Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 6
  • Print publication year: 2018
  • Online publication date: February 2018

18 - The Origin of Planetary Ring Systems

from III - Ring Systems by Type and Topic

Summary

INTRODUCTION

The origin of planetary rings is one of the least understood processes related to planet formation and evolution. Whereas rings seem ubiquitous around giant planets, their great diversity of mass, structure, and composition is a challenge for any formation scenario. Satellite destruction by cometary impacts and meteoroid bombardment seem to be key processes leading to the very low-mass rings of Uranus, Neptune, and Jupiter. By contrast, moon destruction is unlikely to have produced Saturn's much more massive rings recently, so they still represent a strong challenge for astronomers.

Recent advances in our understanding of ring and satellite formation and destruction suggest that these processes are closely interconnected, so that rings and satellites may be two aspects of the same geological system. Indeed, rings may not be only beautiful planetary ornaments, but, possibly, an essential step in the process of satellite formation, at least for the small and mid-sized moons. These recent advances have taken advantage of the many tantalizing results from the Cassini mission, as well as advances in numerical simulation techniques. However, no single theory seems able to explain the origin of the different planetary rings known in our solar system, and it now seems evident that rings may result from a variety of processes like giant collisions, tidal stripping of comets or satellites, as well as planet formation itself. Understanding rings appears to be an important step toward understanding the origin and evolution of planetary environments.

Most work on the origin of rings has been devoted to Saturn, and somewhat less to the rings of Jupiter, Uranus, and Neptune. So our chapter will be mainly focused on the case of Saturn. However, processes that are common to all rings or particularly to those of Saturn will be clearly delineated. In order to build any theory of ring formation it is important to specify physical processes that affect the long-term evolution of rings, as well as to describe the different observations that any ring formation model should explain. This is the topic of Section 18.2. In Section 18.3, we focus our attention on Saturn's rings and their main properties, and then discuss the pros and cons of a series of ring formation models. We also discuss the link between rings and satellites. In Section 18.4, we extend the discussion to the other giant planets (Jupiter, Uranus, and Neptune).

Related content

Powered by UNSILO
Aggarwal, H. R., and Oberbeck, V. R. 1974. Roche limit of a solid body. Astrophys. J., 191, 577–588.
Alibert, Y., Mousis, O., and Benz, W. 2005. Modeling the Jovian subnebula. I. Thermodynamic conditions and migration of protosatellites. Astron. Astrophys., 439, 1205–1213.
Alvarellos, J. L., Zahnle, K. J., Dobrovolskis, A. R., and Hamill, P. 2005. Fates of satellite ejecta in the Saturn system. Icarus, 178, 104–123.
Asphaug, E., and Benz, W. 1996. Size, density, and structure of comet Shoemaker-Levy 9 inferred from the physics of tidal breakup. Icarus, 121, 225–248.
Barr, A. C., and Canup, R. M. 2010. Origin of the Ganymede–Callisto dichotomy by impacts during the late heavy bombardment. Nature Geosci., 3, 164–167.
Benz, W., and Asphaug, E. 1999. Catastrophic disruptions revisited. Icarus, 142, 5–20.
Boué, G., and Laskar, J. 2010. A collisionless scenario for Uranus tilting. Astrophys. J. Lett., 712, L44–L47.
Braga-Ribas, F., Sicardy, B., Ortiz, J. L., et al. 2014. A ring system detected around the Centaur (10199) Chariklo. Nature, 508, 72–75.
Burns, J. A. 1986. The evolution of satellite orbits. Pages 117–158 of: Burns J, A., and Matthews, M. S. (eds.), IAU Colloq. 77: Satellites.
Burns, J. A., Showalter, M. R., and Morfill, G. E. 1984. The ethereal rings of Jupiter and Saturn. Pages 200–272 of: Greenberg, R., and Brahic, A. (eds.), IAU Colloq. 75: Planetary Rings.
Burns, J. A., Showalter, M. R., Hamilton, D. P., et al. 1999. The formation of Jupiter's faint rings. Science, 284, 1146.
Burns, J. A., Hamilton, D. P., and Showalter, M. R. 2001. Dusty rings and circumplanetary dust: Observations and simple physics. Pages 641–725 of: Grün, E., Gustafson, B. A. S., Dermott, S., and Fechtig, H. (eds.), Interplanetary Dust, Berlin: Springer.
