Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 3
  • Print publication year: 2008
  • Online publication date: October 2009

12 - Composition and evolution of the continental crust

Summary

It is difficult to calculate what the composition of the crust of the Earth is in any reliable way

(Harold Urey)

The composition of the upper part of the continental crust is well established, but it is so enriched in incompatible elements and the heat-producing elements K, U and Th in particular, that it cannot be representative of the entire crust. Unfortunately the inaccessible and largely unknown nature of the lower continental crust makes it more difficult to determine the overall crustal composition so that elements of model-dependency enter the discussion. Because the crust is a significant reservoir for many elements, understanding its overall chemical composition is of fundamental importance to geochemistry as these data place constraints on the basic processes of crustal growth, differentiation and evolution of the mantle.

Because of these restrictions, indirect evidence from the geophysical disciplines (e.g. heat flow, seismology) has to be employed mostly to obtain the bulk composition of the continental crust. So in contrast to upper crustal abundances where there is a consensus, the chemical composition of the bulk crust is much more controversial, with recent models covering a broad range from basalt through to dacite (Fig. 12.1).

However, compositions at both extremes encounter a variety of problems that are difficult to reconcile with known crustal characteristics. In our opinion, the combination of constraints imposed by the upper crustal composition, heat flow and geochemistry yields reliable compositions for the bulk crust.

