Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 5
  • Print publication year: 2009
  • Online publication date: March 2010

9 - Strength and deformation of planetary lithospheres



Robotic missions to destinations throughout our solar system have illuminated in increasing detail evidence of past and present tectonics combined with manifestations of internal dynamics. Interpretation of observations, such as sustenance of high mountains on Venus for potentially hundreds of millions of years, formation of the grooved terrain on the surface of Ganymede, and tidally driven tectonics and volcanism on Io, requires the application of realistic constitutive equations describing the rheological properties for the materials that constitute the crusts and interiors of these planetary bodies. Appropriate flow laws can only be derived from careful experimental studies under conditions that may be reliably extrapolated to those believed to exist on and in the planetary body under consideration. In addition, knowledge of the appropriate rheological behavior may, coupled with measurements made from orbiting satellites, enable the determination of geophysical properties, such as heat flow, that are otherwise not quantifiable without an expensive surface mission. In this chapter, we review the current state of knowledge of the rheological properties of materials appropriate to understanding tectonic behavior and interior dynamics for the terrestrial planets as well as the major Jovian satellites. We then discuss the utility of experimentally constrained constitutive equations in understanding large-scale processes on Venus, Mars, Europa, Ganymede and Io.


Historically, much of our understanding of the deformation behavior of planetary materials derives from experimental investigations undertaken to explore the mechanical properties of minerals and rocks as related to tectonic processes on our own planet, Earth.

Bai, Q., Mackwell, S. J., and Kohlstedt, D. L. (1991). High-temperature creep of olivine single crystals: 1. Mechanical results for buffered samples. J. Geophys. Res., 96, 2441–2463.
Bai, Q., Jin, Z., and Green, H. W. (1997). Experimental investigation of partially molten peridotite at upper mantle pressure and temperature. In Deformation Enhanced Fluid Transport in the Earth's Crust and Mantle, ed. Holness, M.. London: Chapman & Hall.
Ballhaus, C. and Ellis, D. J. (1996). Mobility of core melts during Earth's accretion. Earth Planet. Sci. Lett., 143, 137–145.
Barr, A. C., Pappalardo, R. T., and Zhong, S. (2004). Convective instability in ice I with non-Newtonian rheology: Application to the icy Galilean satellites. J. Geophys. Res., 109, E12008, doi:10.1029/2004JE002296.
Bindschadler, D. L., Schubert, G., and Kaula, W. M. (1992). Coldspots and hotspots: Global tectonics and mantle dynamics of Venus. J. Geophys. Res., 97, 13 495–13 532.
Blanchard, M. and Ingrin, J. (2004). Kinetics of deuteration in pyrope. Eur. J. Mineral., 16, 567–576.
Brace, W. F. and Kohlstedt, D. L. (1980). Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res., 85, 6248–6252.
Braithwaite, J. S., Wright, K., and Catlow, C. R. A. (2003). A theoretical study of the energetics and IR frequencies of hydroxyl defects in forsterite. J. Geophys. Res., 108, 2284, doi:10.1029/2002JB002126.
Brenan, J. M. and Watson, E. B. (1988). Fluids in the lithosphere: 2. Experimental constraints on CO2 transport in dunite and quartzite at elevated P-T conditions with implications for mantle and crustal decarbonation processes. Earth Planet. Sci. Lett., 91, 141–158.
Brodholt, J. P. and Refson, K. (2000). An ab initio study of hydrogen in forsterite and a possible mechanism for hydrolytic weakening. J. Geophys. Res., 105, 18 977–18 992.
Buening, D. K. and Buseck, P. R. (1973). Fe–Mg lattice diffusion in olivine. J. Geophys. Res., 78, 6852–6862.
Bussod, G. Y. and Christie, J. M. (1991). Textural development and melt topology in spinel lherzolite experimentally deformed at hypersolidus conditions. J. Petrol., Spec. Vol., 17–39.
Byerlee, J. D. (1978). Friction of rocks. Pure Appl. Geophys., 116, 615–626.
Bystricky, M., Kunze, K., Burlini, L., and Burg, J.-P. (2000). High shear strain of olivine aggregates: Rheological and seismic consequences. Science, 290, 1564–1567.
Bystricky, M. and Mackwell, S. (2001). Creep of dry clinopyroxene aggregates. J. Geophys. Res., 106, 13 443–13 454.
Caristan, Y. (1982). The transition from high temperature creep to fracture in Maryland diabase. J. Geophys. Res., 87, 6781–6790.
Carpenter Woods, S., Mackwell, S., and Dyar, D. (2000). Hydrogen in diopside: Diffusion profiles. Amer. Min., 85, 480–487.
Carter, C. B. and Sass, S. L. (1981). Electron diffraction and microscopy techniques for studying grain-boundary structure. J. Am. Ceram. Soc., 64, 335–345.
Chakraborty, S. (1997). Rates and mechanisms of Fe-Mg interdiffusion in olivine at 980° to 1300 °C. J. Geophys. Res., 102, 12 317–12 331.
Chapman, D. S. (1986). Thermal gradients in the continental crust. In The Nature of the Continental Crust, ed. Dawson, J. B., Carswell, D. A., Hall, J. and Wedepohl, K. H., Spec. Publ. Geol. Soc. London, 24, 63–70.
Chen, I. W. and Argon, A. S. (1979). Steady state power-law creep in heterogeneous alloys with microstructures. Acta Metall., 27, 785–791.
