhou, and E. P., Li, “Reflection and transmission modes in nanohole-array-based plasmonic sensors,” IEEE Photon. J., vol. 3, pp. 441–149, 2012.
[36] A. A., Yanik, M., Huang, O., Kamoharaet al., “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett., vol. 10, pp. 4962–4969, 2010.
[37] B., Hapke, Theory of Reflectance and Emittance Spectroscopy. Cambridge: Cambridge University Press, 1993.