Related content

Powered by UNSILO
McLennan, S. M.et al. (2006) Composition, differentiation and evolution of continental crust: Constraints from sedimentary rocks and heat flow, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 92–134
Rollinson, H. (2006) Crustal generation in the Archean, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 173–230
Davidson, J. P. and Arculus, R. J. (2006) The significance of Phanerozoic arc magmatism in generating continental crust, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 135–72
Nyblade, A. A. and Pollack, H. N. (1993) A global analysis of heat flow from Precambrian terrains. Journal of Geophysical Research 98, 12,207–18
Jaupart, C. and Mareschal, J. -C. (2003) Constraints from crustal heat production from heat flow data, in Treatise on Geochemistry (eds. Holland, H. D. and Turekian, K. K.), Elsevier, sect. 3.2, pp. 65–84
Nyblade, A. A. and Pollack, H. N. (1993) A global analysis of heat flow from Precambrian terrains. Journal of Geophysical Research 98, 12,207–18
Bickle, M. J. (1978) Heat loss from the Earth. Earth and Planetary Science Letters 40, 301–15
Rudnick, R. L.et al. (1998) Thermal structure, thickness and composition of continental lithosphere. Chem. Geol. 145, 395–411
Nyblade, A. A. and Pollack, H. N. (1993) A global analysis of heat flow from Precambrian terrains. Journal of Geophysical Research 98, 12,207–18
Jaupart, C. and Mareschal, J. -C. (2003) Constraints from crustal heat production from heat flow data, in Treatise on Geochemistry (eds. Holland, H. D. and Turekian, K. K.), Elsevier, sect. 3.2, pp. 65–84
Hofmeister, A. M. and Criss, R. E. (2005) Earth's heat flux revised and linked to chemistry. Tectonophysics 395, 159–77
Herzen, R.et al. (2005) Comments on “Earth's heat flux revised and linked to chemistry”. Tectonophysics 409, 193–8
Hofmeister, A. M. and Criss, R. E. (2005) Reply. Tectonophysics 409, 199–203
McLennan, S. M.et al. (2006) Composition, differentiation and evolution of continental crust: Constraints from sedimentary rocks and heat flow, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 92–134
Nyblade, A. A. and Pollack, H. N. (1993) A global analysis of heat flow from Precambrian terrains. Journal of Geophysical Research 98, 12,207–18
McLennan, S. M.et al. (2006) Composition, differentiation and evolution of continental crust: Constraints from sedimentary rocks and heat flow, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 92–134
Taylor, S. R. and McLennan, S. M. (1985) The Continental Crust: Its Composition and Evolution, Blackwell
Taylor, S. R. and McLennan, S. M. (1995) The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–65
McLennan, S. M. and Taylor, S. R. (1996) Heat flow and the chemical composition of the continental crust. J. Geol. 104, 377–96
McLennan, S. M. (2001) Relationship between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosystems 2, doi: 10.1029/2000GC000109
Taylor, S. R. and McLennan, S. M. (2002) Chemical composition and element distribution in the Earth's crust. Encyclopedia of Physical Science and Technology (ed. Meyers, R.), Academic Press, vol. 2, pp. 697–719
Taylor, S. R. (1967) The origin and growth of continents. Tectonophysics 4, 17–34
Taylor, S. R. (1977) Island arc models and the composition of the continental crust. Amer. Geophys. Union Maurice Ewing Series I, 325–35
Taylor, S. R. (1979) The composition and evolution of the continental crust: The rare earth element evidence, in The Earth: Its Origin, Structure and Evolution (ed. McElhinny, M. W.), Academic Press, ch. 11, pp. 353–76
Umbgrove, J. H. F. (1947) The Pulse of the Earth, 2nd edn., Nijhoff, ch. 3, pp. 144–216
Kelemen, P. B. (1995) Genesis of high Mg# andesites and the continental crust. Contrib. Mineral. Petrol. 120, 1–19
Wyllie, P. J. (1977) Crustal anatexis: An experimental view. Tectonophysics 43, 41–71
Clemens, J. D. (2006) Melting of the continental crust: Fluid regimes, melting reactions and source rock fertility, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 296–330
Arculus, R. J. (1981) Island arc magmatism in relation to the evolution of the crust and mantle. Tectonophysics 75, 113–33
Gill, J. B. (1981) Orogenic Andesites and Plate Tectonics, Springer-Verlag
Pearcy, L. G.et al. (1990) Mass balance calculations for two sections of island arc crust and implications for the origin of continents. Earth and Planetary Science Letters 96, 427–42
Rudnick, R. L. (1995) Making continental crust. Nature 378, 571–8
Kay, R. W. and Kay, S. M. (1991) Creation and destruction of continental crust. Geol. Rundsch. 80, 259–78
Rudnick, R. L. (1995) Making continental crust. Nature 378, 571–8