Chen, S., Hiraga, T., and Kohlstedt, D. L. (2006). Water weakening of clinopyroxene in the dislocation creep regime. J. Geophys. Res., 111, B08203, doi:10.1029/2005JB003885.
Chester, F. M. (1988). The brittle ductile transition in a deformation-mechanism map for halite. Tectonophys., 154, 125–136.
Chopra, P. N. and Paterson, M. S. (1984). The role of water in the deformation of dunite. J. Geophys. Res., 89, 7861–7876.
Clarke, D. R. (1987). On the equilibrium thickness of intergranular glass phases in ceramic materials. J. Am. Ceram. Soc., 70, 15–22.
Coble, R. (1963). A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys., 34, 1679–1682.
Connerney, J. E. P., Acuña, M. H., Wasilewski, P. J., Ness, N. F., Rème, H., Mazelle, C., Vignes, D., Lin, R. P., Mitchell, D. L., and Cloutier, P. A. (1999). Magnetic lineations in the ancient crust of Mars. Science, 284, 794–798.
Cooper, R. F. and Kohlstedt, D. L. (1982). Interfacial energies in the olivine–basalt system. In High-Pressure Research in Geophysics, Advances in Earth and Planetary Sciences, Vol. 12, ed. Akimota, S. and Manghnani, M. H., Center for Academic Publications Japan, Tokyo, pp. 217–228.
Cooper, R. F. and Kohlstedt, D. L. (1984). Solution-precipitation enhanced creep of partially molten olivine-basalt aggregates during hot-pressing. Tectonophys., 107, 207–233.
Cooper, R. F. and Kohlstedt, D. L. (1986). Rheology and structure of olivine-basalt partial melts. J. Geophys. Res., 91, 9315–9323.
Cooper, R. F., Kohlstedt, D. L., and Chyung, C. K. (1989). Solution-precipitation enhanced creep in solid-liquid aggregates which display a non-zero dihedral angle. Acta Metall., 37, 1759–1771.
Costa, R. and Chakraborty, S. (2008). The effect of water on Si and O diffusion rates in olivine and implications for transport properties and processes in the upper mantle. Phys. Earth Planet. Inter. 166, 11–29, doi:10.1016/j.pepi.2007.10.006.
Craig, C. H. and McKenzie, D. (1986). The existence of a thin low-viscosity layer beneath the lithosphere. Earth Planet. Sci. Lett., 78, 420–426.
Cuffey, K. M., Thorsteinsson, T., and Waddington, E. D. (2000a). A renewed argument for crystal size control of ice sheet strain rates. J. Geophys. Res., 105, 27 889–27 894.
Cuffey, K. M., Conway, H., Gades, A., Hallet, B., Raymond, C. F., and Whitlow, S. (2000b). Deformation properties of subfreezing glacier ice: Role of crystal size, chemical impurities, and rock particles inferred from in situ measurements. J. Geophys. Res., 105, 27 895–27 915.
Daines, M. J. and Kohlstedt, D. L. (1997). Influence of deformation on melt topology in peridotites. J. Geophys. Res., 102, 10 257–10 271.
Dash, J. G., Fu, H. Y., and Wettlaufer, J. S. (1995). The premelting of ice and its environmental consequences. Rep. Prog. Phys., 58, 115–167.
Dieckmann, R. and Schmalzried, H. (1977a). Defects and cation diffusion in magnetite (I). Ber. Bunsenges. Phys. Chem., 81, 344–347.
Dieckmann, R. and Schmalzried, H. (1977b). Defects and cation diffusion in magnetite (II). Ber. Bunsenges. Phys. Chem., 81, 414–419.
Dieckmann, R., Mason, T. O., Hodge, J. D., and Schmalzried, H. (1978). Defects and cation diffusion in magnetite (III). Tracer diffusion of foreign cations as a function of temperature and oxygen potential. Ber. Bunsenges. Phys. Chem., 82, 778–783.
Dimanov, A., Lavie, M. P., Dresen, G., Ingrin, J., and Jaoul, O. (2003). Creep of polycrystalline anorthite and diopside. J. Geophys. Res., 108, 2061, doi:10.1029/2002JB001815.
Dimos, D., Wolfenstine, J., and Kohlstedt, D. L. (1988). Kinetic demixing and decomposition of multicomponent oxides due to a nonhydrostatic stress. Acta Met., 36, 1543–1552.
Dohmen, R., Chakraborty, S., and Becker, H.-W. (2002). Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle. Geophys. Res. Lett., 29, 2030, doi:10.1029/2002GL015480.
Dombard, A. J. and McKinnon, W. B. (2000). Long-term retention of impact crater topography on Ganymede. Geophys. Res. Lett., 27, 3663–3666.
Dombard, A. J. and McKinnon, W. B. (2001). Formation of grooved terrain on Ganymede: Extensional instability mediated by cold, superplastic creep. Icarus, 154, 321–336.
Durham, W. B. and Stern, L. A. (2001). Rheological properties of water ice: Applications to satellites of the outer planets. Annu. Rev. Earth Planet. Sci., 29, 295–330.
Durham, W. B., Heard, H. C., and Kirby, S. H. (1983). Experimental deformation of polycrystalline H2O ice at high pressure and low temperature: Preliminary results. J. Geophys. Res., 88, 377–392.
Durham, W. B., Ricoult, D. L., and Kohlstedt, D. L. (1985). Interaction of slip systems in olivine. In Point Defects in Minerals, ed. Schock, R. N., Washington, DC: American Geophysical Union, pp. 185–193.
