Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-19T09:16:09.900Z Has data issue: false hasContentIssue false

17 - Laboratory Studies of Planetary Ring Systems

from III - Ring Systems by Type and Topic

Published online by Cambridge University Press:  26 February 2018

J. E. Colwell
Affiliation:
University of Central Florida Orlando, Florida, USA
J. Blum
Affiliation:
Technische Universität Braunschweig Braunschweig, GERMANY
R. N. Clark
Affiliation:
Planetary Science Institute Tucson, Arizona, USA
S. Kempf
Affiliation:
University of Colorado Boulder, Colorado, USA
R. M. Nelson
Affiliation:
Planetary Science Institute Tucson, Arizona, USA
Matthew S. Tiscareno
Affiliation:
SETI Institute, California
Carl D. Murray
Affiliation:
Queen Mary University of London
Get access

Summary

INTRODUCTION

The surface area of Saturn's rings is greater than that of any of the planets in the solar system, yet, aside from dust, we have never observed or sampled an individual ring particle. Rings are unique in the solar system in that they are a complex dynamical system whose individual constituents interact not only with the light that we use to sense them remotely, but also with each other through gravitational and contact forces. These dynamical interactions play as large a role in determining the appearance of the ring system as do the optical properties of the individual ring particles. In this chapter we review the experimental work that has been done to help us understand both aspects of planetary rings: their collective dynamical behavior and their optical properties.

We have a wealth of data on the behavior of ensembles of particles, both dynamically and their optical properties. Laboratory measurements of the behavior of various likely ring particle analogs are a critical link in connecting these bulk observations with the nature of individual ring particles, and understanding the properties of individual ring particles should provide clues to the outstanding unanswered questions about the age and origin of rings.

Images of Saturn's rings and optical depth profiles from occultations show features at a variety of spatial scales, from the resolution limit of tens of meters for occultations up to thousands of kilometers, and including most scales in between (Colwell et al., 2009; Chapter 3). A frustratingly small fraction of these structures is well understood. Many that remain puzzling, such as the large optical depth fluctuations in Saturn's central B ring, the complex structure in the B ring and the inner A ring, the long-wavelength low-amplitude undulations in optical depth in the C ring, and the plateaus in the C ring, are likely linked to either the collective behavior of the ring particles governed in part by their collisional properties (see e.g. Schmidt et al., 2009, for a review) or by ballistic transport of material due to extrinsic micrometeoroid bombardment (Chapter 9). The mechanical properties of individual ring particles are critical in both types of process.

Type
Chapter
Information
Planetary Ring Systems
Properties, Structure, and Evolution
, pp. 494 - 516
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambartsumian, V. 1958. The scattering of light in planetary atmospheres. In: Theoretical Astrophysics Part VII, ed. V. Ambartsumian, Pergamon, New York.Google Scholar
Arakawa, M., and Maenom, N. 1997. Mechanical strength of polycrystalline ice under uniaxial compression. Cold Regions Science and Technology, 26, 215–229.CrossRefGoogle Scholar
Arakawa, M., and Yasui, M. 2011. Impact crater formed on sintered snow surface simulating porous icy bodies. Icarus, 216, doi: 10. 1016/j. icarus. 2011. 08. 018.CrossRefGoogle Scholar
Arakawa, M., Maeno, N., Higa, M., Iijima, Y., and Kato, M. 1995. Ejection velocity of ice impact fragments. Icarus, 118, 341–354.CrossRefGoogle Scholar
Araki, S. 1988. The dynamics of particle disks. II –Effects of spin degrees of freedom. Icarus, 76, 182–198.CrossRefGoogle Scholar
Attree, N. O., Murray, C. D., Williams, G. A., and Cooper, N. J. 2014. A survey of low-velocity collisional features in Saturn's F ring. Icarus, 227, 56–66.CrossRefGoogle Scholar
Baillié, K., Colwell. J. E., Esposito. L. W., and Lewis. M. C. 2013. Meter-sized moonlet population in Saturn's C ring and Cassini Division. Astron. J., 145, article id. 171, p. 10.CrossRefGoogle Scholar
Bradley, E. T., Colwell, J. E., Esposito, L. W., et al. 2010. Far ultraviolet spectral properties of Saturn's rings from Cassini UVIS. Icarus, 206(2), 458–466.Google Scholar
Bradley, E. T., Colwell, J. E., and Esposito, L. W. 2013. Scattering properties of Saturn's rings in the far ultraviolet from Cassini UVIS spectra. Icarus, 225, 726–739. doi: 10. 1016/j. icarus. 2013. 04. 008.CrossRefGoogle Scholar
Bradley, E. T., Colwell, J. E., and Esposito, L. W. 2017. Constraining the compositional properties of Saturn's rings using far ultraviolet spectra from the Cassini UVIS. Icarus (in press).
