Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2018
  • Online publication date: February 2018

1 - Space Age Studies of Planetary Rings

from I - Introductory Material

Summary

INTRODUCTION: THE ALLURE OF THE RINGED PLANETS

One of the most enduring symbols of space exploration is a planet surrounded by a ring. This symbol inspires a celestial context: nothing on Earth is like it. It has been a wonderful surprise that the ringed planets are just as beautiful and scientifically compelling seen close up. Furthermore, the ringed planets are not just objects of beauty, but complicated physical systems that provide a local laboratory and analogy for other cosmic systems like galaxies and planet-forming disks. For a general review, see Esposito (2014). For more details, see the individual chapters that follow in this book.

We now know that planetary rings, once thought unique to the planet Saturn, exist around all the giant planets. These rings are not solid objects, but are composed of countless particles with sizes from specks of dust to small moons. For each planet, the rings are quite different. Jupiter's ring is thin and composed of dust-like small particles. Saturn's rings are broad, bright, and opaque. Uranus has narrow, dark rings among broad lanes of dust that are invisible from Earth. Neptune's rings include incomplete arcs restricted to a small range of their circumference. All rings lie predominantly within their planet's Roche limit, where tidal forces would destroy a self-gravitating fluid body. They are also within the planet's magnetosphere and, in the case of Uranus, they are within the upper reaches of the planetary atmosphere.

The common occurrence of ring material around the outer planets is one of the major scientific findings of the past 40 years. The new ring systems were discovered by both spacecraft and ground-based observers, often surprising us by contradicting our expectations. The rings’ appearance and composition differ among the various planets, and likewise within each ring system. The broadest set of rings and the most identified processes are found around the planet Saturn, which has been scrutinized by the US/European Cassini space mission since 2004.

Related content

Powered by UNSILO
Albers, N. and Spahn, F. (2006). The influence of particle adhesion on the stability of agglomerates in Saturn's rings. Icarus, 181, 292-301.
Andrews, J. P. (1930). Experiments on impact. Proc. Phys. Soc, 43, 8-17.
Baillie, K., Colwell, J. E., Lissauer, J. J., Esposito, L. W., and Srem-cevic M. (2011). Waves in Cassini UVIS stellar occultations 2. Waves in the C ring. Icarus, 216, 1, 292-308.
Barbara, J. M. and Esposito, L. W. (2002). Moonlet collisions and the effects of tidally modified accretion in Saturn's F ring. Icarus, 160, 161-71.
Bodrova, A., Schmidt, J., Spahn, E., et al. (2012). Adhesion and col-lisional release of particles in dense planetary rings. Icarus, 218, 60-8.
Borderies, N. (1989). Ring dynamics. Celestial Mechanics and Dynamical Astronomy, 46, 207-30.
Borderies, N., Goldreich, P., and Tremaine, S. D. (1982). Sharp edges of planetary rings. Nature, 299, 209-11.
Borderies, N., Goldreich, P., and Tremaine, S. D. (1984). Unsolved problems in planetary ring dynamics. In Planetary Rings, eds. R., Greenberg and A., Brahic. Tucson, AZ: University of Arizona Press, pp. 713-34.
Borderies, N., Goldreich, P., and Tremaine, S. D. (1985). A granular flow model for dense planetary rings. Icarus, 63, 406-20.
Borderies, N., Goldreich, P., and Tremaine, S. (1989). The formation of sharp edges in planetary rings by nearby satellites. Icarus, 80, 344.
Bradley, E. T., Colwell, J. E., Esposito, L. W., et al. (2010). Far ultraviolet spectral properties of Saturn's Rings from Cassini UVIS. Icarus, 206, 458-66.
Braga-Ribas, E., Sicardy, B., Ortiz, J. L. et al. (2014). A ring system detected around Centaur (10199) Chariklo. Nature, 508, 72-5.
Brahic, A. (1975). A numerical study of a gravitating system of colliding particles: applications to the dynamics of Saturn's rings and to the formation of the solar system. Icarus, 25, 452-58.