Durham, W. B., Kirby, S. H., and Stern, L. A. (1997). Creep of water ices at planetary conditions: A compilation. J. Geophys. Res., 102, 16 293–16 302.
Durham, W. B., Kirby, S. H., and Stern, L. A. (2001). Rheology of ice I at low stress and elevated confining pressure. J. Geophys. Res., 106, 11 031–11 042.
Duval, P., Ashby, M. F., and Anderman, I. (1983). Rate-controlling processes in the creep of polycrystalline ice. J. Phys. Chem., 87, 4066–4074.
Einstein, A. (1906). Eine neue Bestimmung der Molekuldimensionen. Annu. Phys., 19, 289–306.
Einstein, A. (1911). Berichtigung zu meiner Arbeit: eine neue Bestimmung der Molekuldimensionen. Annu. Phys., 34, 591–592.
Elliot, D. (1973). Diffusion flow laws in metamorphic rocks. Geol. Soc. Am. Bull., 84, 2645–2664.
Escartin, J., Hirth, G., and Evans, B. (1997). Effects of serpentinization on the lithospheric strength and style of normal faulting at slow-spreading ridges. Earth Planet. Sci. Lett., 151, 181–189.
Evans, B. and Goetze, C. (1979). The temperature variation of hardness of olivine and its implications for polycrystalline yield stress. J. Geophys. Res., 84, 5505–5524.
Evans, B. and Kohlstedt, D. L. (1995). Rheology of rocks. In Rock Physics and Phase Relations: A Handbook of Physical Constants, ed. Ahrens, T. J., Washington, DC: American Geophysical Union, pp. 148–165.
Faul, U. and Jackson, I. (2006). The effect of melt on the creep strength of polycrystalline olivine (abs.). Eos Trans. AGU, 87, Fall Meet. Suppl., MR11B-0129.
Flack, C. A. and Klemperer, S. L. (1990). Reflections from mantle fault zones around the British Isles. Geology, 18, 528–532.
Gaetani, G. A. and Grove, T. L. (1999). Wetting of olivine by sulfide melt: Implications for Re/Os ratios in mantle peridotite and late-stage core formation. Earth Planet. Sci. Lett., 169, 147–163.
Gerard, O. and Jaoul, O. (1989). Oxygen diffusion in San Carlos olivine. J. Geophys. Res., 94, 4119–4128.
Gifkins, R. C. (1972). Grain boundary sliding and its accommodation during creep and superplasticity. Metall. Trans., 7A, 1225–1232.
Glen, J. W. (1952). Experiments on the deformation of ice. J. Glaciol., 2, 111–114.
Glen, J. W. (1955). The creep of polycrystalline ice. Proc. R. Soc. Lond. Ser. A, 228, 519–538.
Gleason, G. C. and Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics, 247, 1–23.
Goetze, C. (1978). The mechanisms of creep in olivine. Philos. Trans. R. Soc. Lond. A, 288, 99–119.
Goetze, C. and Evans, B. (1979). Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophys. J. R. Astron. Soc., 59, 463–478.
Goldsby, D. L. (2006). Superplastic flow of ice relevant to glacier and ice sheet mechanics. In Glacier Science and Environmental Change, ed. Knight, P., Oxford, Blackwell Publishing, pp. 308–314.
Goldsby, D. L. and Kohlstedt, D. L. (2001). Superplastic flow of ice: Experimental observations. J. Geophys. Res., 106, 11 017–11 030.
Greskovich, C. and Schmalzried, H. (1970). Non-stoichiometry and electronic defects in Co2SiO4 and in CoAl2O4-MgAl2O4 crystalline solutions. J. Phys. Chem. Solids, 31, 639–646.
Groves, G. W. and Kelly, A. (1969). Change of shape due to dislocation climb. Philos. Mag., 19, 977–986.
Gust, M., Goo, G., Wolfenstine, J., and Mecartney, M. (1993). Influence of amorphous grain boundary phases on the superplastic behavior of 3-mol%-yttria- stabilized tetragonal zirconia polycrystals (3Y-TZP). J. Am. Ceram. Soc., 76, 1681–1690.
Hager, B. H. (1991). Mantle viscosity: A comparison of models from postglacial rebound and from the geoid, plate driving forces, and advected heat flux. In Glacial Isostasy, Sea-Level and Mantle Rheology, ed. Sabadini, al., Dordrecht: Kluwer Academic Publishers, pp. 493–513.
Hercule, S. and Ingrin, J., (1999). Hydrogen in diopside: Diffusion, kinetics of extraction-incorporation, and solubility. Am. Min., 84, 1577–1587.
Hermeling, J. and Schmalzried, H. (1984). Tracer diffusion of the Fe cations in olivine (FexMg1–x)2SiO4 (III). Phys. Chem. Miner., 11, 161–166.
Herrick, R. R. and Phillips, R. J. (1992). Geological correlations with the interior density structure of Venus. J. Geophys. Res., 97, 16 017–16 034.
Herrick, D. L. and Stevenson, D. J. (1990). Extensional and compressional instabilities in icy satellite lithospheres. Icarus, 85, 191–204.
Herring, C. (1950). Diffusional viscosity of a polycrystalline solid. J. Appl. Phys., 21, 437–445.
Hier-Majumder, S. and Kohlstedt, D. L. (2006). Role of dynamic grain boundary wetting in fluid circulation beneath volcanic arcs. Geophys. Res. Lett., 33, L08305, doi:10.1029/2006GL025716.