Bridges, F., Hatzes, A., and Lin, D. N. C. 1984. Structure, stability and evolution of Saturn's rings. Nature, 309, 333–335.CrossRefGoogle Scholar
Bridges, F. G., Supulver, K. D., Lin, D. N. C., Knight, R., and Zafra, M. 1996. Energy loss and sticking mechanisms in particle aggregation in planetesimal formation. Icarus, 123, 422–435.CrossRefGoogle Scholar
Bridges, F., Supulver, K., and Lin, D. N. C. 2001. Energy loss and aggregation processes in low speed collisions of ice particles coated with frosts or methanol/water mixtures. In: Granular Gases, eds. T., Pöschel and S., Luding, Lecture Notes in Physics 564, pp. 153–183. Springer Verlag, Berlin, Heidelberg.Google Scholar
Brisset, J., Colwell, J. E., Dove, A. R., et al. 2017. Ejecta production from low-velocity impacts into regolith: Effects of temperature and water ice (in preparation).
Brown, R. H., and Cruikshank, D. P. 1983. The uranian satellites: Surface compositions and opposition brightness surges. Icarus, 55, 83–93.CrossRefGoogle Scholar
Brown, R. H., Baines, K. H., Bellucci, G., et al. 2003. Observations with the Visual and Infrared Mapping Spectrometer (VIMS) during Cassini's flyby of Jupiter. Icarus, 164, 461–470.CrossRefGoogle Scholar
Burchell, M. J., Grey, I. D. S., and Shrine, N. R. G. 2001. Laboratory investigations of hypervelocity impact cratering in ice. Adv. Space Res., 28, 1521–1526.Google Scholar
Chandrasekhar, S. 1960. Radiative Transfer. Dover, New York. Cintala, M. J., Berthoud, L., and Hörz, F. 1999. Ejection-velocity distributions from impacts into coarse-grained sand. Meteorit. Planet. Sci., 34, 605–623.Google Scholar
Clark, R. N. 1981a. The spectral reflectance of water–mineral mixtures at low temperatures. J. Geophys. Res., 86, 3074–3086.CrossRefGoogle Scholar
Clark, R. N. 1981b. Water frost and ice –The near-infrared spectral reflectance 0. 65–2. 5 microns. J. Geophys. Res., 86, 3087–3096.CrossRefGoogle Scholar
Clark, R. N. 1983. Spectral properties of mixtures of montmorillonite and dark grains –Implications for remote sensing minerals containing chemically and physically adsorbed water. J. Geophys. Res., 88, 10 635–10 644.CrossRefGoogle Scholar
Clark, R. N., and Lucey, P. G. 1984. Spectral properties of iceparticulate mixtures and implications for remote sensing. I –Intimate mixtures. J. Geophys. Res., 89, 6341–6348.CrossRefGoogle Scholar
Clark, R. N., Swayze, G. A., King, T. V. V., et al. 1999. Mineralogic surface expressions of hydrothermal alteration systems as mapped with imaging spectroscopy: applications to Mars. Bull. Astronom. Soc., 31, 1145.Google Scholar
Clark, R. N., Swayze, G. A., Livo, K. E., et al. 2003. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. J. Geophys. Res. 108, Issue E12, 5-1. CiteID 5131, DOI 10. 1029/2002JE001847.CrossRefGoogle Scholar
Clark, R. N., Swayze, G. A., Wise, R., et al. 2007. USGS digital spectral library splib06a: U. S. Geological Survey, Data Series 231. http://speclab.cr.usgs.gov/spectral-lib.html.
Clark, R. N., Curchin, J. M., Jaumann, R., et al. 2008. Compositional mapping of Saturn's satellite Dione with Cassini VIMS and implications of dark material in the Saturn system. Icarus, 193, 372–386.CrossRefGoogle Scholar
Clark, R. N., Cruikshank, D. P., Jaumann, R., et al. 2012. The surface composition of Iapetus: Mapping results from Cassini VIMS. Icarus, 218, 831–860.CrossRefGoogle Scholar
Clark, R. N., Carlson, R., Grundy, W., and Noll, K. 2013. Observed Ices in the Solar System. In: The Science of Solar System Ices, Astrophysics and Space Science Library, Volume 356. ISBN 978-1-4614-3075-9. Springer Science+Business Media, New York, p. 3.CrossRef
Clark, R. N., Carlson, R., Grundy, W., and Noll, K. 2014. Spectroscopy from Space. Rev. Mineral. Geochem., 78, 399–446.CrossRefGoogle Scholar
Colwell, J. E. 2003. Low velocity impacts into dust: Results from the COLLIDE-2 microgravity experiment. Icarus, 164, doi: 10. 1016/S0019-1035(03)00083-6.CrossRefGoogle Scholar
Colwell, J. E. and Esposito, L. W. 1990a. A numerical model of the uranian dust rings. Icarus, 86, 530–560.CrossRefGoogle Scholar
Colwell, J. E. and Esposito, L. W. 1990b. A model of dust production in the Neptune ring system. Geophys. Res. Lett., 17, 1741–1744.CrossRefGoogle Scholar
Colwell, J. E., and Taylor, M. 1999. Low velocity microgravity impact experiments into simulated regolith. Icarus, 138, 241–248.CrossRefGoogle Scholar
Colwell, J. E., Esposito, L. W., and Sremčević, M. 2006. Selfgravity wakes in Saturn's A ring measured by stellar occultations from Cassini. Geophys. Res. Lett., 33, L07201, doi:10. 1029/2005GL025163.CrossRefGoogle Scholar
Colwell, J. E., Esposito, L. W., Sremčević, M., Stewart, G. R., and McClintock, W. E. 2007. Self-gravity wakes and radial structure of Saturn's Bring. Icarus, doi:10. 1016/j. icarus. 2007. 03. 018.