Burns, J. A., Simonelli, D. P., Showalter, M. R., et al. 2004. Jupiter's ring-moon system. Pages 241–262 of: Bagenal, F., Dowling, T. E., and McKinnon, W. B. (eds.), Jupiter. The Planet, Satellites and Magnetosphere. Cambridge University Press.
Cameron, A. G. W., and Ward, W. R. 1976 (Mar.). The Origin of the Moon. In: Lunar and Planetary Science Conference. Lunar and Planetary Science Conference, vol. 7.
Canup, R. M. 2010. Origin of Saturn's rings and inner moons by mass removal from a lost Titan-sized satellite. Nature, 468, 943–946.
Canup, R. M. 2013. Modification of the rock content of the inner saturnian satellites by an outer solar system LHB. Page 2298 of: Lunar and Planetary Science Conference, vol. 44.
Canup, R. M., and Asphaug, E. 2001. Origin of the Moon in a giant impact near the end of the Earth's formation. Nature, 412, 708–712.
Canup, R. M., and Esposito, L. W. 1995. Accretion in the Roche zone: Coexistence of rings and ring moons. Icarus, 113, 331–352.
Canup, R. M., and Esposito, L. W. 1996. Accretion of the moon from an impact-generated disk. Icarus, 119, 427–446.
Canup, R. M., and Ward, W. R. 2002. Formation of the Galilean satellites: Conditions of accretion. Astron. J., 124, 3404–3423.
Canup, R. M., and Ward, W. R. 2006. A common mass scaling for satellite systems of gaseous planets. Nature, 441, 834–839.
Chandrasekhar, S. 1969. Ellipsoidal Figures of Equilibrium. The Silliman Foundation Lectures. New Haven: Yale University Press.
Charnoz, S., and Michaut, C. 2015. Evolution of the protolunar disk: Dynamics, cooling timescale and implantation of volatiles onto the Earth. Icarus, 260, 440–463.
Charnoz, S., Morbidelli, A., Dones, L., and Salmon, J. 2009a. Did Saturn's rings form during the Late Heavy Bombardment? Icarus, 199, 413–428.
Charnoz, S., Dones, L., Esposito, L. W., Estrada, P. R., and Hedman, M. M. 2009b. Origin and evolution of Saturn's ring system. Pages 537–575 of: Dougherty M, K., Esposito, L. W., and Krimigis, S. M. (eds.), Saturn from Cassini-Huygens. Springer.
Charnoz, S., Salmon, J., and Crida, A. 2010. The recent formation of Saturn's moonlets from viscous spreading of the main rings. Nature, 465, 752–754.
Charnoz, S., Crida, A., Castillo-Rogez, J. C., et al. 2011. Accretion of Saturn's mid-sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate-poor rings versus silicate-rich moons. Icarus, 216, 535–550.
Chiang, E. I., and Goldreich, P. 2000. Apse alignment of narrow eccentric planetary rings. Astrophys. J., 540, 1084–1090.
Colwell, J. E., and Esposito, L. W. 1990a. A model of dust production in the Neptune ring system. Geophys. Res. Lett., 17, 1741–1744.
Colwell, J. E., and Esposito, L. W. 1990b. A numerical model of the Uranian dust rings. Icarus, 86, 530–560.
Colwell, J. E., and Esposito, L. W. 1992. Origins of the rings of Uranus and Neptune. I –Statistics of satellite disruptions. J. Geophys. Res., 97, 10227.
Colwell, J. E., and Esposito, L. W. 1993. Origins of the rings of Uranus and Neptune. II –Initial conditions and ring moon populations. J. Geophys. Res., 98, 7387–7401.
Colwell, J. E., Esposito, L. W., and Bundy, D. 2000. Fragmentation rates of small satellites in the outer solar system. J. Geophys. Res., 105, 17 589–17 600.
Colwell, J. E., Nicholson, P. D., Tiscareno, M. S., et al. 2009. The structure of Saturn's rings. Pages 375–412 of: Dougherty M, K., Esposito, L. W., and Krimigis, S. M. (eds.), Saturn from Cassini-Huygens. Springer.
Cook, A. F., and Franklin, F. A. 1970. The effect of meteoroidal bombardment on Saturn's rings. Astron. J., 75, 195.
Correia, A. C. M., and Rodríguez, A. 2013. On the equilibrium figure of close-in planets and satellites. Astrophys. J., 767, 128.