Hier-Majumder, S., Anderson, I. M., and Kohlstedt, D. L. (2005). Influence of protons on Fe-Mg interdiffusion in olivine. J. Geophys. Res., 110, B02202, doi:10.1029/2004JB003292.
Hirth, G. and Kohlstedt, D. L. (1995a). Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime. J. Geophys. Res., 100, 1981–2001.
Hirth, G. and Kohlstedt, D. L. (1995b). Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the dislocation creep regime. J. Geophys. Res., 100, 15 441–15 449.
Hirth, G. and Kohlstedt, D. L. (1996). Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett., 144, 93–108.
Hirth, G. and Kohlstedt, D. L. (2003). Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. In Inside the Subduction Factory, Geophysical Monograph 138, ed. Eiler, J., Washington, D.C., American Geophysical Union, pp. 83–105.
Holness, M. B. (1993). Temperature and pressure dependence of quartz-aqueous fluid dihedral angles: The control of adsorbed H2O on the permeability of quartzites. Earth Planet. Sci. Lett., 117, 363–377.
Holness, M. B. and Graham, C. M. (1991). Equilibrium dihedral angles in the system H2O-CO2-NaCl-calcite, and implications for fluid flow during metamorphism. Contrib. Mineral. Petrol., 108, 368–383.
Holtzman, B. K., Groebner, N. J., Zimmerman, M. E., Ginsberg, S. B., and Kohlstedt, D. L. (2003a). Deformation-driven melt segregation in partially molten rocks. Geochem., Geophys., Geosyst., 4, 8607, doi:10.1029/2001GC000258.
Holtzman, B. K., Kohlstedt, D. L., Zimmerman, M. E., Heidelbach, F., Hiraga, T., and Hustoft, J. (2003b). Melt segregation and strain partitioning: Implications for seismic anisotropy and mantle flow. Science, 301, 1227–1230.
Houlier, B., Cheraghmakani, M., and Jaoul, O. (1990). Silicon diffusion in San Carlos olivine. Phys. Earth Planet. Inter., 62, 329–340.
Hustoft, J. W. and Kohlstedt, D. L. (2006). Metal-silicate segregation in deforming dunitic rocks. Geochem., Geophys., Geosyst., 7, Q02001, doi:10.1029/2005GC001048.
Ito, G., Lin, J., and Graham, D. (2003). Observational and theoretical studies of the dynamics of mantle plume-mid-ocean ridge interaction. Rev. Geophys., 41, 1017, doi:10.1029/2002RG000117.
Iverson, N. R. (2006). Laboratory experiments in glaciology. In Glacier Science and Environmental Change, ed. Knight, P., Oxford, Blackwell Publishing, pp. 449–458.
Jaoul, O. (1990). Multicomponent diffusion and creep in olivine. J. Geophys. Res., 95, 17 631–17 642.
Jaoul, O., Bertran-Alvarez, Y., Liebermann, R. C., and Price, G. D. (1995). Fe-Mg interdiffusion in olivine up to 9 GPa at T = 600–900 °C: Experimental data and comparison with defect calculations. Phys. Earth Planet. Inter., 89, 199–218.
Jin, Z. M., Bai, Q., and Kohlstedt, D. L. (1994). Creep of olivine crystals from four localities. Phys. Earth Planet. Inter., 82, 55–64.
Kaibyshev, O. (1992). Superplasticity of Alloys, Intermetallides, and Ceramics. New York, Springer-Verlag.
Karato, S.-I. (1986). Does partial melting reduce the creep strength of the upper mantle?Nature, 319, 309–310.
Karato, S.-I. and Jung, H. (2003). Effects of pressure on high-temperature dislocation creep in olivine. Philos. Mag., 83, 401–414.
Karato, S.-I., Paterson, M. S., and Fitz Gerald, J. D. (1986). Rheology of synthetic olivine aggregates: Influence of grain size and water. J. Geophys. Res., 91, 8151–8176.
Kaufmann, G. and Lambeck, K. (2002). Glacial isostatic adjustment and the radial viscosity profile from inverse modeling. J. Geophys. Res., 107, 2280, doi:10.1029/2001JB000941.
Kaula, W. M. (1990). Venus: A contrast in evolution to Earth. Science, 247, 1191–1196.
Keefner, J. W., Mackwell, S. J., and Kohlstedt, D. L. (2005). Dunite viscosity dependence on oxygen fugacity (abs.). Lunar Planet. Sci. Conf. XXXVI, 1915.
Kelemen, P. B., Hirth, G., Shimizu, N., Spiegelman, M., and Dick, H. J. B. (1997). A review of melt migration processes in the adiabatically upwelling mantle beneath spreading ridges. Philos. Trans. R. Soc. Lond. A, 355, 283–318.
Keszthelyi, L. and McEwen, A. (1997). Magmatic differentiation of Io. Icarus, 130, 437–448.
Kohlstedt, D. L. (1992). Structure, rheology and permeability of partially molten rocks at low melt fractions. In Mantle Flow and Melt Generation at Mid-Ocean Ridges, Monograph 71, ed. Phipps-Morgan, J., Blackman, D. K. and Sinton, J. M.. Washington, DC: American Geophysical Union. pp. 103–121.
Kohlstedt, D. L. (2002). Partial melting and deformation. In Plastic Deformation in Minerals and Rocks, ed. Karato, S. I. and Wenk, H. R.. Reviews in Mineralogy and Geochemistry, Vol. 51, Mineralogical Society of America, pp. 105–125.