Brahic, A. (1977). Systems of colliding bodies in a gravitational field: numerical simulation of the standard model. Astron. Astrophys., 54, 895-907.
Brahic, A. and Ferrari, C. (1992). Planetary rings: Observational constraints and collision dynamics. In Chaos, Resonance and Collective Dynamical Phenomena in the Solar System, ed. S., Ferraz-Mello. International Astronomical Union, 152 Netherlands: Springer Netherlands.
Bridges, F. G., Hatzes, A. P., and Lin, D. N. C. (1984). Structure, stability and evolution of Saturn's rings. Nature, 309, 333—335.
Brophy, T. G. and Esposito, L. W.(1989). Simulation of collisional transport processes and the stability of planetary rings. Icarus, 78, 181-205.
Brown, R. H., Baines, K. H., Bellucci, G. et al. (2006). Observations in the Saturn System during approach and orbital insertion, with Cassini's Visual and Infrared Mapping Spectrometer (VIMS). A&A, 446, 707-16.
Burns, J. A. (1999). Planetary rings. In The New Solar System, eds. J. Kelly, Beatty C. Collins, Petersen, and A., Chaikin. Sky Publishing Corporation and Cambridge University Press.
Burns, J. A., Showalter, M. R., and MorfiU, G. E. (1984). The ethereal rings of Jupiter and Saturn. In Planetary Rings, eds. R., Greenberg and A., Brahic. Tucson, AZ: University of Arizona Press, pp. 200—72.
Burns, J. A., Hamilton, D. P., and Showalter, M. R. (2001). Dusty rings and circumplanetary dust: observations and simple physics. In Interplanetary Dust, eds. E., Griin., B. A. S. G., ustafson., S. F., Dermott., and H., Fechtig.. Berlin: Springer-Verlag, pp. 641-725.
Canup, R. M. (2010). Origin of Saturn's rings and inner moons by mass removal from a lost Titan-sized satellite. Nature, 468, 943-6.
Canup, R. M. and Esposito, L. W.(1995). Accretion in the Roche zone: Coexistence of rings and ringmoons. Icarus, 113, 331—52.
Chambers, L. S., Cuzzi, J. N., Asphaug, E., et al. (2008). Hydrody-namical and radiative transfer modeling of meteoroid impacts into Saturn's rings. Icarus, 194, 623—35.
Charnoz, S., Morbidelli, A., Dones, L. H., et al. (2008). Did Saturn's rings form during the late heavy bombardment? Icarus, 199, 413—28.
Charnoz, S., Dones, L., Esposito, L. W., et al., (2009). Origin and evolution of Saturn's ring system. In Saturn from Cassini-Huygens, eds. M. K., Dougherty L. W., Esposito, and T., Krimigis. Springer Netherlands, pp. 535-73.
Clark, R. N., Swayze, G. A., Carlson, R., et al. (2014). Spectroscopy from Space. In Spectroscopic Methods in Mineralogy and Material Sciences, eds. G., Henderson., D. R., Neuville., and R. T. D., owns.. Chantilly, VA: Mineralogical Society of America, 78, Chapter 10, pp. 399-446.
Colwell, J. E. and Esposito, L. W.(1992). Origins of the rings of Uranus and Neptune. I. Statistics of satellite disruptions. J. Geophys. Res., 97, 10, 227-1.
Colwell, J. E., Esposito, L. W., and Sremčević, M. (2006). Self-gravity wakes in Saturn's A ring measured by stellar occultations from Cassini. GRL, 33, L07201.
Colwell, J. E., Esposito, L. W., Sremčević, M., Stewart, G. R., and McClintock, W. E.(2007). Self-gravity wakes and radial structure of Saturn's Bring. Icarus, 190, 127-4.
Colwell, J. E., Nicholson, P. D., Tiscareno, M. S., et al. (2009). The structure of Saturn's rings. In Saturn From Cassini-Huygens, eds. M., Dougherty et al. 13, 375-12. Dordrecht, Netherlands: Springer-Verlag.