Crida, A. 2015. Shepherds of Saturn's ring. Nature Geosci., 8, 666–667.
Crida, A., and Charnoz, S. 2012. Formation of regular satellites from ancient massive rings in the solar system. Science, 338, 1196.
Crida, A., and Charnoz, S. 2014. Complex satellite systems: a general model of formation from rings. Pages 182–189 of: IAU Symposium. IAU Symposium, vol. 310.
Ćuk, M., Dones, L., and Nesvorný, D. 2016. Dynamical evidence for a late formation of Saturn's moons. Astrophys. J., 820, 97.
Cuzzi, J. N., and Durisen, R. H. 1990. Bombardment of planetary rings by meteoroids –General formulation and effects of Oort Cloud projectiles. Icarus, 84, 467–501.
Cuzzi, J. N., and Estrada, P. R. 1998. Compositional evolution of Saturn's rings due to meteoroid bombardment. Icarus, 132, 1–35.
Cuzzi, J. N., Burns, J. A., Charnoz, S., et al. 2010. An evolving view of Saturn's dynamic rings. Science, 327, 1470.
Daisaka, H., Tanaka, H., and Ida, S. 2001. Viscosity in a dense planetary ring with self-gravitating particles. Icarus, 154, 296–312.
Davidsson, B. J. R. 1999. Tidal splitting and rotational breakup of solid spheres. Icarus, 142, 525–535.
de Pater, I., Gibbard, S. G., Chiang, E., et al. 2005. The dynamic neptunian ring arcs: evidence for a gradual disappearance of Liberté and resonant jump of courage. Icarus, 174, 263–272.
Di Sisto, R. P., and Zanardi, M. 2016. Surface ages of mid-size saturnian satellites. Icarus, 264, 90–101.
Dones, L. 1991. A recent cometary origin for Saturn's rings? Icarus, 92, 194–203.
Dones, L., Chapman, C. R., McKinnon, W. B., et al. 2009. Icy satellites of Saturn: Impact cratering and age determination. Pages 613–635 of: Dougherty M, K., Esposito, L. W., and Krimigis, S. M. (eds.), Saturn from Cassini-Huygens. Springer.
Dones, L., Brasser, R., Kaib, N., and Rickman, H. 2015. Origin and evolution of the cometary reservoirs. Space Sci. Rev., 197, 191–269.
Doyle, L. R., Dones, L., and Cuzzi, J. N. 1989. Radiative transfer modeling of Saturn's outer Bring. Icarus, 80, 104–135.
Dumas, C., Terrile, R. J., Smith, B. A., Schneider, G., and Becklin, E. E. 1999. Stability of Neptune's ring arcs in question. Nature, 400, 733–735.
Durisen, R. H. 1984. Transport effects due to particle erosion mechanisms. Pages 416–446 of: Greenberg, R., and Brahic, A. (eds.), IAU Colloq. 75: Planetary Rings.
Durisen, R. H. 1995. An instability in planetary rings due to ballistic transport. Icarus, 115, 66–85.
Durisen, R. H., Cramer, N. L., Murphy, B. W., et al. 1989. Ballistic transport in planetary ring systems due to particle erosion mechanisms. I –Theory, numerical methods, and illustrative examples. Icarus, 80, 136–166.
Durisen, R. H., Bode, P. W., Cuzzi, J. N., Cederbloom, S. E., and Murphy, B. W. 1992. Ballistic transport in planetary ring systems due to particle erosion mechanisms. II –Theoretical models for Saturn's A-and B-ring inner edges. Icarus, 100, 364–393.
Durisen, R. H., Bode, P. W., Dyck S, G., et al. 1996. Ballistic transport in planetary ring systems due to particle erosion mechanisms. III. Torques and mass loading by meteoroid impacts. Icarus, 124, 220–236.
Elliott, J. P., and Esposito, L. W. 2011. Regolith depth growth on an icy body orbiting Saturn and evolution of bidirectional reflectance due to surface composition changes. Icarus, 212, 268–274.
Esposito, L. W., Brahic, A., Burns, J. A., and Marouf, E. A. 1991. Particle properties and processes in Uranus' rings. Pages 410–465 of: Uranus. University of Arizona Press.
Estrada, P. R., Durisen, R. H., Cuzzi, J. N., and Morgan, D. A. 2015. Combined structural and compositional evolution of planetary rings due to micrometeoroid impacts and ballistic transport. Icarus, 252, 415–439.
