Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T22:03:34.018Z Has data issue: false hasContentIssue false

9 - Strength and deformation of planetary lithospheres

Published online by Cambridge University Press:  30 March 2010

David L. Kohlstedt
Affiliation:
Department of Geology and Geophysics, University of Minnesota, Minneapolis
Stephen J. Mackwell
Affiliation:
Lunar and Planetary Institute, Houston
Thomas R. Watters
Affiliation:
Smithsonian Institution, Washington DC
Richard A. Schultz
Affiliation:
University of Nevada, Reno
Get access

Summary

Summary

Robotic missions to destinations throughout our solar system have illuminated in increasing detail evidence of past and present tectonics combined with manifestations of internal dynamics. Interpretation of observations, such as sustenance of high mountains on Venus for potentially hundreds of millions of years, formation of the grooved terrain on the surface of Ganymede, and tidally driven tectonics and volcanism on Io, requires the application of realistic constitutive equations describing the rheological properties for the materials that constitute the crusts and interiors of these planetary bodies. Appropriate flow laws can only be derived from careful experimental studies under conditions that may be reliably extrapolated to those believed to exist on and in the planetary body under consideration. In addition, knowledge of the appropriate rheological behavior may, coupled with measurements made from orbiting satellites, enable the determination of geophysical properties, such as heat flow, that are otherwise not quantifiable without an expensive surface mission. In this chapter, we review the current state of knowledge of the rheological properties of materials appropriate to understanding tectonic behavior and interior dynamics for the terrestrial planets as well as the major Jovian satellites. We then discuss the utility of experimentally constrained constitutive equations in understanding large-scale processes on Venus, Mars, Europa, Ganymede and Io.

Introduction

Historically, much of our understanding of the deformation behavior of planetary materials derives from experimental investigations undertaken to explore the mechanical properties of minerals and rocks as related to tectonic processes on our own planet, Earth.

Type
Chapter
Information
Planetary Tectonics , pp. 397 - 456
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bai, Q., Mackwell, S. J., and Kohlstedt, D. L. (1991). High-temperature creep of olivine single crystals: 1. Mechanical results for buffered samples. J. Geophys. Res., 96, 2441–2463.CrossRefGoogle Scholar
Bai, Q., Jin, Z., and Green, H. W. (1997). Experimental investigation of partially molten peridotite at upper mantle pressure and temperature. In Deformation Enhanced Fluid Transport in the Earth's Crust and Mantle, ed. Holness, M.. London: Chapman & Hall.Google Scholar
Ballhaus, C. and Ellis, D. J. (1996). Mobility of core melts during Earth's accretion. Earth Planet. Sci. Lett., 143, 137–145.CrossRefGoogle Scholar
Barr, A. C., Pappalardo, R. T., and Zhong, S. (2004). Convective instability in ice I with non-Newtonian rheology: Application to the icy Galilean satellites. J. Geophys. Res., 109, E12008, doi:10.1029/2004JE002296.CrossRefGoogle Scholar
Bindschadler, D. L., Schubert, G., and Kaula, W. M. (1992). Coldspots and hotspots: Global tectonics and mantle dynamics of Venus. J. Geophys. Res., 97, 13 495–13 532.CrossRefGoogle Scholar
Blanchard, M. and Ingrin, J. (2004). Kinetics of deuteration in pyrope. Eur. J. Mineral., 16, 567–576.CrossRefGoogle Scholar
Brace, W. F. and Kohlstedt, D. L. (1980). Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res., 85, 6248–6252.CrossRefGoogle Scholar
Braithwaite, J. S., Wright, K., and Catlow, C. R. A. (2003). A theoretical study of the energetics and IR frequencies of hydroxyl defects in forsterite. J. Geophys. Res., 108, 2284, doi:10.1029/2002JB002126.CrossRefGoogle Scholar
Brenan, J. M. and Watson, E. B. (1988). Fluids in the lithosphere: 2. Experimental constraints on CO2 transport in dunite and quartzite at elevated P-T conditions with implications for mantle and crustal decarbonation processes. Earth Planet. Sci. Lett., 91, 141–158.CrossRefGoogle Scholar
Brodholt, J. P. and Refson, K. (2000). An ab initio study of hydrogen in forsterite and a possible mechanism for hydrolytic weakening. J. Geophys. Res., 105, 18 977–18 992.CrossRefGoogle Scholar
Buening, D. K. and Buseck, P. R. (1973). Fe–Mg lattice diffusion in olivine. J. Geophys. Res., 78, 6852–6862.CrossRefGoogle Scholar
Bussod, G. Y. and Christie, J. M. (1991). Textural development and melt topology in spinel lherzolite experimentally deformed at hypersolidus conditions. J. Petrol., Spec. Vol., 17–39.CrossRefGoogle Scholar
Byerlee, J. D. (1978). Friction of rocks. Pure Appl. Geophys., 116, 615–626.CrossRefGoogle Scholar
Bystricky, M., Kunze, K., Burlini, L., and Burg, J.-P. (2000). High shear strain of olivine aggregates: Rheological and seismic consequences. Science, 290, 1564–1567.CrossRefGoogle ScholarPubMed
Bystricky, M. and Mackwell, S. (2001). Creep of dry clinopyroxene aggregates. J. Geophys. Res., 106, 13 443–13 454.CrossRefGoogle Scholar