Colwell, J. E., Sture, S., Ashcom, D., et al. 2008. Ejecta from impacts at 0. 2-2. 3 m/s in low gravity. Icarus, 195, 908–917, doi:10. 1016/j. icarus. 2007. 12. 019.CrossRefGoogle Scholar
Colwell, J. E., Nicholson, P. D., Tiscareno, M. S., et al. 2009. The structure of Saturn's rings. In: Saturn from Cassini-Huygens, eds. Dougherty, M. K., Esposito, L. W., and Krimigis, S. M., Springer, p. 375.CrossRefGoogle Scholar
Colwell, J. E., Brisset, J., Dove, A., et al. 2016. Low-velocity impacts into regolith under microgravity conditions. Proceedings of Earth and Space 2016, Amer. Soc. Civ. Eng., Orlando, FL, April 11–15, 2016.
Cuzzi, J. N., and Burns, J. A. 1988. Charged particle depletion surrounding Saturn's F ring: Evidence for a moonlet belt? Icarus, 74, 284–324.CrossRefGoogle Scholar
Cuzzi, J. N., and Durisen, R. H. 1990. Bombardment of planetary rings by meteoroids: General formulation and effects of Oort Cloud projectiles. Icarus, 84, 447–466.CrossRefGoogle Scholar
Cuzzi, J. N., Lissauer, J. J., Esposito, L. W., et al. 1984. Saturn's rings –Properties and processes. In: Planetary Rings, eds. R., Greenberg and A., Brahic. Tucson, AZ, University of Arizona Press, pp. 73–199.Google Scholar
Cuzzi, J., Clark, R., Filacchione, G., et al. 2009. Ring particle composition and size distribution. In: Saturn from Cassini-Huygens, eds. Dougherty, M. K., Esposito, L. W., and Krimigis, S. M. Springer, pp. 459–509.Google Scholar
Cuzzi, J. N., Burns, J. A., Charnoz, S., et al. 2010. An evolving view of Saturn's dynamic rings. Science, 327, 1470.CrossRefGoogle ScholarPubMed
Deau, E., Dones, L., Chamoa, S., et al. 2013. The opposition effect in Saturn's main rings as seen by Cassini ISS:1 Morphology of phase functions and dependence of the local optical depth. Icarus, 226 591–603.CrossRefGoogle Scholar
Deau, E. 2015. The opposition effect in Saturn's main rings as seen by Cassini ISS:2. Constraints on the ring particles and their regolith with analytical radiative transfer models. Icarus, 253, 311–345.CrossRefGoogle Scholar
de Kleer, K., de Pater, I., Ádámkovics, M., and Hammel, H. 2013. Nearinfrared spectra of the uranian ring system. Icarus, 226, 1038–1044.CrossRefGoogle Scholar
Dilley, J., and Crawford, D. 1996. Mass dependence of energy loss in collisions of icy spheres: An experimental study. J. Geophys. Res., 101, 9267–9270.CrossRefGoogle Scholar
Dlugach, Z.h.M., and Mishchenko, M. 2013. Coherent backscattering and opposition effects observed in atmosphereless bodies of the solar system. Solar System Res., 47, 454–462.CrossRefGoogle Scholar
Dollfus, A. 1979. Optical reflectance polarimetry of Saturn's globe and rings. II. Interpretations for the Bring. Icarus, 40, 171–179.CrossRefGoogle Scholar
Dove, A., Colwell, J., Vamos, C., Tiller, C. and Whitaker, A. 2013. Experimental studies of low-velocity dust aggregate collisions. American Astronomical Society Division of Planetary Sciences meeting #45, Denver Colorado, October 2013, #510. 08.