Fernandez, J. A., and Ip, W. -H. 1984. Some dynamical aspects of the accretion of Uranus and Neptune –The exchange of orbital angular momentum with planetesimals. Icarus, 58, 109–120.
Fernández-Valenzuela, E., Ortiz, J. L., Duffard, R., Morales, N., and Santos-Sanz, P. 2016. Physical properties of centaur (54598) Bienor from photometry. Mon. Not. R. Astron. Soc., 466, 4147–4158.
Ferrari, C., and Reffet, E. 2013. The dark side of Saturn's Bring: Seasons as clues to its structure. Icarus, 223, 28–39.
Filacchione, G., Ciarniello, M., Capaccioni, F., et al. 2014. Cassini-VIMS observations of Saturn's main rings: I. Spectral properties and temperature radial profiles variability with phase angle and elevation. Icarus, 241, 45–65.
Fortney, J. J., Marley, M. S., and Barnes, J. W. 2007. Planetary radii across five orders of magnitude in mass and stellar insolation: Application to transits. Astrophys. J., 659, 1661–1672.
Fuller, J., Luan, J., and Quataert, E. 2016. Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems. Mon. Not. R. Astron. Soc., 458, 3867–3879.
Goldreich, P., and Porco, C. C. 1987. Shepherding of the Uranian Rings. II. Dynamics. Astron. J., 93, 730–737.
Goldreich, P., and Soter, S. 1966. Q in the solar system. Icarus, 5, 375–389.
Goldreich, P., and Tremaine, S. 1980. Disk-satellite interactions. ApJ, 241, 425–441.
Goldreich, P., and Tremaine, S. 1982. The dynamics of planetary rings. Annu. Rev. Astron. Astrophys., 20, 249–283.
Goldreich, P., and Ward, W. R. 1973. The formation of planetesimals. Astrophys. J., 183, 1051–1062.
Gomes, R., Levison, H. F., Tsiganis, K., and Morbidelli, A. 2005. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435, 466–469.
Hahn, J. M., and Malhotra, R. 1999. Orbital evolution of planets embedded in a planetesimal disk. Astron. J., 117, 3041–3053.
Harris, A. 1984. The origin and evolution of planetary rings. Pages 641–659 of: Brahic, A., and Greenberg, R. (eds.), Planetary Rings, University of Arizona Press, Tucson AZ, pp. 641–659.
Hedman, M. M., and Nicholson, P. D. 2016. The B-ring's surface mass density from hidden density waves: Less than meets the eye? Icarus, 279, 109–124.
Hesselbrock, A., and Minton, D. A. 2017. An ongoing satellite-ring cycle of Mars and the origin of Phobos and Deimos. Nat. Geosc., 10, 266–269.
Horányi, M., and Cravens, T. E. 1996. The structure and dynamics of Jupiter's ring. Nature, 381, 293–295.
Horányi, M., and Juhász, A. 2010. Plasma conditions and the structure of the Jovian ring. J. Geophys. Res. (Space Physics), 115, A09202.
Hyodo, R., and Charnoz, S. 2017. Dynamical evolution of the debris disk after a satellite catastrophic disruption around Saturn. Astron. J., 154, Id. 34.
Hyodo, R., and Ohtsuki, K. 2015. Saturn's F ring and shepherd satellites a natural outcome of satellite system formation. Nature Geosci., 8, 686–689.
Hyodo, R., Charnoz, S., Genda, H., and Ohtsuki, K. 2016. Formation of centaurs' rings through their partial tidal disruption during planetary encounters. Astrophys. J. Lett., 828, L8.
Hyodo, R., Charnoz, S., Ohtsuki, K., and Genda, H. 2017. Ring formation around giant planets by tidal disruption of a single passing large Kuiper belt object. Icarus, 282, 195–213.
Ip, W. -H. 1983. Collisional interactions of ring particles –The ballistic transport process. Icarus, 54, 253–262.
Ip, W. -H. 1984. Ring torque of Saturn from interplanetary meteoroid impact. Icarus, 60, 547–552.
Ishiguro, M., Yang, H., Usui, F., et al. 2013. High-resolution imaging of the gegenschein and the geometric albedo of interplanetary dust. Astrophys. J., 767, 75.
Jeffreys, H. 1947. The relation of cohesion to Roche's limit. Mon. Not. R. Astron. Soc., 107, 260–272.