Caristan, Y. (1982). The transition from high temperature creep to fracture in Maryland diabase. J. Geophys. Res., 87, 6781–6790.CrossRefGoogle Scholar
Carpenter Woods, S., Mackwell, S., and Dyar, D. (2000). Hydrogen in diopside: Diffusion profiles. Amer. Min., 85, 480–487.CrossRefGoogle Scholar
Carter, C. B. and Sass, S. L. (1981). Electron diffraction and microscopy techniques for studying grain-boundary structure. J. Am. Ceram. Soc., 64, 335–345.CrossRefGoogle Scholar
Chakraborty, S. (1997). Rates and mechanisms of Fe-Mg interdiffusion in olivine at 980° to 1300 °C. J. Geophys. Res., 102, 12 317–12 331.CrossRefGoogle Scholar
Chapman, D. S. (1986). Thermal gradients in the continental crust. In The Nature of the Continental Crust, ed. Dawson, J. B., Carswell, D. A., Hall, J. and Wedepohl, K. H., Spec. Publ. Geol. Soc. London, 24, 63–70.CrossRefGoogle Scholar
Chen, I. W. and Argon, A. S. (1979). Steady state power-law creep in heterogeneous alloys with microstructures. Acta Metall., 27, 785–791.CrossRefGoogle Scholar
Chen, S., Hiraga, T., and Kohlstedt, D. L. (2006). Water weakening of clinopyroxene in the dislocation creep regime. J. Geophys. Res., 111, B08203, doi:10.1029/2005JB003885.CrossRefGoogle Scholar
Chester, F. M. (1988). The brittle ductile transition in a deformation-mechanism map for halite. Tectonophys., 154, 125–136.CrossRefGoogle Scholar
Chopra, P. N. and Paterson, M. S. (1984). The role of water in the deformation of dunite. J. Geophys. Res., 89, 7861–7876.CrossRefGoogle Scholar
Clarke, D. R. (1987). On the equilibrium thickness of intergranular glass phases in ceramic materials. J. Am. Ceram. Soc., 70, 15–22.CrossRefGoogle Scholar
Coble, R. (1963). A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys., 34, 1679–1682.CrossRefGoogle Scholar
Connerney, J. E. P., Acuña, M. H., Wasilewski, P. J., Ness, N. F., Rème, H., Mazelle, C., Vignes, D., Lin, R. P., Mitchell, D. L., and Cloutier, P. A. (1999). Magnetic lineations in the ancient crust of Mars. Science, 284, 794–798.CrossRefGoogle ScholarPubMed
Cooper, R. F. and Kohlstedt, D. L. (1982). Interfacial energies in the olivine–basalt system. In High-Pressure Research in Geophysics, Advances in Earth and Planetary Sciences, Vol. 12, ed. Akimota, S. and Manghnani, M. H., Center for Academic Publications Japan, Tokyo, pp. 217–228.CrossRefGoogle Scholar
Cooper, R. F. and Kohlstedt, D. L. (1984). Solution-precipitation enhanced creep of partially molten olivine-basalt aggregates during hot-pressing. Tectonophys., 107, 207–233.CrossRefGoogle Scholar
Cooper, R. F. and Kohlstedt, D. L. (1986). Rheology and structure of olivine-basalt partial melts. J. Geophys. Res., 91, 9315–9323.CrossRefGoogle Scholar
Cooper, R. F., Kohlstedt, D. L., and Chyung, C. K. (1989). Solution-precipitation enhanced creep in solid-liquid aggregates which display a non-zero dihedral angle. Acta Metall., 37, 1759–1771.CrossRefGoogle Scholar
Costa, R. and Chakraborty, S. (2008). The effect of water on Si and O diffusion rates in olivine and implications for transport properties and processes in the upper mantle. Phys. Earth Planet. Inter. 166, 11–29, doi:10.1016/j.pepi.2007.10.006.CrossRefGoogle Scholar
Craig, C. H. and McKenzie, D. (1986). The existence of a thin low-viscosity layer beneath the lithosphere. Earth Planet. Sci. Lett., 78, 420–426.CrossRefGoogle Scholar
Cuffey, K. M., Thorsteinsson, T., and Waddington, E. D. (2000a). A renewed argument for crystal size control of ice sheet strain rates. J. Geophys. Res., 105, 27 889–27 894.CrossRefGoogle Scholar
Cuffey, K. M., Conway, H., Gades, A., Hallet, B., Raymond, C. F., and Whitlow, S. (2000b). Deformation properties of subfreezing glacier ice: Role of crystal size, chemical impurities, and rock particles inferred from in situ measurements. J. Geophys. Res., 105, 27 895–27 915.CrossRefGoogle Scholar
Daines, M. J. and Kohlstedt, D. L. (1997). Influence of deformation on melt topology in peridotites. J. Geophys. Res., 102, 10 257–10 271.CrossRefGoogle Scholar
Dash, J. G., Fu, H. Y., and Wettlaufer, J. S. (1995). The premelting of ice and its environmental consequences. Rep. Prog. Phys., 58, 115–167.CrossRefGoogle Scholar
Dieckmann, R. and Schmalzried, H. (1977a). Defects and cation diffusion in magnetite (I). Ber. Bunsenges. Phys. Chem., 81, 344–347.CrossRefGoogle Scholar
Dieckmann, R. and Schmalzried, H. (1977b). Defects and cation diffusion in magnetite (II). Ber. Bunsenges. Phys. Chem., 81, 414–419.CrossRefGoogle Scholar
Dieckmann, R., Mason, T. O., Hodge, J. D., and Schmalzried, H. (1978). Defects and cation diffusion in magnetite (III). Tracer diffusion of foreign cations as a function of temperature and oxygen potential. Ber. Bunsenges. Phys. Chem., 82, 778–783.CrossRefGoogle Scholar
Dimanov, A., Lavie, M. P., Dresen, G., Ingrin, J., and Jaoul, O. (2003). Creep of polycrystalline anorthite and diopside. J. Geophys. Res., 108, 2061, doi:10.1029/2002JB001815.CrossRefGoogle Scholar
Dimos, D., Wolfenstine, J., and Kohlstedt, D. L. (1988). Kinetic demixing and decomposition of multicomponent oxides due to a nonhydrostatic stress. Acta Met., 36, 1543–1552.CrossRefGoogle Scholar