Colwell, J. E., Esposito, L. W., Jerousek, R. G., et al. (2010). Cassini UVIS stellar occultation observations of Saturn's rings. The Astronomical Journal, 140, 6.
Crida, A. and Charnoz, S. (2012). Formation of regular satellites from ancient rings in the solar system, Science, 338, 1196—212.
Cuzzi, J. N. (1985). Rings of Uranus -Not so thick, not so black. Icarus, 63, 312-16.
Cuzzi, J. N. and Estrada, P. R. (1998). Compositional evolution of Saturn's rings due to meteoroid bombardment. Icarus, 132, 1-35.
Cuzzi, J. N., Lissauer, J. J., Esposito, L. W., et al. (1984). Saturn's rings: properties and processes. In Planetary Rings, eds. R., Greenberg and A., Brahic. Tucson, AZ: University of Arizona Press, pp. 73-199.
Cuzzi, J. N., Colwell, J. E., Esposito, L. W., et al. (2002). Saturn's rings: Pre-Cassini status and mission goals. Space Science Reviews, 118, 209-51.
Cuzzi, J., Clark, R., Filacchione, G., et al. (2009). Ring particle composition and size distribution. In Saturn From Cassini-Huygens, eds. M., Dougherty et al. 15, 459-509. Dordrecht, Netherlands: Springer-Verlag.
Daisaka, H., Tanaka, H., and Ida, S. (2001). Viscosity in a dense planetary ring with self-gravitating particles. Icarus, 154, 296-312.
Deau, E. (2012). Physical properties of the Saturn's rings with the opposition effect. EGU General Assembly, Geophysical Research Abstracts, 14, 7523-3.
Degiorgio, K., Ferrari, C., Rodriguez, S., and Brahic, A. (2011). Opposition effect of Saturn's rings. Hints of ring physical properties. EPSC-DPS Joint Meeting 2011, 2-7 October, Nantes, France, p. 732.
de Pater, I. and Lissauer, J. J. (2010). Planetary Sciences, 2nd Revised Edition. Cambridge, UK: Cambridge University Press.
Dilley, J. P. and Crawford, D. (1996). Mass dependence of energy loss in collisions of icy spheres: an experimental study. J. Geophys. Res., 101, 9267-70.
Dones, H. L. (1991). A recent cometary origin for Saturn's rings? Icarus, 92, 194-203.
Durisen, R. H. (1984). Transport effects due to particle erosion mechanisms. In Planetary Rings, eds. R., Greenberg and A., Brahic. Tucson, AZ: University of Arizona Press, pp. 416-16.
Durisen, R. H., Bode, P. W., Dyck, S. G., et al. (1996). Ballistic transport in planetary ring systems due to particle erosion mechanisms. III. Torques and mass loading by meteoroid impacts. Icarus, 124, 220-36.
Elliot, J. L. (1979). Stellar occultation studies of the solar system. Ann. Rev. Astrophys., 17, 445-75.
Elliott, J. P. and Esposito, L. W. (2011). Regolith depth growth on an icy body orbiting Saturn and evolution of bidirectional reflectance due to surface composition changes. Icarus, 212, 268-74.
Elliot, J. L., Dunham, E. W., and Mink, D. J. (1977). The rings of Uranus. Nature, 267, 328-30.
Esposito, L. W. (2010). Composition, structure, dynamics, and evolution of Saturn's rings. Annu. Rev. Earth Planet. Sci., 38, 1—575.
Esposito, L. W. (2014). Planetary Rings: A Post-Equinox View. Cambridge, UK: Cambridge Planetary Science Series, Cambridge University Press.
Esposito, L. W. and House, L. L. (1978). Radiative transfer calculated from a Markov-chain formalism. Astrophys. J., 219, 1058—67.
Esposito, L. W. and Lumme, K. (1977). The tilt effect for Saturn's rings. Icarus, 31, 157-67.