Kalas, P., Graham, J. R., Chiang, E., et al. 2008. Optical images of an exosolar planet 25 light-years from Earth. Science, 322, 1345–1348.
Kenworthy, M. A., and Mamajek, E. E. 2015. Modeling giant extrasolar ring systems in eclipse and the case of J1407b: Sculpting by exomoons? Astrophys. J., 800, 126.
Kirchoff, M. R., and Schenk, P. 2009. Crater modification and geologic activity in Enceladus' heavily cratered plains: Evidence from the impact crater distribution. Icarus, 202, 656–668.
Kirchoff, M. R., Bierhaus, E. B., Dones, L., et al. 2018. Cratering histories in the Saturnian system. In: Enceladus and the Icy Moons of Saturn, Schenk, P. M., Clask, R. N., Howett, C. J. A., Verbiscer, A. J. and Waite, H. (eds.), University of Arizona Press.
Kokubo, E., Ida, S., and Makino, J. 2000. Evolution of a circumterrestrial disk and formation of a single moon. Icarus, 148, 419–436.
Lainey, V., Arlot, J. -E., Karatekin, Ö., and van Hoolst, T. 2009. Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature, 459, 957–959.
Lainey, V., Karatekin, Ö., Desmars, J., et al. 2012. Strong tidal dissipation in Saturn and constraints on Enceladus' thermal state from astrometry. Astrophys. J., 752, 14.
Lainey, V., Jacobson, R. A., Tajeddine, R., et al. 2017. New constraints on Saturn's interior from Cassini astrometric data. Icarus, 281, 286–296.
Latter, H. N., Ogilvie, G. I., and Chupeau, M. 2014. The ballistic transport instability in Saturn's rings –III. Numerical simulations. Mon. Not. R. Astron. Soc., 441, 2773–2781.
Levison, H. F., Kretke, K. A., and Duncan, M. J. 2015. Growing the gas-giant planets by the gradual accumulation of pebbles. Nature, 524, 322–324.
Lin, D. N. C., and Papaloizou, J. 1979. Tidal torques on accretion discs in binary systems with extreme mass ratios. Mon. Not. R. Astron. Soc., 186, 799–812.
Lin, D. N. C., and Papaloizou, J. 1986. On the tidal interaction between protoplanets and the protoplanetary disk. III –Orbital migration of protoplanets. Astrophys. J., 309, 846–857.
Lissauer, J. J., Peale, S. J., and Cuzzi, J. N. 1984. Ring torque on Janus and the melting of Enceladus. Icarus, 58(May), 159–168.
Lissauer, J. J., Dawson, R. I., and Tremaine, S. 2014. Advances in exoplanet science from Kepler. Nature, 513, 336–344.
Lynden-Bell, D., and Pringle, J. E. 1974. The evolution of viscous discs and the origin of the nebular variables. Mon. Not. R. Astron. Soc., 168, 603–637.
Malhotra, R. 1995. The Origin of Pluto's orbit: Implications for the solar system beyond Neptune. Astron. J., 110, 420.
Marley, M. S., Fortney, J. J., Hubickyj, O., Bodenheimer, P., and Lissauer, J. J. 2007. On the luminosity of young Jupiters. Astrophys. J., 655, 541–549.
Martin, R. G., and Livio, M. 2015. The solar system as an exoplanetary system. Astrophys. J., 810, 105.
Meyer-Vernet, N., and Sicardy, B. 1987. On the physics of resonant disk–satellite interaction. Icarus, 69, 157–175.
Morbidelli, A., Tsiganis, K., Batygin, K., Crida, A., and Gomes, R. 2012. Explaining why the uranian satellites have equatorial prograde orbits despite the large planetary obliquity. Icarus, 219, 737–740.
Morfill, G. E., Fechtig, H., Gruen, E., and Goertz, C. K. 1983. Some consequences of meteoroid impacts on Saturn's rings. Icarus, 55, 439–447.
Mosqueira, I., and Estrada, P. R. 2002. Apse alignment of the uranian rings. Icarus, 158, 545–556.
Mosqueira, I., and Estrada, P. R. 2003a. Formation of the regular satellites of giant planets in an extended gaseous nebula I: subnebula model and accretion of satellites. Icarus, 163, 198–231.
Mosqueira, I., and Estrada, P. R. 2003b. Formation of the regular satellites of giant planets in an extended gaseous nebula II: satellite migration and survival. Icarus, 163, 232–255.