Dohmen, R., Chakraborty, S., and Becker, H.-W. (2002). Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle. Geophys. Res. Lett., 29, 2030, doi:10.1029/2002GL015480.CrossRefGoogle Scholar
Dombard, A. J. and McKinnon, W. B. (2000). Long-term retention of impact crater topography on Ganymede. Geophys. Res. Lett., 27, 3663–3666.CrossRefGoogle Scholar
Dombard, A. J. and McKinnon, W. B. (2001). Formation of grooved terrain on Ganymede: Extensional instability mediated by cold, superplastic creep. Icarus, 154, 321–336.CrossRefGoogle Scholar
Durham, W. B. and Stern, L. A. (2001). Rheological properties of water ice: Applications to satellites of the outer planets. Annu. Rev. Earth Planet. Sci., 29, 295–330.CrossRefGoogle Scholar
Durham, W. B., Heard, H. C., and Kirby, S. H. (1983). Experimental deformation of polycrystalline H2O ice at high pressure and low temperature: Preliminary results. J. Geophys. Res., 88, 377–392.CrossRefGoogle Scholar
Durham, W. B., Ricoult, D. L., and Kohlstedt, D. L. (1985). Interaction of slip systems in olivine. In Point Defects in Minerals, ed. Schock, R. N., Washington, DC: American Geophysical Union, pp. 185–193.Google Scholar
Durham, W. B., Kirby, S. H., and Stern, L. A. (1997). Creep of water ices at planetary conditions: A compilation. J. Geophys. Res., 102, 16 293–16 302.CrossRefGoogle Scholar
Durham, W. B., Kirby, S. H., and Stern, L. A. (2001). Rheology of ice I at low stress and elevated confining pressure. J. Geophys. Res., 106, 11 031–11 042.CrossRefGoogle Scholar
Duval, P., Ashby, M. F., and Anderman, I. (1983). Rate-controlling processes in the creep of polycrystalline ice. J. Phys. Chem., 87, 4066–4074.CrossRefGoogle Scholar
Einstein, A. (1906). Eine neue Bestimmung der Molekuldimensionen. Annu. Phys., 19, 289–306.CrossRefGoogle Scholar
Einstein, A. (1911). Berichtigung zu meiner Arbeit: eine neue Bestimmung der Molekuldimensionen. Annu. Phys., 34, 591–592.CrossRefGoogle Scholar
Elliot, D. (1973). Diffusion flow laws in metamorphic rocks. Geol. Soc. Am. Bull., 84, 2645–2664.2.0.CO;2>CrossRefGoogle Scholar
Escartin, J., Hirth, G., and Evans, B. (1997). Effects of serpentinization on the lithospheric strength and style of normal faulting at slow-spreading ridges. Earth Planet. Sci. Lett., 151, 181–189.CrossRefGoogle Scholar
Evans, B. and Goetze, C. (1979). The temperature variation of hardness of olivine and its implications for polycrystalline yield stress. J. Geophys. Res., 84, 5505–5524.CrossRefGoogle Scholar
Evans, B. and Kohlstedt, D. L. (1995). Rheology of rocks. In Rock Physics and Phase Relations: A Handbook of Physical Constants, ed. Ahrens, T. J., Washington, DC: American Geophysical Union, pp. 148–165.CrossRefGoogle Scholar
Faul, U. and Jackson, I. (2006). The effect of melt on the creep strength of polycrystalline olivine (abs.). Eos Trans. AGU, 87, Fall Meet. Suppl., MR11B-0129.Google Scholar
Flack, C. A. and Klemperer, S. L. (1990). Reflections from mantle fault zones around the British Isles. Geology, 18, 528–532.2.3.CO;2>CrossRefGoogle Scholar
Gaetani, G. A. and Grove, T. L. (1999). Wetting of olivine by sulfide melt: Implications for Re/Os ratios in mantle peridotite and late-stage core formation. Earth Planet. Sci. Lett., 169, 147–163.CrossRefGoogle Scholar
Gerard, O. and Jaoul, O. (1989). Oxygen diffusion in San Carlos olivine. J. Geophys. Res., 94, 4119–4128.CrossRefGoogle Scholar
Gifkins, R. C. (1972). Grain boundary sliding and its accommodation during creep and superplasticity. Metall. Trans., 7A, 1225–1232.Google Scholar
Glen, J. W. (1952). Experiments on the deformation of ice. J. Glaciol., 2, 111–114.CrossRefGoogle Scholar
Glen, J. W. (1955). The creep of polycrystalline ice. Proc. R. Soc. Lond. Ser. A, 228, 519–538.CrossRefGoogle Scholar
Gleason, G. C. and Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics, 247, 1–23.CrossRefGoogle Scholar
Goetze, C. (1978). The mechanisms of creep in olivine. Philos. Trans. R. Soc. Lond. A, 288, 99–119.CrossRefGoogle Scholar
Goetze, C. and Evans, B. (1979). Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophys. J. R. Astron. Soc., 59, 463–478.CrossRefGoogle Scholar
Goldsby, D. L. (2006). Superplastic flow of ice relevant to glacier and ice sheet mechanics. In Glacier Science and Environmental Change, ed. Knight, P., Oxford, Blackwell Publishing, pp. 308–314.CrossRefGoogle Scholar
Goldsby, D. L. and Kohlstedt, D. L. (2001). Superplastic flow of ice: Experimental observations. J. Geophys. Res., 106, 11 017–11 030.CrossRefGoogle Scholar
Greskovich, C. and Schmalzried, H. (1970). Non-stoichiometry and electronic defects in Co2SiO4 and in CoAl2O4-MgAl2O4 crystalline solutions. J. Phys. Chem. Solids, 31, 639–646.CrossRefGoogle Scholar
Groves, G. W. and Kelly, A. (1969). Change of shape due to dislocation climb. Philos. Mag., 19, 977–986.CrossRefGoogle Scholar
Gust, M., Goo, G., Wolfenstine, J., and Mecartney, M. (1993). Influence of amorphous grain boundary phases on the superplastic behavior of 3-mol%-yttria- stabilized tetragonal zirconia polycrystals (3Y-TZP). J. Am. Ceram. Soc., 76, 1681–1690.CrossRefGoogle Scholar