Dove, A., Jorges, J., and Colwell, J. E. 2017. Exploring the energetics of low-velocity collisions of centimeter-sized aggregates in microgravity. Astrophys. J. (in press).
Dumas, C., Terrile, R. J., Smith, B. A., and Schneider, G. 2002. Astrometry and near-infrared photometry of Neptune's inner satellites and ring arcs. Astronom. J., 123(3), 1776–1783. 514 J. E. Colwell et al.CrossRefGoogle Scholar
Durisen, R. H., Cramer, N. L., Murphy, B. W., et al. 1989. Ballistic transport in planetary ring systems due to particle erosion mechanisms 1. Theory, numerical methods, and illustrative examples. Icarus, 80, 136–166.CrossRefGoogle Scholar
Durisen, R. H., Bode, P. W., Cuzzi, J. N., Cederbloom, S. E., and Murphy, B. W. 1992. Ballistic transport in planetary ring systems due to particle erosion mechanisms. II. Theoretical models for Saturn's A-and B-ring inner edges. Icarus, 100, 364–393.CrossRefGoogle Scholar
Durisen, R. H., Bode, P. W., Dyck, S. G., et al. 1996. Ballistic transport in planetary ring systems due to particle erosion mechanisms. III. Torques and mass loading by meteoroid impacts. Icarus, 124, 220–236.CrossRefGoogle Scholar
Elliott, J. P., and Esposito, L. W. 2011. Regolith depth growth on an icy body orbiting Saturn and evolution of bidirectional reflectance due to surface composition changes. Icarus, 212, 268–274.CrossRefGoogle Scholar
Esposito, L. W., Albers, N., Meinke B, K., et al. 2012. A predator–prey model for moon-triggered clumping in Saturn's rings. Icarus, 217, 103–114.CrossRefGoogle Scholar
Gehrels, T. 1956. Photometric studies of asteroids. V: The lightcurve and phase function of 20 Massalia. Astrophys. J., 195, 331–338.Google Scholar
Goldhirsch, I., and Zanetti, G., 1993. Clustering instability in dissipative gases. Phys. Rev. Lett., 70, 1619–1622.CrossRefGoogle ScholarPubMed
Grundy, W. M., and Schmitt, B. 1998. The temperature-dependent nearinfrared absorption spectrum of hexagonal H2O ice. J. Geophys. Res., 103, 25 809–25 822.CrossRefGoogle Scholar
Gundlach, B., and Blum, J. 2015. The stickiness of micrometer-sized water-ice particles. Astrophys. J., 798, 34.CrossRefGoogle Scholar
Gundlach, B., Kilias, S., Beitz, E., and Blum, J. 2011. Micrometersized ice particles for planetary-science experiments –I. Preparation, critical rolling friction force, and specific surface energy. Icarus, 214, 717–723.CrossRefGoogle Scholar
Hapke, B. W. 1963. A Theoretical photometric function for the lunar surface. J. Geophys. Res., 68, 4571–4586.CrossRefGoogle Scholar
Hapke, B. 1990. Coherent backscatter and the radar characteristics of outer planet satellites. Icarus, 88, 407–417.CrossRefGoogle Scholar
Hapke, B. 1993. Theory of Reflectance and Emittance Spectroscopy. Topics in Remote Sensing, Cambridge University Press.CrossRefGoogle Scholar
Hapke, B. W. 2012. Theory of Reflectance and Emittance Spectroscopy, second edition. Cambridge University Press.Google Scholar
Hapke, B. W., Denevi, B., Sato, H., Braden, S., and Robinson, M. 2012. The wavelength dependence of the lunar phase curve as seen by the Lunar Reconnaissance Orbiter wide-angle camera. J. Geophys. Res., 117, doi:10. 1029/201 JE003916.CrossRefGoogle Scholar
Harris, A. W., Young, Y. W., Contreiras, L., et al. 1989. Phase relations of high albedo asteroids: The unusual opposition brightening of 44 Nysa and 64 Angelina. Icarus, 81, 365–374.CrossRefGoogle Scholar
Hartmann, W. K. 1985. Impact experiments. Icarus, 63, 69–98.CrossRefGoogle Scholar
Hatzes A, P., Bridges, F. G., and Lin, D. N. C. 1988. Collision properties of ice spheres at low impact velocities. Mon. Not. R. Astr. Soc., 231, 1091–1115.CrossRefGoogle Scholar
Hatzes, A. P., Bridges, F. G., Lin, D. N. C., and Sachtjen, S. 1991. Coagulation of particles in Saturn's rings: measurements of the cohesive force of water frost. Icarus, 89, 113–121.CrossRefGoogle Scholar
Heißelmann, D. 2015. Collisional properties of Saturnian ring particles. Ph. D. thesis, Technische Universität Braunschweig.