Jull, M. and Kelemen, P. B. (2001) On the conditions for lower crustal convective instability. Journal of Geophysical Research 106 (B4), 6423–46
Gao, S.et al. (2004) Recycling lower continental crust in the North China craton. Nature 432, 892–7
Gao, S.et al. (1998) How mafic is the lower continental crust?Earth and Planetary Science Letters 161, 101–17
Jackson, M. G.et al. (2007) The return of subducted continental crust in Samoan lavas. Nature 448, 684–7
Arculus, R. J. (2003) Use and abuse of the terms calc-alkaline and calc-alkalic. J. Petrology 44, 929–35
Arculus, R. J. (2004) Evolution of arc magmas and their volatiles. American Geophysical Union Geophys. Monograph 150, 95–108
Davidson, J. P. and Arculus, R. J. (2006) The significance of Phanerozoic arc magmatism in generating continental crust, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 135–72
Hildreth, W. and Moorbath, S. (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib. Mineral. Petrol. 98, 455–89
Suyehiro, K.et al. (1996) Continental crust, crustal underplating and low-Q upper mantle beneath an oceanic island arc. Science 271, 390–2
Taira, A.et al. (1998) Nature and growth rate of the northern Isu-Bonin (Ogasawara) arc crust and their implications for continental crust formation. The Island Arc 7, 395–407
Takahashi, N.et al. (1998) Implications from the seismic crustal structure of the northern Izu-Bonin arc. The Island Arc, 7, 383–94
Fliedner, M. M. and Klemperer, S. L. (1999) Structure of an island-arc: Wide-angle seismic studies in the eastern Aleutian Islands, Alaska. Journal of Geophysical Research 104, 10,667–94
Ducea, M. N. (2002) Constraints on the bulk composition and root foundering rates of continental arcs: A California perspective. Journal of Geophysical Research 107, doi: 10.1029/2001JB000643
Crawford, W. C.et al. (2004) Tonga Ridge and Lau Basin crustal structure from seismic refraction data. Journal of Geophysical Research 108, doi: 10.1029/2001JB001435
Holbrook, W. S.et al. (1999) Structure and composition of the Aleutian island arc and implications for continental crustal growth. Geology 27, 31–4
Behn, M. D. and Kelemen, P. D. (2006) Stability of arc lower crust: Insights from the Talkeetna arc section, south central Alaska and the seismic structure of modern arcs. Journal of Geophysical Research 111, doi: 10.1029/2006JB00432
Behn, M. D.et al. (2007) Trench-parallel anisotropy produced by foundering of arc lower crust. Science 317, 108–11
Williams, Q. and Revenaugh, J. (2005) Ancient subduction, mantle eclogite and the 300 km seismic discontinuity. Geology 33, 1–4
Arculus, R. J. (1999) Origins of the continental crust. J. Proc. Royal Soc. NSW 132, 83–110
Davidson, J. P. and Arculus, R. J. (2006) The significance of Phanerozoic arc magmatism in generating continental crust, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 135–72
Suyehiro, K.et al. (1996) Continental crust, crustal underplating and low-Q upper mantle beneath an oceanic island arc. Science 272, 390–2
Crawford, W. C.et al. (2003) Tonga Ridge and Lau Basin crustal structure from seismic refraction data. Journal of Geophysical Research 108, doi: 10.1029/2001JB001435
Furukawa, Y. and Shinjoe, H. (1997) Distribution of radiogenic heat generation in the arc's crust of the Hokkaido Island, Japan. Geophysical Research Letters 24, 1279–82
Reymer, A. and Schubert, G. (1984) Phanerozoic addition rates to continental crust and crustal growth. Tectonics 3, 63–77
Huene, R. and Scholl, D. W. (1991) Observations at convergent margins concerning sediment subduction, subduction erosion and the growth of continental crust. Rev. Geophys. 29, 279–316
Fyfe, W. S. (1976) Hydrosphere and continental crust: Growing or shrinking?Geosci. Canada 3, 82–3
Arculus, R. J. (2004) Evolution of arc magmas and their volatiles. American Geophysical Union Geophys. Monograph 150, 95–108
McLennan, S. M. (1988) Recycling of continental crust. Pure Appl. Geophys. 128, 683–724
Plank, T. and Langmuir, C. H. (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–94
Davidson, J. P. and Arculus, R. J. (2006) The significance of Phanerozoic arc magmatism in generating continental crust, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 135–72
Wyllie, P. J. (1977) Crustal anatexis: An experimental view. Tectonophysics 43, 41–71
Clemens, J. D. (2006) Melting of the continental crust: Fluid regimes, melting reactions and source rock fertility, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 296–330
Brown, G. C. and Fyfe, W. S. (1970) The production of granitic melts during ultrametamorphism. Contrib. Mineral. Petrol. 28, 310–18