Kohlstedt, D. L. (2006). Water and rock deformation: The case for and against a climb-controlled creep rate. In Water in Nominally Anhydrous Minerals, ed. Keppler, H. and Smyth, J. R.. Reviews in Mineralogy and Geochemistry, Vol. 62, ser. ed. Rosso, J. J., Mineralogical Society of America, pp. 377–396.
Kohlstedt, D. L. (2007). Properties of rocks and minerals: constitutive equations, rheological behavior, and viscosity of rocks. In Treatise on Geophysics, ed. Schubert, G.. Vol. 2.14. Oxford: Elsevier, pp. 389–417.
Kohlstedt, D. L. and Holtzman, B. K. (2009). Shearing melt out of the Earth: An experimentalist's perspective on the influence of deformation on melt extraction. Annu. Rev. Earth Planet. Sci., 37, 561–593, doi:10.1146/
Kohlstedt, D. L. and Hornack, P. (1981). The effect of oxygen partial pressure on creep in olivine. In Anelasticity in the Earth, Geodynamic Series, 4, ed. Stacey, F. D., Paterson, M. S. and Nicolas, A.. Washington, American Geophysical Union, pp. 101–107.
Kohlstedt, D. L. and Mackwell, S. J. (1998). Diffusion of hydrogen and intrinsic point defects in olivine. Z. Phys. Chem., 207, 147–162.
Kohlstedt, D. L. and Mackwell, S. J. (1999). Solubility and diffusion of ‘water’ in silicate minerals. In Microscopic Processes in Minerals, ed. Wright, K. and Catlow, C. R. A., NATO-ASI Series. Dordrecht, Kluwer Academic Publisher, pp. 539–559.
Kohlstedt, D. L. and Ricoult, D. L. (1984). High-temperature creep of olivines. In Deformation of Ceramics II, ed. Tressler, R. E. and Bradt, R. C.. New York, Plenum Publishing, pp. 251–280.
Kohlstedt, D. L. and Zimmerman, M. E. (1996). Rheology of partially molten mantle rocks. Annu. Rev. Earth Planet. Sci., 24, 41–62.
Kohlstedt, D. L., Evans, B., and Mackwell, S. J. (1995). Strength of the lithosphere: Constraints imposed by laboratory experiments. J. Geophys. Res., 100, 17 587–17 602.
Kröger, F. A. and Vink, H. J. (1956). Relation between the concentration of imperfections in crystalline solids. In Solid State Physics 3, ed. Seitz, F. and Turnball, D.. New York, Academic Press, pp. 367–435.
Langdon, T. G. (1994). A unified approach to grain boundary sliding in creep and superplasticity. Acta Met., 42, 2437–2443.
Lange, F. F., Davis, B. I., and Clarke, D. R. (1980). Compressive creep of Si3N4/MgO alloys. Part 1: Effect of composition. J. Mater. Sci., 15, 601–610.
Lee, V., Mackwell, S. J., and Brantley, S. L. (1991). The effect of fluid chemistry on wetting textures in novaculite. J. Geophys. Res., 96, 10 023–10 037.
Liftshitz, I. M. (1963). On the theory of diffusion-viscous flow of polycrystalline bodies. Soviet Phys. JETP, 17, 909–920.
Lopes, R. M. C., Kamp, L. W., Douté, S., Smythe, W. D., Carlson, R. W., McEwen, A. S., Geissler, P. E., Kieffer, S. W., Leader, F. E., Davies, A. G., Barbinis, E., Mehlman, R., Segura, M., Shirley, J., and Soderblom, L. A. (2001). Io in the near-infrared: NIMS results from the Galileo flybys in 1999 and 2000. J. Geophys. Res., 106, 33 053–33 078.
Mackwell, S. J. and Kohlstedt, D. L. (1990). Diffusion of hydrogen in olivine: Implications for water in the mantle. J. Geophys. Res., 95, 5079–5088.
Mackwell, S. J., Kohlstedt, D. L., and Paterson, M. S. (1985). The role of water in the deformation of olivine single crystals. J. Geophys. Res., 90, 11 319–11 333.
Mackwell, S. J., Zimmerman, M., Kohlstedt, D. L., and Scherber, D. (1995). Experimental deformation of dry Columbia diabase: Implications for tectonics on Venus. In Proceedings of the 35th U.S. Symposium on Rock Mechanics, ed. Daemen, J. J. K. and Schultz, R. A., pp. 207–214.
Mackwell, S. J., Zimmerman, M. E., and Kohlstedt, D. L. (1998). High-temperature deformation of dry diabase with application to tectonics on Venus. J. Geophys. Res., 103, 975–984.
McGarr, A. (1984). Scaling of ground motion parameters, state of stress, and focal depth. J. Geophys. Res., 89, 6969–6979.
McGarr, A., Zoback, M. D., and Hanks, T. C. (1982). Implications of an elastic analysis of in situ stress measurements near the San Andreas fault. J. Geophys. Res., 87, 7797–7806.
McKenzie, D. (1984). The generation and compaction of partially molten rock. J. Petrol., 25, 713–765.
McKinnon, W. B. (1999). Convective instability in Europa's floating ice shell. Geophys. Res. Lett., 26, 951–954.
Mei, S. and Kohlstedt, D. L. (2000a). Influence of water on plastic deformation of olivine: 1. Diffusion creep regime. J. Geophys. Res., 105, 21 457–21 469.