Esposito, L. W., O'CaUaghan, M., and West, R. A. (1983). The structure of Saturn's rings: implications from the Voyager stellar occultation. Icarus, 56, 439—52.
Esposito, L. W., Colwell, J. E., and Canup, R. M. (1997). History of Neptune's ring arcs. Bull. Am. Astron. Soc, 29th DPS Meeting Abstracts, 29, 17. 12.
Esposito, L. W., Colwell, J. E., and McClintock, W. E. (1998). Cassini UVIS observations of Saturn's rings. Planet. Space Sci., 46, 1221-35.
Esposito, L. W., Colwell, J. E., Larsen K., et al. (2005). Ultra-Violet Imaging Spectroscopy shows an active Saturn system. Science, 307, 1251-55.
Esposito, L. W., Meinke, B. K., Colwell, J. E., Nicholson, P. D., and Hedman, M. M. (2008). Moonlets and clumps in Saturn's F ring. Icarus, 194, 1, 278-89.
Esposito, L. W., Albers, N., Meinke, B. K., et al. (2012). A predator-prey model for moon-triggered clumping in Saturn's rings. Icarus, 217, 1, 103-14.
Foryta, D. W. and Sicardy, B. (1996). The dynamics of the Neptunian Adams ring's arcs. Icarus, 123, 129.
French, R. G. and Nicholson, P. D. (2000). Saturn's rings II. Particle sizes inferred from stellar occultation data. Icarus, 145, 502—23.
French, R. G., Nicholson, P. D., Porco, C. C., and Marouf, E. A. (1991). Dynamics and structure of the Uranian rings. In Uranus, eds. J. T. B., ergstralh., E. D. M., iner., and M. S., Matthews.. Tucson, AZ: University of Arizona Press, pp. 410-68.
French, R. S., Showalter, M. R., Sfair, R., et al. (2012). The brightening of Saturn's F ring. Icarus, 219, 181-93.
Gehrels, T., Baker, L. R., Beshore, E., et al. (1980). Imaging photopo-larimeter on Pioneer Saturn. Science, 207, 434-39.
Goldreich, P. and Rappaport, N. (2003a). Chaotic motions of Prometheus and Pandora. Icarus, 162, 391—9.
Goldreich, P. and Rappaport, N. (2003b). Origin of chaos in the Prometheus-Pandora system. Icarus, 166, 320-7.
Goldreich, P. and Tremaine, S. D. (1978). The velocity dispersion in Saturn's rings. Icarus, 34, 227—39.
Goldreich, P. and Tremaine, S. D. (1979). Toward a theory for the Uranian rings. Nature, 277, 97-9.
Gor'kavyi, N. N. and Fridman, A. M. (1990). Reviews of topical problems: The physics of planetary rings. Soviet Physics Uspekhi, 33, 95-133.
Greenberg, R. and Brahic, A. (eds.) (1984). Planetary Rings. Tucson, AZ: University of Arizona Press.
Gresh, D. L. (1990). Voyager radio occultation by the Uranian rings: structure, dynamics and particle size. Ph. D. thesis, Stanford University, Palo Alto, CA.
Guimaraes, A. H. E., Albers, N., Spahn, F. et al. (2012). Aggregates in the strength and gravity regime: Particles sizes in Saturn's rings. Icarus, 220, 660-78.
Hahn, J. M., Spitale, J. N. and Porco, C. C. (2009). Dynamics of the sharp edges of broad planetary rings. ApJ, 699, 1, 686—710.
Hameen-Anttila, K. A. (1978). An improved and generalized theory for the collisional evolution of Keplerian systems. Astrophys. Space Sci., 58, 477-519.
Hameen-Anttila, K. A. (1981). Quasi-equilibrium in collisional sys-tems. Moon Planets, 25, 477-506.
Hameen-Anttila, K. A. (1982). Saturn's rings and bimodality of Keplerian systems. Moon Planets, 26, 171-96.
Hansen, J. E. and Travis, L. D. (1974). Light scattering in planetary atmospheres. Space Sci. Rev, 16, 527-610.