Movshovitz, N., Nimmo, F., Korycansky, D. G., Asphaug, E., and Ower, J. M. 2015. Disruption and reaccretion of midsized moons during an outer solar system Late Heavy Bombardment. GLR, 42, 256–263.
Movshovitz, N., Nimmo, F., Korycansky, D. G., Asphaug, E., and Owen, J. M. 2016. Impact disruption of gravity-dominated bodies: New simulation data and scaling. Icarus, 275, 85–96.
Namouni, F., and Porco, C. 2002. The confinement of Neptune's ring arcs by the moon Galatea. Nature, 417, 45–47.
Nicholson, P. D., Hedman, M. M., Clark, R. N., et al. 2008. A close look at Saturn's rings with Cassini VIMS. Icarus, 193, 182–212.
Northrop, T. G., and Connerney, J. E. P. 1987. A micrometeorite erosion model and the age of Saturn's rings. Icarus, 70, 124–137.
Ogihara, M., and Ida, S. 2012. N-body simulations of satellite formation around giant planets: Origin of orbital configuration of the galilean moons. Astrophys. J., 753, 60.
Ortiz, J. L., Duffard, R., Pinilla-Alonso, N., et al. 2015. Possible ring material around centaur (2060) Chiron. Astron. Astrophys., 576, A18.
Pan, M., and Wu, Y. 2016. On the mass and origin of Chariklo's rings. ApJ, 821, 18.
Pollack, J. B. 1975. The rings of Saturn. Space Sci. Rev., 18, 3–93.
Pollack, J. B. 1976. Evolution of Jupiter, Saturn and Their Satellite Systems. Tech. rept. NASA.
Pollack, J. B., Grossman, A. S., Moore, R., and Graboske, Jr., H. C. 1977. A calculation of Saturn's gravitational contraction history. Icarus, 30, 111–128.
Porco, C. C. 1991. An explanation for Neptune's ring arcs. Science, 253, 995–1001.
Porco, C. C., and Goldreich, P. 1987. Shepherding of the Uranian rings. I –Kinematics. Astron. J., 93, 724–737.
Porco, C. C., Helfenstein, P., Thomas, P. C., et al. 2006. Cassini observes the active south pole of Enceladus. Science, 311, 1393–1401.
Poulet, F., and Sicardy, B. 2001. Dynamical evolution of the Prometheus–Pandora system. Mon. Not. R. Astron. Soc., 322, 343–355.
Pringle J, E. 1981. Accretion discs in astrophysics. Annu. Rev. Astron. Astrophys., 19, 137–162.
Reffet, E., Verdier, M., and Ferrari, C. 2015. Thickness of Saturn's Bring as derived from seasonal temperature variations measured by Cassini CIRS. Icarus, 254, 276–286.
Rice, W. K. M., and Armitage, P. J. 2009. Time-dependent models of the structure and stability of self-gravitating protoplanetary discs. Mon. Not. R. Astron. Soc., 396, 2228–2236.
Robbins, S. J., Stewart, G. R., Lewis, M. C., Colwell, J. E., and Sremčević, M. 2010. Estimating the masses of Saturn's A and Brings from high-optical depth N-body simulations and stellar occultations. Icarus, 206, 431–445.
Roche, E. 1849. Mémoire sur la figure d'une masse fluide, soumise à l'attraction d'un point éloigné. Mémoire de la section des sciences, Académie des sciences et des lettres de Montpellier, 1, 243–262.
Rosenblatt, P., and Charnoz, S. 2012. On the formation of the martian moons from a circum-martian accretion disk. Icarus, 221, 806–815.
Rosenblatt, P., Charnoz, S., Dunseath, K., et al. 2016. Accretion of Phobos and Deimos in an extended debris disc stirred by transient moons. Nature Geosci., 9, 581–583.
Ruprecht, J. D., Bosh, A. S., Person, M. J., et al. 2015. 29 November 2011 stellar occultation by 2060 Chiron: Symmetric jet-like features. Icarus, 252, 271–276.
Salmon, J., and Canup, R. M. 2014. Forming inner ice-rich moons at Saturn from a massive early ring. Page 501. 08 of: AAS/Division for Planetary Sciences Meeting Abstracts. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 46.