Hager, B. H. (1991). Mantle viscosity: A comparison of models from postglacial rebound and from the geoid, plate driving forces, and advected heat flux. In Glacial Isostasy, Sea-Level and Mantle Rheology, ed. Sabadini, R.et al., Dordrecht: Kluwer Academic Publishers, pp. 493–513.CrossRefGoogle Scholar
Hercule, S. and Ingrin, J., (1999). Hydrogen in diopside: Diffusion, kinetics of extraction-incorporation, and solubility. Am. Min., 84, 1577–1587.CrossRefGoogle Scholar
Hermeling, J. and Schmalzried, H. (1984). Tracer diffusion of the Fe cations in olivine (FexMg1–x)2SiO4 (III). Phys. Chem. Miner., 11, 161–166.CrossRefGoogle Scholar
Herrick, R. R. and Phillips, R. J. (1992). Geological correlations with the interior density structure of Venus. J. Geophys. Res., 97, 16 017–16 034.CrossRefGoogle Scholar
Herrick, D. L. and Stevenson, D. J. (1990). Extensional and compressional instabilities in icy satellite lithospheres. Icarus, 85, 191–204.CrossRefGoogle Scholar
Herring, C. (1950). Diffusional viscosity of a polycrystalline solid. J. Appl. Phys., 21, 437–445.CrossRefGoogle Scholar
Hier-Majumder, S. and Kohlstedt, D. L. (2006). Role of dynamic grain boundary wetting in fluid circulation beneath volcanic arcs. Geophys. Res. Lett., 33, L08305, doi:10.1029/2006GL025716.CrossRefGoogle Scholar
Hier-Majumder, S., Anderson, I. M., and Kohlstedt, D. L. (2005). Influence of protons on Fe-Mg interdiffusion in olivine. J. Geophys. Res., 110, B02202, doi:10.1029/2004JB003292.CrossRefGoogle Scholar
Hirth, G. and Kohlstedt, D. L. (1995a). Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime. J. Geophys. Res., 100, 1981–2001.CrossRefGoogle Scholar
Hirth, G. and Kohlstedt, D. L. (1995b). Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the dislocation creep regime. J. Geophys. Res., 100, 15 441–15 449.CrossRefGoogle Scholar
Hirth, G. and Kohlstedt, D. L. (1996). Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett., 144, 93–108.CrossRefGoogle Scholar
Hirth, G. and Kohlstedt, D. L. (2003). Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. In Inside the Subduction Factory, Geophysical Monograph 138, ed. Eiler, J., Washington, D.C., American Geophysical Union, pp. 83–105.CrossRefGoogle Scholar
Holness, M. B. (1993). Temperature and pressure dependence of quartz-aqueous fluid dihedral angles: The control of adsorbed H2O on the permeability of quartzites. Earth Planet. Sci. Lett., 117, 363–377.CrossRefGoogle Scholar
Holness, M. B. and Graham, C. M. (1991). Equilibrium dihedral angles in the system H2O-CO2-NaCl-calcite, and implications for fluid flow during metamorphism. Contrib. Mineral. Petrol., 108, 368–383.CrossRefGoogle Scholar
Holtzman, B. K., Groebner, N. J., Zimmerman, M. E., Ginsberg, S. B., and Kohlstedt, D. L. (2003a). Deformation-driven melt segregation in partially molten rocks. Geochem., Geophys., Geosyst., 4, 8607, doi:10.1029/2001GC000258.CrossRefGoogle Scholar
Holtzman, B. K., Kohlstedt, D. L., Zimmerman, M. E., Heidelbach, F., Hiraga, T., and Hustoft, J. (2003b). Melt segregation and strain partitioning: Implications for seismic anisotropy and mantle flow. Science, 301, 1227–1230.CrossRefGoogle ScholarPubMed
Houlier, B., Cheraghmakani, M., and Jaoul, O. (1990). Silicon diffusion in San Carlos olivine. Phys. Earth Planet. Inter., 62, 329–340.CrossRefGoogle Scholar
Hustoft, J. W. and Kohlstedt, D. L. (2006). Metal-silicate segregation in deforming dunitic rocks. Geochem., Geophys., Geosyst., 7, Q02001, doi:10.1029/2005GC001048.CrossRefGoogle Scholar
Ito, G., Lin, J., and Graham, D. (2003). Observational and theoretical studies of the dynamics of mantle plume-mid-ocean ridge interaction. Rev. Geophys., 41, 1017, doi:10.1029/2002RG000117.CrossRefGoogle Scholar
Iverson, N. R. (2006). Laboratory experiments in glaciology. In Glacier Science and Environmental Change, ed. Knight, P., Oxford, Blackwell Publishing, pp. 449–458.CrossRefGoogle Scholar
Jaoul, O. (1990). Multicomponent diffusion and creep in olivine. J. Geophys. Res., 95, 17 631–17 642.CrossRefGoogle Scholar
Jaoul, O., Bertran-Alvarez, Y., Liebermann, R. C., and Price, G. D. (1995). Fe-Mg interdiffusion in olivine up to 9 GPa at T = 600–900 °C: Experimental data and comparison with defect calculations. Phys. Earth Planet. Inter., 89, 199–218.CrossRefGoogle Scholar
Jin, Z. M., Bai, Q., and Kohlstedt, D. L. (1994). Creep of olivine crystals from four localities. Phys. Earth Planet. Inter., 82, 55–64.CrossRefGoogle Scholar
Kaibyshev, O. (1992). Superplasticity of Alloys, Intermetallides, and Ceramics. New York, Springer-Verlag.CrossRefGoogle Scholar
Karato, S.-I. (1986). Does partial melting reduce the creep strength of the upper mantle?Nature, 319, 309–310.CrossRefGoogle Scholar
Karato, S.-I. and Jung, H. (2003). Effects of pressure on high-temperature dislocation creep in olivine. Philos. Mag., 83, 401–414.CrossRefGoogle Scholar
Karato, S.-I., Paterson, M. S., and Fitz Gerald, J. D. (1986). Rheology of synthetic olivine aggregates: Influence of grain size and water. J. Geophys. Res., 91, 8151–8176.CrossRefGoogle Scholar
Kaufmann, G. and Lambeck, K. (2002). Glacial isostatic adjustment and the radial viscosity profile from inverse modeling. J. Geophys. Res., 107, 2280, doi:10.1029/2001JB000941.CrossRefGoogle Scholar