Hapke, B. W., Nelson, R. M., Brown, R. H., et al. (2006). Cassini observations of the opposition effect of Saturn's rings. 2 Interpretation: Plaster of Paris as an analog of ring particles. Lunar and Planetary Science XXXVII.
Harbison, R. A., Nicholson, P. D., and Hedman, M. W. (2013). The smallest particles in Saturn's A and C rings. Icarus, 226, 1225-40.
Hatzes, A. P., Bridges, F. G., and Lin, D. N. C. (1988). Collisional properties of ice spheres at low impact velocities. Mon. Not. R. Astron. Soc, 231, 1091-115.
Hedman, M. M. (2013). Planetary ring dynamics. In Celestial Mechanics, in Encyclopedia of Life Support Systems (EOLSS), ed. A., Celletti. Developed under the auspices of UNESCO. Oxford, UK: Eolss Publishers.
Hedman, M. M. and Nicholson, P. D. (2016). The B-ring's surface mass density from hidden density waves: Less than meets the eye? Icarus, in press.
Hedman, M. M., Nicholson, P. D., Salo, H., et al. (2007). Self-gravity wake structures in Saturn's A ring revealed by Cassini VIMS. Astron. J., 133, 2624-29.
HeiBelmann, D., Blum, J., Fraser, H. J., and Wolling, K. (2010). Micro-gravity experiments on the collisional behavior of Saturnian ring particles. Icarus, 206, 424—30.
Hertz, H. (1881) Ueber die Beriihrung fester elastischer Korper, J. f. reineu. angew. Mathematik, 92, 156.
Hyodo, R. and Ohtsuki, K. (2014). Collisional disruption of gravitational aggregate in the tidal environment. ApJ, 787, 56-69.
Ip, W. H. (2005). An update on the ring exosphere and plasma disc of Saturn. Geophys. Res. Lett, 32, L13204.
Irvine, W. M. (1975). Multiples scattering in planetary atmospheres. Icarus, 25, 175.
Jerousek, R. G., Colwell, J. E., and Esposito, L. W. (2011). Morphology and variability of the Titan ringlet and Huygens ringlet edges. Icarus, 216, 1, 280-91.
Jerousek, R. G., Colwell, J. E. Esposito, L. W., et al. (2016). Small particles and self-gravity wakes in Saturn's rings from UVIS and VIMS stellar occultations. Icarus, 279, 36-50.
Johnson, R. E., Luhmann, J. G., Tokar, R. L., et al. (2006). Production, ionization and redistribution of O2 in Saturn's ring atmosphere. Icarus, 180, 393-402.
Karjalainen, R. (2007). Aggregate impacts in Saturn's rings. Icarus, 189, 523-37.
Karjalainen, R. and Salo, H. (2004). Gravitational accretion of particles in Saturn's rings. Icarus, 172, 328—48.
Kemeny, J. and Snell, J. (1960). Finite Markov Chains. Princeton, NJ: Van Nostrand.
Kenworthy, M. (2016). Rings of a super Saturn. Sci. Am., 314, 34-41.
Landau, L. D. and Lifshitz, E. M. (1969). Statistical Physics, vol. 5. Menlo Park, CA: Addison-Wesley.
Lane, A. L., Hord, C. W., West, R. A., et al. (1982). Photopolarime-try from Voyager 2: preliminary results on Saturn, Titan, and the rings. Science, 215, 537-13.
Latter, H. N., Ogilvie, G. I., and Chupeau, M. (2012). The ballistic transport instability in Saturn's rings I. Formalism and linear theory. Mon. Not. R. Astron. Soc, 427, 2336-48.
Leinhardt, Z. M. and Stewart, S. T. (2011). Collisions between gravity-dominated bodies 1. Outcome regimes and scaling laws. ApJ, 745, 79.
Lewis, M. C. and Stewart, G. R. (2000). Collisional dynamics of perturbed planetary rings. Astron. J., 120, 3295—310.