Salmon, J., and Canup, R. M. 2015. Strong orbital expansion of Saturn's inner ice-rich moons through ring torques and mutual resonances during their accretion from a massive ring. Page 104. 08 of: AAS/Division for Planetary Sciences Meeting Abstracts. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 47.
Salmon, J., and Canup, R. M. 2017. Accretion of Saturn's inner midsized moons from a massive primordial ice ring. ApJ, 386, id. 109.
Salmon, J., Charnoz, S., Crida, A., and Brahic, A. 2010. Long-term and large-scale viscous evolution of dense planetary rings. Icarus, 209, 771–785.
Sasaki, T., Stewart, G. R., and Ida, S. 2010. Origin of the different architectures of the jovian and saturnian satellite systems. Astrophys. J., 714, 1052–1064.
Showalter, M. R., Cheng, A. F., Weaver, H. A., et al. 2007. Clump detections and limits on moons in Jupiter's ring system. Science, 318, 232.
Sicardy, B., Roddier, F., Roddier, C., et al. 1999. Images of Neptune's ring arcs obtained by a ground-based telescope. Nature, 400, 731–733.
Slattery, W. L. 1992. Giant impacts on a primitive Uranus. Icarus, 99, 167–174.
Sridhar, S., and Tremaine, S. 1992. Tidal disruption of viscous bodies. Icarus, 95, 86–99.
Tajeddine, R., Nicholson, P. D., Lorgaretti, P. -Y., Ei Moutamid, M., and Burns, J. A. 2017. What confines the rings of Saturn? ApJSS, 232, Id. 28.
Throop, H. B., Porco, C. C., West, R. A., et al. 2004. The jovian rings: new results derived from Cassini, Galileo, Voyager, and Earthbased observations. Icarus, 172, 59–77.
Tiscareno, M. S., Burns, J. A., Nicholson, P. D., Hedman, M. M., and Porco, C. C. 2007. Cassini imaging of Saturn's rings. II. A wavelet technique for analysis of density waves and other radial structure in the rings. Icarus, 189, 14–34.
Tiscareno, M. S., Mitchell, C. J., Murray, C. D., et al. 2013a. Observations of ejecta clouds produced by impacts onto Saturn's rings. Science, 340, 460–464.
Tiscareno, M. S., Hedman, M. M., Burns, J. A., Weiss J, W., and Porco, C. C. 2013b. Probing the inner boundaries of Saturn's A ring with the Iapetus −1:0 nodal bending wave. Icarus, 224, 201–208.
Toomre, A. 1964. On the gravitational stability of a disk of stars. Astrophys. J., 139, 1217–1238.
Tremaine, S., Touma, J., and Namouni, F. 2009. Satellite dynamics on the Laplace surface. Astron. J., 137, 3706–3717.
Ward W, R. 1984. The solar nebula and the planetesimal disk. Pages 660–684 of: Greenberg, R., and Brahic, A. (eds.), IAU Colloq. 75: Planetary Rings.
Ward, W. R. 1986. Density waves in the solar nebula –Differential Lindblad torque. Icarus, 67, 164–180.
Ward, W. R., and Canup, R. M. 2010. Circumplanetary disk formation. Astron. J., 140, 1168–1193.
Weidenschilling, S. J., and Cuzzi, J. N. 1993. Formation of planetesimals in the solar nebula. Pages 1031–1060 of: Levy E, H., and Lunine, J. I. (eds.), Protostars and Planets III.
Weidenschilling, S. J., Chapman, C. R., Davis, D. R., and Greenberg, R. 1984. Ring particles –Collisional interactions and physical nature. Pages 367–415 of: Greenberg, R., and Brahic, A. (eds.), IAU Colloq. 75: Planetary Rings.
Yoder, C. F. 1995. Astrometric and geodetic properties of Earth and the solar system. Page 1 of: Ahrens T, J. (ed.), Global Earth Physics: A Handbook of Physical Constants. American Geophysical Union.
Zahnle, K., Schenk, P., Levison, H., and Dones, L. 2003. Cratering rates in the outer Solar System. Icarus, 163, 263–289.
Zebker, H. A., and Tyler, G. L. 1984. Thickness of Saturn's rings inferred from Voyager 1 observations of microwave scatter. Science, 223, 396–398.
Zhang, Z., Hayes, A. G., Janssen, M. A., et al. 2017. Cassini microwave observations provide clues to the origin of Saturn's C ring. Icarus, 281, 297–321.