Kaula, W. M. (1990). Venus: A contrast in evolution to Earth. Science, 247, 1191–1196.CrossRefGoogle Scholar
Keefner, J. W., Mackwell, S. J., and Kohlstedt, D. L. (2005). Dunite viscosity dependence on oxygen fugacity (abs.). Lunar Planet. Sci. Conf. XXXVI, 1915.Google Scholar
Kelemen, P. B., Hirth, G., Shimizu, N., Spiegelman, M., and Dick, H. J. B. (1997). A review of melt migration processes in the adiabatically upwelling mantle beneath spreading ridges. Philos. Trans. R. Soc. Lond. A, 355, 283–318.CrossRefGoogle Scholar
Keszthelyi, L. and McEwen, A. (1997). Magmatic differentiation of Io. Icarus, 130, 437–448.CrossRefGoogle Scholar
Kohlstedt, D. L. (1992). Structure, rheology and permeability of partially molten rocks at low melt fractions. In Mantle Flow and Melt Generation at Mid-Ocean Ridges, Monograph 71, ed. Phipps-Morgan, J., Blackman, D. K. and Sinton, J. M.. Washington, DC: American Geophysical Union. pp. 103–121.Google Scholar
Kohlstedt, D. L. (2002). Partial melting and deformation. In Plastic Deformation in Minerals and Rocks, ed. Karato, S. I. and Wenk, H. R.. Reviews in Mineralogy and Geochemistry, Vol. 51, Mineralogical Society of America, pp. 105–125.Google Scholar
Kohlstedt, D. L. (2006). Water and rock deformation: The case for and against a climb-controlled creep rate. In Water in Nominally Anhydrous Minerals, ed. Keppler, H. and Smyth, J. R.. Reviews in Mineralogy and Geochemistry, Vol. 62, ser. ed. Rosso, J. J., Mineralogical Society of America, pp. 377–396.Google Scholar
Kohlstedt, D. L. (2007). Properties of rocks and minerals: constitutive equations, rheological behavior, and viscosity of rocks. In Treatise on Geophysics, ed. Schubert, G.. Vol. 2.14. Oxford: Elsevier, pp. 389–417.CrossRefGoogle Scholar
Kohlstedt, D. L. and Holtzman, B. K. (2009). Shearing melt out of the Earth: An experimentalist's perspective on the influence of deformation on melt extraction. Annu. Rev. Earth Planet. Sci., 37, 561–593, doi:10.1146/annurev.earth.031208.100104.CrossRefGoogle Scholar
Kohlstedt, D. L. and Hornack, P. (1981). The effect of oxygen partial pressure on creep in olivine. In Anelasticity in the Earth, Geodynamic Series, 4, ed. Stacey, F. D., Paterson, M. S. and Nicolas, A.. Washington, American Geophysical Union, pp. 101–107.CrossRefGoogle Scholar
Kohlstedt, D. L. and Mackwell, S. J. (1998). Diffusion of hydrogen and intrinsic point defects in olivine. Z. Phys. Chem., 207, 147–162.CrossRefGoogle Scholar
Kohlstedt, D. L. and Mackwell, S. J. (1999). Solubility and diffusion of ‘water’ in silicate minerals. In Microscopic Processes in Minerals, ed. Wright, K. and Catlow, C. R. A., NATO-ASI Series. Dordrecht, Kluwer Academic Publisher, pp. 539–559.CrossRefGoogle Scholar
Kohlstedt, D. L. and Ricoult, D. L. (1984). High-temperature creep of olivines. In Deformation of Ceramics II, ed. Tressler, R. E. and Bradt, R. C.. New York, Plenum Publishing, pp. 251–280.CrossRefGoogle Scholar
Kohlstedt, D. L. and Zimmerman, M. E. (1996). Rheology of partially molten mantle rocks. Annu. Rev. Earth Planet. Sci., 24, 41–62.CrossRefGoogle Scholar
Kohlstedt, D. L., Evans, B., and Mackwell, S. J. (1995). Strength of the lithosphere: Constraints imposed by laboratory experiments. J. Geophys. Res., 100, 17 587–17 602.CrossRefGoogle Scholar
Kröger, F. A. and Vink, H. J. (1956). Relation between the concentration of imperfections in crystalline solids. In Solid State Physics 3, ed. Seitz, F. and Turnball, D.. New York, Academic Press, pp. 367–435.Google Scholar
Langdon, T. G. (1994). A unified approach to grain boundary sliding in creep and superplasticity. Acta Met., 42, 2437–2443.CrossRefGoogle Scholar
Lange, F. F., Davis, B. I., and Clarke, D. R. (1980). Compressive creep of Si3N4/MgO alloys. Part 1: Effect of composition. J. Mater. Sci., 15, 601–610.CrossRefGoogle Scholar
Lee, V., Mackwell, S. J., and Brantley, S. L. (1991). The effect of fluid chemistry on wetting textures in novaculite. J. Geophys. Res., 96, 10 023–10 037.CrossRefGoogle Scholar
Liftshitz, I. M. (1963). On the theory of diffusion-viscous flow of polycrystalline bodies. Soviet Phys. JETP, 17, 909–920.Google Scholar
Lopes, R. M. C., Kamp, L. W., Douté, S., Smythe, W. D., Carlson, R. W., McEwen, A. S., Geissler, P. E., Kieffer, S. W., Leader, F. E., Davies, A. G., Barbinis, E., Mehlman, R., Segura, M., Shirley, J., and Soderblom, L. A. (2001). Io in the near-infrared: NIMS results from the Galileo flybys in 1999 and 2000. J. Geophys. Res., 106, 33 053–33 078.CrossRefGoogle Scholar
Mackwell, S. J. and Kohlstedt, D. L. (1990). Diffusion of hydrogen in olivine: Implications for water in the mantle. J. Geophys. Res., 95, 5079–5088.CrossRefGoogle Scholar
Mackwell, S. J., Kohlstedt, D. L., and Paterson, M. S. (1985). The role of water in the deformation of olivine single crystals. J. Geophys. Res., 90, 11 319–11 333.CrossRefGoogle Scholar
Mackwell, S. J., Zimmerman, M., Kohlstedt, D. L., and Scherber, D. (1995). Experimental deformation of dry Columbia diabase: Implications for tectonics on Venus. In Proceedings of the 35th U.S. Symposium on Rock Mechanics, ed. Daemen, J. J. K. and Schultz, R. A., pp. 207–214.