Chappell, B. W. (1984) Source rocks of I- and S-type granites in the Lachlan Fold Belt, southeastern Australia. Phil. Trans. Royal Soc. A310, 693–707
Shaw, S. E. and Flood, R. H. (1981) The New England batholith, eastern Australia: Geochemical variations in space and time. Journal of Geophysical Research 86, 10,530–44
Flood, R. H. and Shaw, S. E. (1977) Two “S-type” granite suites with low initial 87Sr/86Sr ratios from the New England batholith, Australia. Contrib. Mineral. Petrol. 61, 163–73
Taylor, S. R. and McLennan, S. M. (1985) The Continental Crust: Its Composition and Evolution, Blackwell, pp. 218–24
Chappell, B. W.et al. (2004) Trans. Royal Soc. Edinburgh 95, 124–38
Clemens, J. D. (2006) Melting of the continental crust: Fluid regimes, melting reactions and source rock fertility, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 296–330
Patino-Douce, A. E. and Beard, J. S. (1995) Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J. Petrol. 37, 707–38
Shaw, S. E. and Flood, R. H. (1981) The New England batholith, eastern Australia: Geochemical variations in space and time. Journal of Geophysical Research 86, 10,530–44
Kemp, A. J. S.et al. (2007) Magmatic and crustal differentiation history of granitic rocks from Hf–O isotopes in zircon. Science 315, 980–3
Abbott, D. H. and Isley, A. E. (2002) Extraterrestrial influences on mantle plume activity. Earth and Planetary Science Letters 205, 53–62
Albarède, F. (1998) The growth of continental crust. Tectonophysics 296, 1–14
Stein, M. and Hofmann, A. W. (1994) Mantle plumes and episodic crustal growth. Nature 372, 63–8
Ben-Avraham, Z.et al. (1981) Continental accretion and orogeny: From oceanic plateaux to allochthonous terranes. Science 213, 47–54
Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys. 33, 267–309
Albarède, F. (1998) The growth of continental crust. Tectonophysics 296, 1–14
Rudnick, R. L. (1992) Restites, Eu anomalies and the lower continental crust. Geochimica et Cosmochimica Acta 56, 963–70
Hill, R. I. (1993) Mantle plumes and continental tectonics. Lithos 30, 193–206
Wendlandt, E.et al. (1993) Nd and Sr isotope chronology of Colorado Plateau lithosphere: Implications for magmatic and tectonic underplating of the continental crust. Earth and Planetary Science Letters 116, 23–43
Hill, R. I.et al. (1992) Mantle plumes and continental tectonics. Science 256, 186–93
Pakiser, L. C. and Robinson, R. (1966) Composition and evolution of the continental crust as suggested by seismic observations. Tectonophysics 3, 547–57
Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys. 33, 267–309
Wedepohl, K. H. (1995) The composition of the continental crust. Geochimica et Cosmochimica Acta 59, 1217–32
Condie, K. C. and Selverstone, J. (1999) The crust of the Colorado Plateau: New views of an old arc. J. Geol. 107, 387–97
Rudnick, R. L. and Gao, S. (2003) Composition of the continental crust., in Treatise on Geochemistry (eds. Holland, H. D. and Turekian, K. K.), Elsevier, vol. 3, pp. 1–64
McLennan, S. M. and Taylor, S. R. (1996) Heat flow and the chemical composition of the continental crust. J. Geol. 104, 377–96
Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys. 33, 267–309
Wedepohl, K. H. (1995) The composition of the continental crust. Geochimica et Cosmochimica Acta 59, 1217–32
Condie, K. C. and Selverstone, J. (1999) The crust of the Colorado Plateau: New views of an old arc. J. Geol. 107, 387–97
Rudnick, R. L. and Gao, S. (2003) Composition of the continental crust, in Treatise on Geochemistry (eds. Holland, H. D. and Turekian, K. K.), Elsevier, vol. 3, pp. 1–64
McLennan, S. M. and Taylor, S. R. (1996) Heat flow and the chemical composition of the continental crust. J. Geol. 104, 377–96
McLennan, S. M.et al. (2006) Composition, differentiation and evolution of continental crust: Constraints from sedimentary rocks and heat flow, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 92–134
Rapp, R. P. and Watson, E. B. (1995) Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. J. Petrology 36, 891–931
Kay, R. W. and Kay, S. M. (1991) Creation and destruction of lower continental crust. Geol. Rundsch. 80, 259–78
Albarède, F. (1998) The growth of continental crust. Tectonophysics 296, 1–14
Arculus, R. J. (1999) Origins of the continental crust. J. Proc. Royal Soc. NSW 132, 83–110
Davidson, J. P. and Arculus, R. J. (2006) The significance of Phanerozoic arc magmatism in generating continental crust, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 135–72
Moorbath, S. (1978) Age and isotopic evidence for the evolution of the continental crust. Phil. Trans. Royal Soc. A288, 401–13