Lewis, M. C. and Stewart, G. R. (2009). Features around embedded moonlets in Saturn's rings: the role of self-gravity and particle size distribution. Icarus, 199, 387-412.
Lin, D. N. C. and Papaloizou, J. (1979). Tidal torques on accretion disks in binary systems with extreme mass ratios. Mon. Not. Roy. Astron. Soc, 186, 799-812.
Lynden-Bell, D. and Pringle, J. E. (1974). The evolution of viscous discs and the origin of the nebular variables. Mon. Not. R. Astron. Soc, 168, 603-37.
Mamajek, E. E., Quillen, A. C., Pecaut, M. J., et al. (2012). Planetary constriction zones in occultation: Discovery of an extrasolar-ring system transiting a young Sun-like star and future prospects for detecting eclipses by circum secondary and circumplanetary disks. Astron. J., 143, 72.
Meinke, B. K., Esposito, L. W., Albers, N., et al. (2012). Classification of F ring features observed in Cassini UVIS occultations. Icarus, 218, 545.
Miner, E. D., Wessen, R. R., and Cuzzi, J. N. (2007). Planetary Ring Systems. Chichester, UK: Springer-Praxis Publishing Ltd.
Mishchenko, M. I. (1993). On the nature of the polarization opposition effect exhibited by Saturn's rings. Astrophys. J., 411, 351-61.
Moore, P. (1995). The Planet Neptune. Hoboken, NJ: John Wiley.
Murray, C. D. and Dermott, S. F. (1999). Solar System Dynamics. Cambridge, UK: Cambridge University Press.
Murray, C. D., Cooper, N. J., Williams, G. A., et al. (2014). The discovery and dynamical evolution of an object at the outer edge of Saturn's A ring. Icarus, 236, 165-8.
Nicholson, P. D. and Dones, L. R. (1991). Planetary rings. Rev. Geophys., 29 (suppl.), 313-27.
Nicholson, P. D., Showalter, M. R., Dones, L., et al. (1996). Observations of Saturn's ring-plane crossings in August and November 1995. Science, 272, 509-515.
Nicholson, P. D., Hedman, M. M., Clark, R. N., et al. (2008). A close look at Saturn's rings with Cassini VIMS. Icarus, 193, 182—212.
Ockert-BeU, M. E., Burns, J. A., Daubar, I. J., et al. (1999). The structure of Jupiter's ring system as revealed by the Galileo imaging experiment. Icarus, 138, 188-213.
Ortiz, J. L., Duffard, R., Pinila-Alonso, N., et al. (2015). Possible ring material around centaur (2060) Chiron. A&A, 576, A18.
Pollack, J. B. (1975). The rings of Saturn. Space Science Reviews, 18, 3-93.
Porco, C. C. and Goldreich, P. (1987). Shepherding to the Uranian rings. I. Kinematics. Astron. J., 93, 724-29.
Porco, C. C. and Hamilton, D. P. (2007). Planetary rings. In Encyclopedia of the Solar System, 2nd Edition, eds. L. -A. M., cFadden., P. W., eissman., and T. J., ohnson.. San Diego, CA: Academic Press, 503-18.
Porco, C. C., Baker, E., Barbara, J., et al. (2005). Cassini Imaging Science: initial results on Saturn's rings and small satellites. Science, 25, 307, 1226-36.
Poulet, F. and Sicardy, B. (2001). Dynamical evolution of the Prometheus—Pandora system. Mon. Not. Roy. Astron. Soc, 322, 343-55.
Rehnberg, M. E., Esposito, L. W., Brown, Z. L. et al. (2016). A traveling feature in Saturn's rings. Icarus, 279, 100-8.
Rein, H. and Latter, H. N. (2013). Large scale N-body simulations of the viscous overstability in Saturn's rings, Mon. Not. R. Astron. Soc, 431, 145-58.
Rieder, S., and Kenworthy, M. A. (2016). Constraints on the size and dynamics of the J14076 ring system. A&A, 596, A9.