Mei, S. and Kohlstedt, D. L. (2000b). Influence of water on plastic deformation of olivine: 2. Dislocation creep regime. J. Geophys. Res., 105, 21 471–21 481.
Mei, S., Bai, W., Hiraga, T., and Kohlstedt, D. L. (2002). Influence of water on plastic deformation of olivine-basalt aggregates. Earth Planet. Sci. Lett., 201, 491–507.
Mibe, K., Fujii, T., and Yasuda, A. (1998). Connectivity of aqueous fluid in the Earth's upper mantle. Geophys. Res. Lett., 25, 1233–1236.
Minarik, W. G., Ryerson, F. J., and Watson, E. B. (1996). Textural entrapment of core-forming melts. Science, 272, 530–533.
Misener, D. J. (1974). Cationic diffusion in olivine to 1400 °C and 35 kbar. In Geochemical Transport and Kinetics, ed. Hofmann, A. W., Giletti, B. J., Yoder, H. S. and Yund, R. A.. Washington, DC: Carnegie Institution of Washington, pp. 117–129.
Montési, L. G. J. and Hirth, G. (2003). Grain size evolution and the rheology of ductile shear zones: From laboratory experiments to postseismic creep. Earth Planet. Sci. Lett., 211, 97–110.
Montési, L. G. J. and Zuber, M. T. (2002). A unified description of localization for application to large-scale tectonics. J. Geophys. Res., 107, doi:10.1029/2001JB000465.
Nabarro, F. (1948). Deformation of crystals by the motion of single ions. In Report on a Conference on the Strength of Solids. London, Physical Society, pp. 75–90.
Nakamura, A. and Schmalzried, H. (1984). On the Fe2+-Mg2+ interdiffusion in olivine (II). Ber. Bunsenges. Phys. Chem., 88, 140–145.
Panasyuk, S. V. and Hager, B. H. (2000). Inversion for mantle viscosity profiles constrained by dynamic topography and the geoid, and their estimated errors. Geophys. J. Int., 143, 821–836.
Passey, Q. R. and Schoemaker, E. M. (1982). Craters and basins on Ganymede and Callisto: Morphological indicators of crustal evolution. In Satellites of Jupiter, ed. Morrison, D. and Matthews, M. S.. Tucson, University of Arizona Press, pp. 379–434.
Paterson, M. S. (1969). The ductility of rocks. In Physics of Strength and Plasticity, ed. Argon, A. S.. Cambridge, MA, MIT Press, pp. 377–392.
Peltier, W. R. (1998). Global glacial isostasy and relative sea level: Implications for solid earth geophysics and climate system dynamics. In Dynamics of the Ice Age Earth, ed. Wu, P.. Switzerland: Trans Tech Publications, pp. 17–54.
Phillips, R. J., Johnson, C. L., Mackwell, S. J., Morgan, P., Sandwell, D. T., and Zuber, M. T. (1997). Lithospheric mechanics and dynamics of Venus. In Venus II, ed. Bougher, S. W., Hunten, D. M. and Phillips, R. J.. Tucson, AZ: University of Arizona Press, pp. 1163–1204.
Morgan, J. P. (1997). The generation of a compositional lithosphere by mid-ocean ridge melting and its effect on subsequent off-axis hotspot upwelling and melting. Earth Planet. Sci. Lett., 146, 213–232.
Pitzer, K. S. and Sterner, S. M. (1994). Equations of state valid continuously from zero to extreme pressures for H2O and CO2. J. Chem. Phys., 101, 3111–3116.
Poirier, J.-P. (1985). Creep of Crystals: High-temperature Deformation Processes in Metals, Ceramics and Minerals. Cambridge, Cambridge University Press.
Post, A. D., Tullis, J., and Yund, R. A. (1996). Effects of chemical environment on dislocation creep of quartzite. J. Geophys. Res., 101, 22 143–22 155.
Raj, R. (1982). Creep in polycrystalline aggregates by matter transport through a liquid phase. J. Geophys. Res., 87, 4731–4739.
Raj, R. and Ashby, M. F. (1971). On grain boundary sliding and diffusional creep. Metall. Trans., 2, 1113–1127.
Ramsey, J. G. (1980). Shear zone geometry: A review. J. Structural Geol., 2, 83–99.
Ranero, C. R., Phipps Morgan, J., McIntosh, K., and Reichert, C. (2003). Bending-related faulting and mantle serpentinization at the Middle America Trench. Nature, 425, 367–373.
Reese, C. C., Solomatov, V. S., and Moresi, L.-N. (1998). Heat transport efficiency for stagnant lid convection with dislocation viscosity: Application to Mars and Venus. J. Geophys. Res., 103, 13 643–13 658.
Regenauer-Lieb, K. and Kohl, T. (2003). Water solubility and diffusivity in olivine: Its role for planetary tectonics. Mineral. Mag., 67, 697–717.
Regenauer-Lieb, K., Yuen, D. A., and Branlund, J. (2001). The initiation of subduction: Criticality by addition of water?Science, 294, 578–580.
Reston, T. J. (1990). Mantle shear zones and the evolution of the northern North Sea basin. Geology, 18, 272–275.
Ricoult, D. L. and Kohlstedt, D. L. (1983). Structural width of low-angle grain boundaries in olivine. Phys. Chem. Minerals, 9, 133–138.
Ricoult, D. L. and Kohlstedt, D. L. (1985). Creep of Co2SiO4 and Fe2SiO4 crystals in a controlled thermodynamic environment. Philos. Mag. A, 51, 79–93.