Heißelmann, D., Blum, J., Fraser, H. J., and Wolling, K. 2010. Microgravity experiments on the collisional behavior of saturnian ring particles. Icarus, 206, 424–430.CrossRefGoogle Scholar
Higa, M., Arakawa, M., and Maeno, N. 1996. Measurements of restitution coefficients of ice at low temperatures. Planet. Space Sci., 44, 917–925.CrossRefGoogle Scholar
Higa, M., Arakawa, M., and Maeno, N. 1998. Size dependence of restitution coefficients of ice in relation to collision strength. Icarus, 133, 310–320.CrossRefGoogle Scholar
Hill, C. R., Heißelmann, D., Blum, J., and Fraser, H. J. 2015a. Collisions of small ice particles under microgravity conditions. Astronomy & Astrophysics, 573, 11.CrossRefGoogle Scholar
Hill, C. R., Heißelmann, D., Blum, J., and Fraser, H. J. 2015b. Collisions of small ice particles under microgravity conditions. II. Does the chemical composition of the ice change the collisional properties? Astronom. and Astrophys., 575, 8.CrossRefGoogle Scholar
Hillier, J., Green, S. F., Green, S. F., et al. 2007. The composition of Saturn's E ring. Mon. Not. R. Astronom. Soc., 377(4), 1588–1596. doi:10. 1111/j. 1365-2966. 2007. 11710. x.Google Scholar
Hobbs, R. 1975. The Joint Observatory for Cometary Research. Significant Accomplishments in Science and Technology: Goddard Space Flight Center, 1973. NASA SP-361, 362 pages, published by NASA, Washington D. C., p. 13.
Horanyi, M., et al. 2009. Dusty rings. In: Saturn from Cassini-Huygens, eds. Dougherty, M. K., Esposito, L. W., and Krimigis, S. M. Springer.Google Scholar
Horányi, M., Szalay, J. R., Kempf, S., et al. 2015. A permanent, asymmetric dust cloud around the Moon. Nature, 522, 324–326.CrossRefGoogle Scholar
Housen, K. R., and Holsapple, K. A. 2011. Ejecta from impact craters. Icarus, 211, 856–875.CrossRefGoogle Scholar
Hsu, H. -W., Postberg, F., Sekine, Y., et al. 2015. Ongoing hydrothermal activities within Enceladus. Nature, 519(7542), 207–210.CrossRefGoogle ScholarPubMed
Hsu, H. W., Kempf, S., Jackman, C. M., et al. 2009. Stream particles observation during the Cassini-Huygens flyby of Jupiter. European Planetary Science Congress, September 14–18, Potsdam, Germany, p. 640.Google Scholar
Irvine, W. 1966. The shadowing effect in diffuse reflectance. J. Geophys. Res., 71, 2931–2937.CrossRefGoogle Scholar
Jensen, D. C. 1956. On the cohesion of ice. M. Sc. thesis, Pennsylvania State University.
Johnson, K. L., Kendall, K., and Roberts, A. D. 1971. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond., 324, 301–313.CrossRefGoogle Scholar
Kataoka, A., Tanaka, H., Okuzumi, S., and Wada, K. 2013. Fluffy dust forms icy planetesimals by static compression. Astron. and Astrophys., 557, L4.CrossRefGoogle Scholar
Kawakami, S., Mizutani, H., Takagi, Y., Kato, H., and Kumazawa, M. 1983. Impact experiments on ice. J. Geophys. Res., 88, 5806–5814.CrossRefGoogle Scholar
Kempf, S., Srama, R., Horanyi, M., et al. 2005a. High-velocity streams of dust originating from Saturn. Nature, 433, 289–291.CrossRefGoogle ScholarPubMed
Kempf, S., Srama, R., Postberg, F., et al. 2005b. Composition of Saturnian stream particles. Science, 307(5), 1274–1276. doi:10. 1126/science. 1106218.CrossRefGoogle ScholarPubMed
Ketcham, W. M., and Hobbs, P. V. 1969. An experimental determination of the surface energies of ice. Philos. Mag., 19, 1161–1173.CrossRefGoogle Scholar
Khawaja, N., Postberg, F., Reviol, R., and Srama, R. 2015. Characterization of signatures from organic compounds in CDA mass spectra of ice particles in Saturn's E-ring, EGU.