Mackwell, S. J., Zimmerman, M. E., and Kohlstedt, D. L. (1998). High-temperature deformation of dry diabase with application to tectonics on Venus. J. Geophys. Res., 103, 975–984.CrossRefGoogle Scholar
McGarr, A. (1984). Scaling of ground motion parameters, state of stress, and focal depth. J. Geophys. Res., 89, 6969–6979.CrossRefGoogle Scholar
McGarr, A., Zoback, M. D., and Hanks, T. C. (1982). Implications of an elastic analysis of in situ stress measurements near the San Andreas fault. J. Geophys. Res., 87, 7797–7806.CrossRefGoogle Scholar
McKenzie, D. (1984). The generation and compaction of partially molten rock. J. Petrol., 25, 713–765.CrossRefGoogle Scholar
McKinnon, W. B. (1999). Convective instability in Europa's floating ice shell. Geophys. Res. Lett., 26, 951–954.CrossRefGoogle Scholar
Mei, S. and Kohlstedt, D. L. (2000a). Influence of water on plastic deformation of olivine: 1. Diffusion creep regime. J. Geophys. Res., 105, 21 457–21 469.CrossRefGoogle Scholar
Mei, S. and Kohlstedt, D. L. (2000b). Influence of water on plastic deformation of olivine: 2. Dislocation creep regime. J. Geophys. Res., 105, 21 471–21 481.CrossRefGoogle Scholar
Mei, S., Bai, W., Hiraga, T., and Kohlstedt, D. L. (2002). Influence of water on plastic deformation of olivine-basalt aggregates. Earth Planet. Sci. Lett., 201, 491–507.CrossRefGoogle Scholar
Mibe, K., Fujii, T., and Yasuda, A. (1998). Connectivity of aqueous fluid in the Earth's upper mantle. Geophys. Res. Lett., 25, 1233–1236.CrossRefGoogle Scholar
Minarik, W. G., Ryerson, F. J., and Watson, E. B. (1996). Textural entrapment of core-forming melts. Science, 272, 530–533.CrossRefGoogle Scholar
Misener, D. J. (1974). Cationic diffusion in olivine to 1400 °C and 35 kbar. In Geochemical Transport and Kinetics, ed. Hofmann, A. W., Giletti, B. J., Yoder, H. S. and Yund, R. A.. Washington, DC: Carnegie Institution of Washington, pp. 117–129.Google Scholar
Montési, L. G. J. and Hirth, G. (2003). Grain size evolution and the rheology of ductile shear zones: From laboratory experiments to postseismic creep. Earth Planet. Sci. Lett., 211, 97–110.CrossRefGoogle Scholar
Montési, L. G. J. and Zuber, M. T. (2002). A unified description of localization for application to large-scale tectonics. J. Geophys. Res., 107, doi:10.1029/2001JB000465.CrossRefGoogle Scholar
Nabarro, F. (1948). Deformation of crystals by the motion of single ions. In Report on a Conference on the Strength of Solids. London, Physical Society, pp. 75–90.Google Scholar
Nakamura, A. and Schmalzried, H. (1984). On the Fe2+-Mg2+ interdiffusion in olivine (II). Ber. Bunsenges. Phys. Chem., 88, 140–145.CrossRefGoogle Scholar
Panasyuk, S. V. and Hager, B. H. (2000). Inversion for mantle viscosity profiles constrained by dynamic topography and the geoid, and their estimated errors. Geophys. J. Int., 143, 821–836.CrossRefGoogle Scholar
Passey, Q. R. and Schoemaker, E. M. (1982). Craters and basins on Ganymede and Callisto: Morphological indicators of crustal evolution. In Satellites of Jupiter, ed. Morrison, D. and Matthews, M. S.. Tucson, University of Arizona Press, pp. 379–434.Google Scholar
Paterson, M. S. (1969). The ductility of rocks. In Physics of Strength and Plasticity, ed. Argon, A. S.. Cambridge, MA, MIT Press, pp. 377–392.Google Scholar
Peltier, W. R. (1998). Global glacial isostasy and relative sea level: Implications for solid earth geophysics and climate system dynamics. In Dynamics of the Ice Age Earth, ed. Wu, P.. Switzerland: Trans Tech Publications, pp. 17–54.Google Scholar
Phillips, R. J., Johnson, C. L., Mackwell, S. J., Morgan, P., Sandwell, D. T., and Zuber, M. T. (1997). Lithospheric mechanics and dynamics of Venus. In Venus II, ed. Bougher, S. W., Hunten, D. M. and Phillips, R. J.. Tucson, AZ: University of Arizona Press, pp. 1163–1204.Google Scholar
Morgan, J. P. (1997). The generation of a compositional lithosphere by mid-ocean ridge melting and its effect on subsequent off-axis hotspot upwelling and melting. Earth Planet. Sci. Lett., 146, 213–232.CrossRefGoogle Scholar
Pitzer, K. S. and Sterner, S. M. (1994). Equations of state valid continuously from zero to extreme pressures for H2O and CO2. J. Chem. Phys., 101, 3111–3116.CrossRefGoogle Scholar
Poirier, J.-P. (1985). Creep of Crystals: High-temperature Deformation Processes in Metals, Ceramics and Minerals. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Post, A. D., Tullis, J., and Yund, R. A. (1996). Effects of chemical environment on dislocation creep of quartzite. J. Geophys. Res., 101, 22 143–22 155.CrossRefGoogle Scholar
Raj, R. (1982). Creep in polycrystalline aggregates by matter transport through a liquid phase. J. Geophys. Res., 87, 4731–4739.CrossRefGoogle Scholar
Raj, R. and Ashby, M. F. (1971). On grain boundary sliding and diffusional creep. Metall. Trans., 2, 1113–1127.CrossRefGoogle Scholar
Ramsey, J. G. (1980). Shear zone geometry: A review. J. Structural Geol., 2, 83–99.CrossRefGoogle Scholar
Ranero, C. R., Phipps Morgan, J., McIntosh, K., and Reichert, C. (2003). Bending-related faulting and mantle serpentinization at the Middle America Trench. Nature, 425, 367–373.CrossRefGoogle ScholarPubMed
Reese, C. C., Solomatov, V. S., and Moresi, L.-N. (1998). Heat transport efficiency for stagnant lid convection with dislocation viscosity: Application to Mars and Venus. J. Geophys. Res., 103, 13 643–13 658.CrossRefGoogle Scholar
Regenauer-Lieb, K. and Kohl, T. (2003). Water solubility and diffusivity in olivine: Its role for planetary tectonics. Mineral. Mag., 67, 697–717.CrossRefGoogle Scholar