Robbins, S. J., Stewart, G. R., Lewis, M. C., et al. (2010). Estimating the masses of Saturn's A and Brings from high-optical depth N-body simulations and stellar occultations. Icarus, 206, 2, 431-5.
Ropke, G. (1987). Statistische Mechanik fur das Nichtgleichgewicht. Berlin: VEB Deutscher Verlag der Wissenschaften.
Ruprecht, J. D., Bosh, A. S., Person, M. J., et al. (2015). 29 November 2011 stellar occultation by 2060 Chiron: Symmetric jet-like features. Icarus, 252, 271.
Salmon, J., Charnoz, S., Crida, A., and Brahic, A. (2010). Long-term and large-scale viscous evolution of dense planetary rings. Icarus, 209, 2, 771-85.
Salo, H. (1995). Simulations of dense planetary rings. III. Self-gravitating identical particles. Icarus, 111, 287-312.
Salo, H. (2001). Numerical simulations of collisional dynamics of planetary rings. In Granular Gases, eds. T., Poschel and S., Luding. Berlin: Springer-Verlag, pp. 330—49.
Salo, H. (2012). Simulating the formation of fine-scale structure in Saturn's rings. Progress of Theoretical Physics, Supplement No. 195.
Salo, H. and Karjalainen, R. (2003). Photometric modeling of Saturn's rings. I. Monte Carlo method and the effect of nonzero volume filling factor. Icarus, 164, 428-60.
Salo, H. and Schmidt, J. (2010). N-body simulations of viscous instability of planetary rings. Icarus, 206, 390-409.
Salo, H. and Schmidt, J. (2011). Photometric modeling of viscous over-stability in Saturn's rings. European Planetary Science Congress, 6, 1771.
Salo, H., Schmidt, J., and Spahn, F. (2001). Viscous overstability in Saturn's Bring. I. Direct simulations and measurement of transport coefficients. Icarus, 153, 295—315.
Salo, H., Karjalainen, R., and French, R. G. (2004). Photometric modeling of Saturn's rings. II. Azimuthal asymmetry in reflected and transmitted light. Icarus, 170, 70-90.
Schlichting, H. E. and Chang, P. (2011). Warm Saturns: On the nature of rings of extrasolar planets that reside inside the Ice Line. Astrophys. J., 734, 117.
Schmidt, J., Salo, H., Spahn, F., and Petzschmann, O. (2001). Vis-cous overstability in Saturn's B-ring. II. Hydrodynamic theory and comparison to simulations. Icarus, 153, 316-31.
Schmidt, J., Ohtsuki, K., Rappaport, N., Salo, H., Spahn, F. (2009). Dynamics of Saturn's dense rings. In Saturn From Cassini-Huygens, eds. M., Dougherty et al. Dordrecht, Netherlands: Springer-Verlag, 14, 413-58.
Schmit, U. and Tscharnuter, W. M. (1995). A fluid dynamical treatment of the common action of self-gravitation, collisions, and rotation in Saturn's Bring. Icarus, 115, 304—19.
Schmit, U. and Tscharnuter, W. M. (1999). On the formation of the fine-scale structure in Saturn's Bring. Icarus, 138, 173-87.
SeiB, M., Schmidt, J., and Spahn, F. (2011). How does Saturn's moons influence the velocity dispersion in the A ring. EPSC-DPS Joint Meeting, 6, 1408-9.
Shepelyansky, D. L., Pikovsky, A. S., Schmidt, J., and Spahn, F. (2009). Synchronization mechanism of sharp edges in rings of Saturn. Mon. Not. R. Astron. Soc, 395, 1934-0.
Smith, B. A., Soderblom, L. A., Johnson, T. V. et al. (1979). The Jovian system through the eyes of Voyager 1. Science, 204, 915—972.
Smith, B. A., Soderblom, L. A., Beebe, R. et al. (1981). Encounter with Saturn: Voyager 1 imaging science results. Science, 212, 163—191.