Kolokolova, L., Hough, J., and Levasseur-Regourd, A. (eds.) 2015. Polarimetry of Stars and Planetary Systems, Cambridge University Press.CrossRefGoogle Scholar
Koschny, D., and Grün, E. 2001. Impacts into ice silicate mixtures: Crater morphologies, volumes, depth-to-diameter ratios, and yield. Icarus, 154, 391–401.CrossRefGoogle Scholar
Krijt, S., Güttler, C., Heißelmann, D., Dominik, C., and Tielens, A. G. G. M. 2013. Energy dissipation in head-on collisions of spheres. J. Phys. D: Appl. Phys., 46, 435303.CrossRefGoogle Scholar
Krivov, A. V., Sremčević, M., Spahn, F., Dikarev, V. V., and Kholshevnikov, K. V. 2003. Impact-generated dust clouds around Laboratory Studies of Planetary Ring Systems 515 planetary satellites: spherically symmetric case. Planetary and Space Sci., 51, 251–269.Google Scholar
Kuiper, G. P. 1952. Comets and the dissipation of the solar nebula. La Physique des Comètes; Communications présentées au quatrième Colloque International d'Astrophysique, tenu à Liège les 19, 20 et 21 Septembre 1952 avec une introduction de P. Swings, pp. 361–385.
Kuiper, G. P. 1957. Infrared observations of planets and satellites. Astronomical Journal, 62, 245.CrossRefGoogle Scholar
Longaretti, P. -Y. 1989. Saturn's main ring particle size distribution –an analytic approach. Icarus, 81, 51–73.CrossRefGoogle Scholar
Love, S. G., Hörz, F., and Brownlee, D. E. 1993. Target porosity effects in impact cratering and collisional disruption. Icarus, 105, 216–224.CrossRefGoogle Scholar
Lyot, B. 1929. Recherches sur la polarisation de la lumiere des planetes et de queldues substances terrestres. Ann. Obs. Meudon., 8, 1–161. (Translation: Studies of the Polarization of Planets, NASA TT F-187.)Google Scholar
Marouf, E. A., Tyler, G. L., Zebker, H. A., Simpson, R. A., and Eshleman, V. R. (1983). Particle size distributions in Saturn's rings from Voyager 1 radio occultation. Icarus, 54, 189–211.CrossRefGoogle Scholar
Mastrapa, R. M., Bernstein, M. P., Sandford, S. A., et al. 2008. Optical constants of amorphous and crystalline H2O-ice in the near infrared from 1. 1 to 2. 6 μm. Icarus, 197(1), 307–320.Google Scholar
Mastrapa, R. M. E., Grundy, W. M., and Gudipati, M. S. 2013. Amorphous and crystalline H2O-ice. In: The Science of Solar System Ices, Astrophysics and Space Science Library, Volume 356. Springer Science+Business Media, New York, p. 371.CrossRef
McDonald, G. D., Thompson, W. R., Heinrich, M., Khare, B. N., and Sagan, C. 1994. Chemical investigation of Titan and Triton tholins. Icarus, 108(1), 137–145.CrossRefGoogle ScholarPubMed
McKay, D. S., Carter, J. L., Boles, W. W., Allen, C. C., and Allton, J. H. 1994. JSC-1: A new lunar soil simulant. In: Engineering, Construction, and Operations in Space IV, American Society of Civil Engineers, pp. 857–866.
McMuldroch, S., Pilorz, S. H., Danielson, G. E., et al. 2000. Galileo NIMS near-infrared observations of Jupiter's ring system. Icarus, 146(1), 1–11.CrossRefGoogle Scholar
Miljković, K., Mason, N. J., and Zarnecki, J. C. 2011. Ejecta fragmentation in impacts into gypsum and water ice. Icarus, 214, 739–747.CrossRefGoogle Scholar
Mishchenko, M. I. 1992. The angular width of the coherent backscatter opposition effect: An application to icy outer planet satellites. Astrophys. Space Sci., 194, 327–333.CrossRefGoogle Scholar
Mishchenko, M. I., and Dlugach, J. M. 1992. Can weak localization of photons explain the opposition effect of Saturn's rings? Mon. Not. R. Astron. Soc., 254, 15–18.CrossRefGoogle Scholar
Moroz, V. I. 1968. Physics of planets. NASA Technical Translation TT F-515. Clearinghouse for Federal Scientific and Technical Information. Washington translation of Fizika Planet (in Russian), Nauka Press, Moscow, 1967.Google Scholar
Muinonen, K. 1989. Light Scattering by Inhomogeneous Media: Backward Enhancement and Reversal of Polarization. Ph. D. thesis, University of Helsinki.Google Scholar
Muinonen, K. 1994. Coherent backscattering by Solar System dust particles. In Asteroids, Comets and Meteors 1993, eds. A., Milani., M., DiMartino., and A., Cellino., pp. 271–296. Kluwer Academic, Dordrecht, Netherlands.Google Scholar
Nelson, R. M., Hapke, B. W., Smythe, W. D., and Spilker, L. J. 2000. The opposition effect in simulated planetary regoliths. Reflectance and circular polarization ratio change at small phase angle. Icarus, 147, 545–558.CrossRefGoogle Scholar
Nelson, R. M., Smythe, W. D., Hapke, B. W., and Hale, A. S. 2002. Low phase angle laboratory studies of the opposition effect: Search for wavelength dependence. Planetary and Space Science, 50(9), 849–856.CrossRefGoogle Scholar
Nelson, R. M., Boryta, M. D., Hapke, B. W., et al. 2015a. Photometric properties of candidate planetary surface regolith materials at small phase angle: Relevance to small bodies in the solar system. Proceeding of the 46th Lunar and Planetary Science Conference abstract #2584.