Regenauer-Lieb, K., Yuen, D. A., and Branlund, J. (2001). The initiation of subduction: Criticality by addition of water?Science, 294, 578–580.CrossRefGoogle Scholar
Reston, T. J. (1990). Mantle shear zones and the evolution of the northern North Sea basin. Geology, 18, 272–275.2.3.CO;2>CrossRefGoogle Scholar
Ricoult, D. L. and Kohlstedt, D. L. (1983). Structural width of low-angle grain boundaries in olivine. Phys. Chem. Minerals, 9, 133–138.CrossRefGoogle Scholar
Ricoult, D. L. and Kohlstedt, D. L. (1985). Creep of Co2SiO4 and Fe2SiO4 crystals in a controlled thermodynamic environment. Philos. Mag. A, 51, 79–93.CrossRefGoogle Scholar
Roscoe, R. (1952). The viscosity of suspensions of rigid spheres. Brit. J. Appl. Phys., 3, 267–269.CrossRefGoogle Scholar
Ross, J. V. and Nielsen, K. C. (1978). High-temperature flow of wet polycrystalline enstatite. Tectonophys., 44, 233–261.CrossRefGoogle Scholar
Ross, M. and Schubert, G. (1985). Tidally forced viscous heating in a partially molten Io. Icarus, 64, 391–400.CrossRefGoogle Scholar
Ross, M. and Schubert, G. (1986). Tidal dissipation in a viscoelastic planet. J. Geophys. Res., 91, 447–452.CrossRefGoogle Scholar
Rubie, D. C., Gessmann, C. K., and Frost, D. J. (2004). Partitioning of oxygen during core formation on the Earth and Mars. Nature, 429, 58–61.CrossRefGoogle ScholarPubMed
Ruiz, J. and Tejero, R. (2000). Heat flows through the ice lithosphere of Europa. Geophys. Res. Lett., 105, 29 283–29 289.CrossRefGoogle Scholar
Ruiz, J. and Tejero, R. (2003). Heat flow, lenticulae spacing, and possibility of convection in the ice shell of Europa. Icarus, 162, 362–373.CrossRefGoogle Scholar
Ruoff, A. L. (1965). Mass transfer problems in ionic crystals with charge neutrality. J. Appl. Phys., 36, 2903–2907.CrossRefGoogle Scholar
Rutter, E. H. (1976). The kinetics of rock deformation by pressure solution. Philos. Trans. R. Soc. Lond. A283, 203–219.CrossRefGoogle Scholar
Rybacki, E. and Dresen, G. (2000). Dislocation and diffusion creep of synthetic anorthite aggregates. J. Geophys. Res., 105, 26 017–26 036.CrossRefGoogle Scholar
Ryerson, F. J., Durham, W. B., Cherniak, D. J., and Lanford, W. A. (1989). Oxygen diffusion in olivine: Effect of oxygen fugacity and implications for creep. J. Geophys. Res., 94, 4105–4118.CrossRefGoogle Scholar
Schenk, P. M. (2002). Thickness constraints on the icy shells of Galilean satellites from a comparison of crater shapes. Nature, 417, 419–421.CrossRefGoogle ScholarPubMed
Schmalzried, H. (1978). Reactivity and point defects of double oxides with emphasis on simple silicates. Phys. Chem. Minerals, 2, 279–294.CrossRefGoogle Scholar
Schmalzried, H. (1981). Solid State Reactions. Weinheim, Verlag Chemie, pp. 37–57; 174–175.Google Scholar
Schamzlried, H. (1995). Chemical Kinetics of Solids. New York, VCH Publishers, pp. 27–37.Google Scholar
Scott, D. R. and Stevenson, D. J. (1986). Magma ascent by porous flow. J. Geophys. Res., 91, 9283–9296.CrossRefGoogle Scholar
Scott, T. and Kohlstedt, D. L. (2006). The effect of large melt fraction on the deformation behavior of peridotite. Earth Planet. Sci. Lett., 246, 177–187.CrossRefGoogle Scholar
Segatz, M., Spohn, T., Ross, M. N., and Schubert, G. (1988). Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus, 75, 187–206.CrossRefGoogle Scholar
Shelton, G. and Tullis, J. (1981). Experimental flow laws for crustal rocks (abs.). Eos Trans. AGU, 62, 396.Google Scholar
Shewmon, P. G. (1983). Diffusion in Solids. Jenks, OK, J. Williams Book Company, pp. 155–160.Google Scholar
Sibson, R. H. (1974). Frictional constraints on thrust, wrench and normal faults. Nature, 249, 542–544.CrossRefGoogle Scholar
Sibson, R. H. (1977). Fault rocks and fault mechanisms. J. Geol. Soc. London, 133, 191–213.CrossRefGoogle Scholar
Sockel, H. G. (1974). Defect structure and electrical conductivity of crystalline ferrous silicate. In Defects and Transport in Oxides, ed. Seltzer, M. S. and Jaffe, R. I.. New York, Plenum Press, pp. 341–354.CrossRefGoogle Scholar
Solomatov, V. S. and Moresi, L.-N. (2000). Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets. J. Geophys. Res., 105, 21 795–21 818, doi:10.1029/2000JB900197.CrossRefGoogle Scholar
Stalder, R. and Skogby, H. (2002). Hydrogen incorporation in enstatite. Eur. J. Mineral., 14, 1139–1144.CrossRefGoogle Scholar
Stern, L. A., Durham, W. B., and Kirby, S. H. (1997). Grain-sized-induced weakening of H2O ices I and II and associated anisotropic recrystallization. J. Geophys. Res., 102, 5313–5325.CrossRefGoogle Scholar
Tackley, P., Schubert, G., Glatzmaier, G. A., Schenk, P., Ratcliff, J. T., and Matas, J.-P. (2001). Three-dimensional simulations of mantle convection in Io. Icarus, 149, 79–93.CrossRefGoogle Scholar
Takei, Y. (1998). Constitutive mechanical relations of solid-liquid composites in terms of grain-boundary contiguity. J. Geophys. Res., 103, 18 183–18 203.CrossRefGoogle Scholar
Takei, Y. (2000). Acoustic properties of partially molten media studied on a simple binary system with a controllable dihedral angle. J. Geophys. Res., 105, 16 665–16 682.CrossRefGoogle Scholar
Takei, Y. (2001). Stress-induced anisotropy of partially molten media inferred from experimental deformation of a simple binary system under acoustic monitoring. J. Geophys. Res., 106, 567–588.CrossRefGoogle Scholar
Takei, Y. (2002). Effect of pore geometry on VP/VS: From equilibrium geometry to crack. J. Geophys. Res., 107(B21), 2043, 10.1029/2001JB000522.CrossRefGoogle Scholar