Smith, B. A., Soderblom, L. A., Batson, L. et al. (1982). A new look at the Saturn system: The Voyager 2 images. Science, 215, 504-537.
Smith, B. A., Soderblom, L. A., Banfield, D. et al. (1989). Voyager 2 at Neptune: Imaging Science Results. Science, 144-49.
Spahn, E., Schmidt, J., Petzschmann, O., Salo, H. (2000). Stability analysis of a Keplerian disk of granular grains: Influence of thermal diffusion. Icarus, 145, 657-60.
Spitale, J. N. and Porco, C. C. (2010). Detection of free unstable modes and massive bodies in Saturn's outer Bring. Astron. J., 140(6), 1747-57.
Srama, R., Kempf, S., Moragas-Klostermeyer, G., et al. (2006). In situ dust measurements in the inner Saturnian system. Planet. Space Sci, 54, 967-87.
Sremčević, M., Krivov, A. V., Kriiger, H., and Spahn, F. (2005). Impact-generated dust clouds around planetary satellites: Model versus Galileo data. Planetary and Space Science, 53, 625—41.
Stewart, G. R., Lin, D. N. C., and Bodenheimer, P. (1984). Collision-induced transport processes in planetary rings. In Planetary Rings, eds. R., Greenberg and A., Brahic. Tucson, AZ: University of Arizona Press, pp. 447—512.
Supulver, K. D., Bridges, E. G., and Lin, D. N. C. (1995). The coefficient of restitution of ice particles in glancing collisions: Experimental results forunfrosted surfaces. Icarus, 113, 188—99.
Thomas, P. C. (1989). The shapes of small satellites. Icarus, 11, 248-74.
Thomas, G. E. and Stamnes, K. (1999). Radiative Transfer in the Atmosphere and Ocean. Cambridge, UK: Cambridge University Press.
Thomson, E. S., Marouf, E. A., Tyler, G. L., French, R. G., and Rappaport, N. J. (2007). Periodic micro structure in Saturn's rings A and B. Geophys. Res. Lett., 34, L24203.
Tiscareno, M. S. (2013). Planetary rings. In Planets, Stars and Stellar Systems, eds. T. O., swalt., L. F., rench., and P., Kalas.. Dordrecht: Springer Netherlands.
Tiscareno, M. S., Burns, J. A., Nicholson, etal. (2007). Cassini imaging of Saturn's rings: II. A wavelet technique for analysis of density waves and other radial structure in the rings. Icarus, 189, 14-34.
Tiscereno, M. S., Burns, J. A., Hedman, M. M., et al. (2008). The population of propellers in Saturn's A ring. Astron. J., 135(3), 1083-91.
Toomre, A. (1964). On the gravitational stability of a disk of stars. ApJ, 139, 1217-1238.
Trulsen, J. (1971). Towards a theory of jet streams. Astrophys. Space Sci., 12, 329-48.
Trulsen, J. (1972a). Numerical simulation of jet streams. I. The three-dimensional case. Astrophys. Space Sci., 17, 241—62.
Trulsen, J. (1972b). Numerical simulation of jet streams. II. The two-dimensional case. Astrophys. Space Sci., 18, 3-20.
van de Hulst, H. C. (1957). Light Scattering by Small Particles. New York: John Wiley; (1981). Light Scattering by Small Particles, Revised Edition. New York: Dover Publications.
van Helden, A. (1984). Saturn through the Telescope: A Brief Historical Survey. In Saturn, eds. T., Gehrels and M. S., Mathews. Tucson, AZ: University of Arizona Press, 23-43.
Weidenschilling, S. J., Chapman, C. R., Davis, D. R., and Greenberg, R. (1984). Ring particles: collisional interactions and physical nature. In Planetary Rings, eds. R., Greenberg and A., Brahic. Tucson, AZ: University of Arizona Press, pp. 367-415.
Zebker, H. A., Tyler, G. L., and Marouf, E. A. (1983). On obtaining the forward phase functions of Saturn ring features from radio occultation observations. Icarus, 56, 209-28.