Nelson, R. M., Hapke, B. W., Boryta, M., Manatt, K. S., and Smythe, W. D. 2015b. Laboratory simulations of planetary surfaces: Understanding regolith physical properties from astronomical photometric observations, International Astronomical Union Focus Meeting 12: Dust and Ices II and Planetary I, Honolulu, Hawaii, August 4, 2015.
Nicholson, P. D., Hedman, M. M., Clark, R. N., et al. 2008. A close look at Saturn's rings with Cassini VIMS. Icarus, 193(1), 182–212.CrossRefGoogle Scholar
Nicholson, P. D., and Jones, T. J. 1980. Two-micron spectrophotometry of Uranus and its rings. Icarus, 42, 540–67.CrossRefGoogle Scholar
Oetking, P. 1966. Photometric studies of diffusely reflecting surfaces with applications to the brightness of the moon. J. Geophys. Res., 71, 2505–2513.CrossRefGoogle Scholar
Ohtsuki, K. 2006. Rotation rate and velocity dispersion of planetary ring particles with size distribution. I. Formulation and analytic calculation. Icarus, 183, 373–383.Google Scholar
Ordal, M. A., Bell, R. J., Alexander Jr., R. W., Long, L. L., and Querry, M. R. 1985. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V., and W. Appl. Opt., 24, 4493–4499.CrossRefGoogle Scholar
Pendleton, Y. J., and Allamandola, L. J. 2002. The organic refractory material in the diffuse interstellar medium: Mid-infrared spectroscopic constraints. Astrophys. J. Suppl. Ser., 138(1), 75–98.CrossRefGoogle Scholar
Petrova, E. V., and Tishkovets, V. P. 2011. Light scattering by morpohologically complex objects and opposition effects (a review). Solar System Res., 45, 304.CrossRefGoogle Scholar
Piatek, J. L., Hapke, B. W., Nelson, R. M., Smythe, W. D., and Hale, A. S. 2004. Scattering properties of planetary regolith analogs. Icarus, 171(2), 531–545.CrossRefGoogle Scholar
Pieters, C. M., and Englert, P. A. J. 1993. Remote geochemical analysis, elemental and mineralogical composition. In: Remote Geochemical Analysis, Elemental and Mineralogical Composition, Cambridge University Press.Google Scholar
Pleskott, L. 1981. The opposition effect of particulate materials and condensates: application to Saturn's rings. Ph. D. dissertation, University of California at Los Angeles.
Porco, C. C., Baker, E., Barbara, J., et al. 2005. Cassini Imaging Science: Initial results on Saturn's rings and small satellites. Science, 307, 1226–1236.Google ScholarPubMed
Porco, C. C., Weiss, J. W., Richardson, D. C., et al. 2008. Simulations of the dynamical and light scattering behavior of Saturn's rings and the derivation of ring particle and disk properties. Astron. J., 136, 2172–2200.CrossRefGoogle Scholar
Postberg, F., Kempf, S., Hillier, J. K., et al. 2008. The E-ring in the vicinity of Enceladus. II. Probing the moon's interior –The composition of E-ring particle. Icarus, 193, 438–454.Google Scholar
Postberg, F., Kempf, S., Schmidt, J., et al. (2009). Sodium salts in Ering ice grains from an ocean below the surface of Enceladus. Nature, 459(7), 1098–1101. doi:10. 1038/nature08046.CrossRefGoogle Scholar
Postberg, F., Schmidt, J., Hillier, J., Kempf, S., and Srama, R. 2011. A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature, 474(7), 620–622. doi:10. 1038/nature10175.CrossRefGoogle ScholarPubMed
Rouleau, F., and Martin, P. G. 1991. Shape and clustering effects on the optical properties of amorphous carbon. J. R. Astron. Soc. Canada, 85(4), 201.Google Scholar
Salo, H. 2001. Numerical simulations of the collisional dynamics of planetary rings. In: Granular Gases, eds. T., Pöschel, and S., Luding, Volume 564 of Lecture Notes in Physics, pp. 330–349. Springer Verlag, Berlin, Heidelberg.Google Scholar
Schmidt, J., Ohtsuki, K., Rappaport, N., Salo, H., and Spahn, F. 2009. Dynamics of Saturn's dense rings. In: Saturn from Cassini-Huygens, eds. Dougherty, M.K., Esposito, L. W., and Krimigis, S. M., Springer, p. 413.CrossRefGoogle Scholar