Roscoe, R. (1952). The viscosity of suspensions of rigid spheres. Brit. J. Appl. Phys., 3, 267–269.
Ross, J. V. and Nielsen, K. C. (1978). High-temperature flow of wet polycrystalline enstatite. Tectonophys., 44, 233–261.
Ross, M. and Schubert, G. (1985). Tidally forced viscous heating in a partially molten Io. Icarus, 64, 391–400.
Ross, M. and Schubert, G. (1986). Tidal dissipation in a viscoelastic planet. J. Geophys. Res., 91, 447–452.
Rubie, D. C., Gessmann, C. K., and Frost, D. J. (2004). Partitioning of oxygen during core formation on the Earth and Mars. Nature, 429, 58–61.
Ruiz, J. and Tejero, R. (2000). Heat flows through the ice lithosphere of Europa. Geophys. Res. Lett., 105, 29 283–29 289.
Ruiz, J. and Tejero, R. (2003). Heat flow, lenticulae spacing, and possibility of convection in the ice shell of Europa. Icarus, 162, 362–373.
Ruoff, A. L. (1965). Mass transfer problems in ionic crystals with charge neutrality. J. Appl. Phys., 36, 2903–2907.
Rutter, E. H. (1976). The kinetics of rock deformation by pressure solution. Philos. Trans. R. Soc. Lond. A283, 203–219.
Rybacki, E. and Dresen, G. (2000). Dislocation and diffusion creep of synthetic anorthite aggregates. J. Geophys. Res., 105, 26 017–26 036.
Ryerson, F. J., Durham, W. B., Cherniak, D. J., and Lanford, W. A. (1989). Oxygen diffusion in olivine: Effect of oxygen fugacity and implications for creep. J. Geophys. Res., 94, 4105–4118.
Schenk, P. M. (2002). Thickness constraints on the icy shells of Galilean satellites from a comparison of crater shapes. Nature, 417, 419–421.
Schmalzried, H. (1978). Reactivity and point defects of double oxides with emphasis on simple silicates. Phys. Chem. Minerals, 2, 279–294.
Schmalzried, H. (1981). Solid State Reactions. Weinheim, Verlag Chemie, pp. 37–57; 174–175.
Schamzlried, H. (1995). Chemical Kinetics of Solids. New York, VCH Publishers, pp. 27–37.
Scott, D. R. and Stevenson, D. J. (1986). Magma ascent by porous flow. J. Geophys. Res., 91, 9283–9296.
Scott, T. and Kohlstedt, D. L. (2006). The effect of large melt fraction on the deformation behavior of peridotite. Earth Planet. Sci. Lett., 246, 177–187.
Segatz, M., Spohn, T., Ross, M. N., and Schubert, G. (1988). Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus, 75, 187–206.
Shelton, G. and Tullis, J. (1981). Experimental flow laws for crustal rocks (abs.). Eos Trans. AGU, 62, 396.
Shewmon, P. G. (1983). Diffusion in Solids. Jenks, OK, J. Williams Book Company, pp. 155–160.
Sibson, R. H. (1974). Frictional constraints on thrust, wrench and normal faults. Nature, 249, 542–544.
Sibson, R. H. (1977). Fault rocks and fault mechanisms. J. Geol. Soc. London, 133, 191–213.
Sockel, H. G. (1974). Defect structure and electrical conductivity of crystalline ferrous silicate. In Defects and Transport in Oxides, ed. Seltzer, M. S. and Jaffe, R. I.. New York, Plenum Press, pp. 341–354.
Solomatov, V. S. and Moresi, L.-N. (2000). Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets. J. Geophys. Res., 105, 21 795–21 818, doi:10.1029/2000JB900197.
Stalder, R. and Skogby, H. (2002). Hydrogen incorporation in enstatite. Eur. J. Mineral., 14, 1139–1144.
Stern, L. A., Durham, W. B., and Kirby, S. H. (1997). Grain-sized-induced weakening of H2O ices I and II and associated anisotropic recrystallization. J. Geophys. Res., 102, 5313–5325.
Tackley, P., Schubert, G., Glatzmaier, G. A., Schenk, P., Ratcliff, J. T., and Matas, J.-P. (2001). Three-dimensional simulations of mantle convection in Io. Icarus, 149, 79–93.
Takei, Y. (1998). Constitutive mechanical relations of solid-liquid composites in terms of grain-boundary contiguity. J. Geophys. Res., 103, 18 183–18 203.
Takei, Y. (2000). Acoustic properties of partially molten media studied on a simple binary system with a controllable dihedral angle. J. Geophys. Res., 105, 16 665–16 682.
Takei, Y. (2001). Stress-induced anisotropy of partially molten media inferred from experimental deformation of a simple binary system under acoustic monitoring. J. Geophys. Res., 106, 567–588.
Takei, Y. (2002). Effect of pore geometry on VP/VS: From equilibrium geometry to crack. J. Geophys. Res., 107(B21), 2043, 10.1029/2001JB000522.
Takei, Y. and Holtzman, B. K. (2009a). Viscous constitutive relations of solid–liquid composites in terms of grain-boundary contiguity: I. Grain boundary diffusion-control model. J. Geophys. Res., 114, B06205, doi:10.1029/2008JB005850.
Takei, Y. and Holtzman, B. K. (2009b). Viscous constitutive relations of solid–liquid composites in terms of grain-boundary contiguity: II. Compositional model for small melt fractions. J. Geophys. Res., 114, B06206, doi:10.1029/2008JB005851.