Taylor, S. R. and McLennan, S. M. (1981) The composition and evolution of the continental crust: Rare earth element evidence from sedimentary rocks. Phil. Trans. Royal Soc. A288, 381–99
Armstrong, R. L. (1981) Radiogenic isotopes: The case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil. Trans. Royal Soc. A288, 443–72
(1991) The persistent myth of crustal growth. Aust. J. Earth Sci. 38, 613–30
Fyfe, W. S. (1978) The evolution of the Earth's crust: Modern plate tectonics to ancient hot spot tectonics. Chem. Geol. 23, 89–114
Bowring, S. A. and Housh, T. (1995) The Earth's early evolution. Science 269, 1535–40
Vervoort, J. D.et al. (1996) Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature 379, 624–7
Valley, J.et al. (2005) 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 150, 561–80
Kasting, J. F. and Holm, N. G. (1992) What determines the volume of the oceans. Earth and Planetary Science Letters 109, 507–15
Galer, S. J. (1991) Interrelationships between continental freeboard, tectonics and mantle temperature. Earth and Planetary Science Letters 105, 214–28
McLennan, S. M. and Taylor, S. R. (1983) Continental freeboard, sedimentation rates and growth of continental crust. Nature 306, 169–72
Wise, D. U. (1974) Continental margins, freeboard, and the volumes of continents and oceans through time, in The Geology of Continental Margins (eds. Burke, C. A. and Dragk, C. L.), Springer-Verlag, pp. 45–58
Armstrong, R. L. (1981) Radiogenic isotopes: The case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil. Trans. Royal Soc. A288, 443–72
Armstrong, R. L. (1991) The persistent myth of crustal growth. Aust. J. Earth Sci. 38, 613–30
McLennan, S. M. (1988) Recycling of the continental crust. Pure Appl. Geophys. 128, 683–724
Jackson, M. G.et al. (2007) The return of subducted continental crust in Samoan lavas. Nature 448, 684–7
McLennan, S. M. and Hemming, S. R. (1992) Samarium/neodymium elemental and isotopic systematics in sedimentary rocks. Geochimica et Cosmochimica Acta 56, 169–200
Rogers, J. J. W. and Santosh, M. (2004) Continents and Supercontinents, Cambridge University Press
Anderson, D. L. (1994) Superplumes or supercontinents. Geology 22, 39–42
Unrug, R. (1992) The supercontinent cycle and Gondwanaland assembly: Component cratons and the timing of suturing events. J. Geodynamics 16, 215–40
McLennan, S. M. and Taylor, S. R. (1991) Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. J. Geol. 99, 1–21
Duncan, C. C. and Turcotte, D. L. (1994) On the breakup and coalescence of continents. Geology 22, 103–6
Coffin, M. F. and Eldholm, O. (1994) Large igneous provinces: Crustal structure, dimensions and external consequences. Rev. Geophys. 32, 1–36
Korenaga, J. (2004) Mantle mixing and continental breakup magmatism. Earth and Planetary Science Letters 218, 463–73
Storey, B. C.et al. (1992) Magmatism and the Causes of Continental Breakup. Geological Society of London Special Publication 68
Wright, T. J.et al. (2006) Magma-maintained rift segmentation at continental rupture in the 2005 Afar dyking episode. Nature 442, 291–4
Christensen, N. I. and Mooney, W. D. (1995) Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research 100, 9761–88
Condie, K. C. and Selverstone, J. (1999) The crust of the Colorado Plateau: New views of an old arc. J. Geol. 107, 387–97
McLennan, S. M.et al. (2006) Composition, differentiation and evolution of continental crust: Constraints from sedimentary rocks and heat flow, in Evolution and Differentiation of the Continental Crust (eds. Brown, M. and Rushmer, T.), Cambridge University Press, pp. 92–134
McLennan, S. M. and Taylor, S. R. (1996) Heat flow and the chemical composition of the continental crust. J. Geol. 104, 377–96
Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys. 33, 267–309
Rudnick, R. L. and Gao, S. (2003) Composition of the continental crust, in Treatise on Geochemistry (eds. Holland, H. D. and Turekian, K. K.), Elsevier, vol. 3, pp. 1–64
Shaw, D. M.et al. (1986) Composition of the Canadian Precambrian shield and the continental crust of the Earth, in The Nature of the Continental Crust (eds. Dawsan, J. B.et al.), Geological Society of London Special Publication 24, pp. 275–82
Taylor, S. R. and McLennan, S. M. (1985) The Continental Crust: Its Composition and Evolution, Blackwell
Taylor, S. R. and McLennan, S. M. (1995) The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–65
Weaver, B. L. and Tarney, J. (1984) Empirical approach to estimate the composition of the continental crust. Nature 310, 575–7
Wedepohl, K. H. (1991) Chemical composition and fractionation of the continental crust. Geol. Rundsch. 80, 207–23
Wedepohl, K. H. (1995) The composition of the continental crust. Geochimica et Cosmochimica Acta 59, 1217–32