Schneider, N. M., Burger, M. H., Schaller, E. L., et al. 2009. No sodium in the vapour plumes of Enceladus. Nature, 459(7), 1102–1104. doi:10. 1038/nature08070.CrossRefGoogle ScholarPubMed
Shkuratov, Y.u. G. 1985. On the origin of the opposition effect and negative polarization for cosmic bodies with solid surface. In: Astronomicheskii Circular 1400, pp. 3–6. Sternberg State Astron. Inst., Moscow. [In Russian]
Shrine, N. R. G., Burchell, M. J., and Grey, I. D. S. 2002. Velocity scaling of impact craters in water ice over the range 1 to 7. 3 km s−1. Icarus. 155, 475–485.CrossRefGoogle Scholar
Smith B, A. et al. 1986. Voyager 2 in the uranian system: Imaging science results. Science, 233, 43–64.CrossRefGoogle ScholarPubMed
Spahn, F., Schmidt, J., Albers, N., et al. 2006. Cassini Dust measurements at Enceladus and implications for the origin of the E ring. Science, 311, 1416–1418.CrossRefGoogle ScholarPubMed
Srama, R., Ahrens, T. J., Altobelli, N., et al. 2004. The Cassini Cosmic Dust Analyzer. Space Science Reviews, 114(1), 465–518, doi:10. 1007/s11214-004-1435-z.CrossRefGoogle Scholar
Sterken, V., Kempf, S., Altobelli, N., et al. 2010. Impacts and ejecta on and from Rhea using Cassini Cosmic Dust Analyser data. 38th COSPAR Scientific Assembly, July 18–15, 2010, Bremen, Germany, p. 7.
Stöffler, D., Gault, D. E., Wedekind, J., and Polkowski, G. 1975. Experimental hypervelocity impact into quartz sand: Distribution and shock metamorphism of ejecta. J. Geophys. Res., 80, 4062–4077.CrossRefGoogle Scholar
Supulver, K. D., Bridges, F. G., and Lin, D. N. C. 1995. The coefficient of restitution of ice particles in glancing collisions: experimental results for unfrosted surfaces. Icarus, 113, 188–199.CrossRefGoogle Scholar
Thornton, C., and Ning, Z. 1996. Theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres. Powder Technol., 99, 154–162.Google Scholar
Throop, H. B., Porco, C. C., West, R. A., et al. 2004. The jovian rings: new results derived from Cassini, Galileo, Voyager, and Earthbased observations. Icarus, 172, 59–77.CrossRefGoogle Scholar
Tiscareno, M. S., Burns, J. A., Hedman, M. M., et al. 2006. 100-metre-diameter moonlets in Saturn's A ring from observations of ‘propeller’ structures. Nature, 440, 648–650.CrossRefGoogle ScholarPubMed
Videen, G. and Muionoen, K. 2014. Light-scattering evolution from particles to regolith. J. Quant. Spectros. Rad. Trans., 150, 87–94.Google Scholar
von Seeliger, H. 1887. Zur Theorie der Beleuchtung der grossen Planeten insbesondere des Saturn. Abh. Bayer. Akad. Wiss. Math. Naturwiss. Kl., 16, 405–516.Google Scholar
Waite, J. H., Jr., Lewis, W. S., Magee, B. A., et al. 2009. Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature, 460(7), 487–490. doi:10. 1038/nature08153.Google Scholar
Waite, J. H., Jr., Combi, M. R., Ip, W. -H., et al. 2006. Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science, 311(5), 1419–1422. doi:10. 1126/science. 1121290.CrossRefGoogle ScholarPubMed
Waite, J. H., Cravens, T. E., Ip, W., et al. 2004. Cassini-Huygens Ion Neutral Mass Spectrometer 35th COSPAR Scientific Assembly, July 18–25, 2004, Paris, France, p. 1380.
Weidenschilling, S. J., Chapman, C. R., Davis, D. R., and Greenberg, R. 1984. Ring particles –Collisional interactions and physical nature. In Planetary Rings, eds. R., Greenberg, and A., Brahic, pp. 367–415, Tucson, AZ, University of Arizona Press.Google Scholar
Whizin, A. D., et al. 2017. TRACE results (in preparation).
Yasui, M., Hayama, R., and Arakawa, M. 2014. Impact strength of small icy bodies that experienced multiple collisions. Icarus, 233, 293–305.CrossRefGoogle Scholar
Zebker, H. A., Marouf, E. A., and Tyler, G. L. 1985. Saturn's rings: Particle size distributions for thin layer models. Icarus, 64, 531–548.CrossRefGoogle Scholar
Zolotov, M. Y. 2007. An oceanic composition on early and today's Enceladus. Geophys. Res. Lett., 34(2), L23203.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×