Takei, Y. and Holtzman, B. K. (2009c). Viscous constitutive relations of solid–liquid composites in terms of grain-boundary contiguity: III. Causes and consequences of viscous anisotropy. J. Geophys. Res., 114, B06207, doi:10.1029/2008JB005852.
Takei, Y. and Shimizu, I. (2003). The effects of liquid composition, temperature, and pressure on the equilibrium dihedral angles of binary solid–liquid systems inferred from a lattice-like model. Phys. Earth Planet. Inter., 139, 225–242.
Tharp, T. M. (1983). Analogies between the high-temperature deformation of polyphase rocks and the mechanical behavior of porous powder metal. Tectonophys., 96, T1-T11.
Toramaru, A. and Fujii, N. (1986). Connectivity of melt phase in a partially molten peridotite. J. Geophys. Res., 91, 9239–9252.
Turcotte, D. L. (1993). An episodic hypothesis for Venusian tectonics. J. Geophys. Res., 98, 17 061–17 068.
Turcotte, D. L. (1995). How does Venus lose heat?J. Geophys. Res., 100, 16 931–16 940.
Turcotte, D. L. and Schubert, G. (1982). Geodynamics: Applications of Continuum Physics to Geological Problems. New York, John Wiley, pp. 163–167; 383–384.
Wal, D., Chopra, P. N., Drury, M., and Fitz Gerald, J. D. (1993). Relationships between dynamically recrystallized grain size and deformation conditions in experimentally deformed olivine rocks. Geophys. Res. Lett., 20, 1479–1482.
Bargen, N. and Waff, H. S. (1986). Permeabilities, interfacial areas and curvatures of partially molten systems: Results of numerical computations of equilibrium microstructures. J. Geophys. Res., 91, 9261–9276.
Mises, R. (1928). Mechanik der plastischen Formänderung von Kristallen. Z. Angew. Math. Mech., 8, 161–185.
Waff, H. S. and Bulau, J. R. (1979). Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions. J. Geophys. Res., 84, 6109–6114.
Waff, H. S. and Faul, U. H. (1992). Effects of crystalline anisotropy on fluid distribution in ultramafic partial melts. J. Geophys. Res., 97, 9003–9014.
Wang, Z. (2002). Effect of pressure and water on the kinetics properties of olivine, Ph.D. thesis, University of Minnesota.
Wang, Z., Hiraga, T., and Kohlstedt, D. L. (2004). Effect of H+ on Fe-Mg interdiffusion in olivine, (Mg,Fe)2SiO4. Appl. Phys. Lett., 85, 209–211.
Wang, L. and Zhang, Y. (1996). Diffusion of the hydrous component in garnet. Am. Min., 81, 706–718.
Watson, E. B. and Brenan, J. M. (1987). Fluids in the lithosphere: 1. Experimentally determined wetting characteristics of CO2-H2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation. Earth Planet. Sci. Lett., 85, 497–515.
Weertman, J. (1968). Dislocation climb theory of steady-state creep. Trans. Am. Soc. Metals, 61, 681–694.
Weertman, J. (1970). The creep strength of the Earth's mantle. Rev. Geophys. Space Phys., 8, 145–168.
Weertman, J. (1983). Creep deformation of ice. Annu. Rev. Earth Planet. Sci., 11, 215–240.
Weertman, J. (1999). Microstructural mechanisms in creep. In Mechanics and Materials: Fundamentals and Linkages, ed. Meyers, M. A., Armstrong, R. W. and Kirchner, H.. New York: John Wiley and Sons, pp. 451–488.
Weertman, J. and Weertman, J. R. (1975). High temperature creep of rock and mantle viscosity. Annu. Rev. Earth Planet. Sci., 3, 293–315.
Woods, S. (2000). The kinetics of hydrogen diffusion in single crystal enstatite. Ph.D. thesis, Pennsylvania State University.
Xu, Y., Zimmerman, M. E., and Kohlstedt, D. L. (2004). Deformation behavior of partially molten mantle rocks. In Rheology and Deformation of the Lithosphere at Continental Margins. MARGINS Theoretical and Experimental Earth Science Series, Vol. I. ed. Karner, G. D., Driscoll, N. W., Taylor, B. and Kohlstedt, D. L.. Columbia University Press, pp. 284–310.
Zahnle, K., Dones, L., and Levison, H. F. (1998). Cratering rates on Galilean satellites. Icarus, 136, 202–222.
Zhao, Y. H., Ginsberg, S. G., and Kohlstedt, D. L. (2004). Solubility of hydrogen in olivine: Effects of temperature and Fe content. Contrib. Mineral. Petrol., 147, 155–161, doi:10.1007/s00410-003-0524-4.
Zhao, Y.-H., Zimmerman, M. E., and Kohlstedt, D. L. (2009). Effect of iron content on the creep behavior of olivine: 1. Anhydrous conditions, Earth Planet. Sci. Lett. 287, 229–240, doi:10.1016/j.epsl.2009.08.006.
Zimmerman, M. E. and Kohlstedt, D. L. (2004). Rheological properties of partially molten lherzolite. J. Petrol., 45, 275–298.
Zimmerman, M. E., Zhang, S., Kohlstedt, D. L., and Karato, S. (1999). Melt distribution in mantle rocks deformed in shear. Geophys. Res. Lett., 26, 1505–1508.