Takei, Y. and Holtzman, B. K. (2009a). Viscous constitutive relations of solid–liquid composites in terms of grain-boundary contiguity: I. Grain boundary diffusion-control model. J. Geophys. Res., 114, B06205, doi:10.1029/2008JB005850.Google Scholar
Takei, Y. and Holtzman, B. K. (2009b). Viscous constitutive relations of solid–liquid composites in terms of grain-boundary contiguity: II. Compositional model for small melt fractions. J. Geophys. Res., 114, B06206, doi:10.1029/2008JB005851.Google Scholar
Takei, Y. and Holtzman, B. K. (2009c). Viscous constitutive relations of solid–liquid composites in terms of grain-boundary contiguity: III. Causes and consequences of viscous anisotropy. J. Geophys. Res., 114, B06207, doi:10.1029/2008JB005852.Google Scholar
Takei, Y. and Shimizu, I. (2003). The effects of liquid composition, temperature, and pressure on the equilibrium dihedral angles of binary solid–liquid systems inferred from a lattice-like model. Phys. Earth Planet. Inter., 139, 225–242.CrossRefGoogle Scholar
Tharp, T. M. (1983). Analogies between the high-temperature deformation of polyphase rocks and the mechanical behavior of porous powder metal. Tectonophys., 96, T1-T11.CrossRefGoogle Scholar
Toramaru, A. and Fujii, N. (1986). Connectivity of melt phase in a partially molten peridotite. J. Geophys. Res., 91, 9239–9252.CrossRefGoogle Scholar
Turcotte, D. L. (1993). An episodic hypothesis for Venusian tectonics. J. Geophys. Res., 98, 17 061–17 068.CrossRefGoogle Scholar
Turcotte, D. L. (1995). How does Venus lose heat?J. Geophys. Res., 100, 16 931–16 940.CrossRefGoogle Scholar
Turcotte, D. L. and Schubert, G. (1982). Geodynamics: Applications of Continuum Physics to Geological Problems. New York, John Wiley, pp. 163–167; 383–384.Google Scholar
Wal, D., Chopra, P. N., Drury, M., and Fitz Gerald, J. D. (1993). Relationships between dynamically recrystallized grain size and deformation conditions in experimentally deformed olivine rocks. Geophys. Res. Lett., 20, 1479–1482.Google Scholar
Bargen, N. and Waff, H. S. (1986). Permeabilities, interfacial areas and curvatures of partially molten systems: Results of numerical computations of equilibrium microstructures. J. Geophys. Res., 91, 9261–9276.CrossRefGoogle Scholar
Mises, R. (1928). Mechanik der plastischen Formänderung von Kristallen. Z. Angew. Math. Mech., 8, 161–185.CrossRefGoogle Scholar
Waff, H. S. and Bulau, J. R. (1979). Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions. J. Geophys. Res., 84, 6109–6114.CrossRefGoogle Scholar
Waff, H. S. and Faul, U. H. (1992). Effects of crystalline anisotropy on fluid distribution in ultramafic partial melts. J. Geophys. Res., 97, 9003–9014.CrossRefGoogle Scholar
Wang, Z. (2002). Effect of pressure and water on the kinetics properties of olivine, Ph.D. thesis, University of Minnesota.
Wang, Z., Hiraga, T., and Kohlstedt, D. L. (2004). Effect of H+ on Fe-Mg interdiffusion in olivine, (Mg,Fe)2SiO4. Appl. Phys. Lett., 85, 209–211.CrossRefGoogle Scholar
Wang, L. and Zhang, Y. (1996). Diffusion of the hydrous component in garnet. Am. Min., 81, 706–718.CrossRefGoogle Scholar
Watson, E. B. and Brenan, J. M. (1987). Fluids in the lithosphere: 1. Experimentally determined wetting characteristics of CO2-H2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation. Earth Planet. Sci. Lett., 85, 497–515.CrossRefGoogle Scholar
Weertman, J. (1968). Dislocation climb theory of steady-state creep. Trans. Am. Soc. Metals, 61, 681–694.Google Scholar
Weertman, J. (1970). The creep strength of the Earth's mantle. Rev. Geophys. Space Phys., 8, 145–168.CrossRefGoogle Scholar
Weertman, J. (1983). Creep deformation of ice. Annu. Rev. Earth Planet. Sci., 11, 215–240.CrossRefGoogle Scholar
Weertman, J. (1999). Microstructural mechanisms in creep. In Mechanics and Materials: Fundamentals and Linkages, ed. Meyers, M. A., Armstrong, R. W. and Kirchner, H.. New York: John Wiley and Sons, pp. 451–488.Google Scholar
Weertman, J. and Weertman, J. R. (1975). High temperature creep of rock and mantle viscosity. Annu. Rev. Earth Planet. Sci., 3, 293–315.CrossRefGoogle Scholar
Woods, S. (2000). The kinetics of hydrogen diffusion in single crystal enstatite. Ph.D. thesis, Pennsylvania State University.Google Scholar
Xu, Y., Zimmerman, M. E., and Kohlstedt, D. L. (2004). Deformation behavior of partially molten mantle rocks. In Rheology and Deformation of the Lithosphere at Continental Margins. MARGINS Theoretical and Experimental Earth Science Series, Vol. I. ed. Karner, G. D., Driscoll, N. W., Taylor, B. and Kohlstedt, D. L.. Columbia University Press, pp. 284–310.Google Scholar
Zahnle, K., Dones, L., and Levison, H. F. (1998). Cratering rates on Galilean satellites. Icarus, 136, 202–222.CrossRefGoogle ScholarPubMed
Zhao, Y. H., Ginsberg, S. G., and Kohlstedt, D. L. (2004). Solubility of hydrogen in olivine: Effects of temperature and Fe content. Contrib. Mineral. Petrol., 147, 155–161, doi:10.1007/s00410-003-0524-4.CrossRefGoogle Scholar
Zhao, Y.-H., Zimmerman, M. E., and Kohlstedt, D. L. (2009). Effect of iron content on the creep behavior of olivine: 1. Anhydrous conditions, Earth Planet. Sci. Lett. 287, 229–240, doi:10.1016/j.epsl.2009.08.006.CrossRefGoogle Scholar
Zimmerman, M. E. and Kohlstedt, D. L. (2004). Rheological properties of partially molten lherzolite. J. Petrol., 45, 275–298.CrossRefGoogle Scholar
Zimmerman, M. E., Zhang, S., Kohlstedt, D. L., and Karato, S. (1999). Melt distribution in mantle rocks deformed in shear. Geophys. Res. Lett., 26, 1505–1508.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×